高等数学-极限

2024-06-11

高等数学-极限(共6篇)

篇1:高等数学-极限

我的高等数学 学我所学,想我所想

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!

我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

我的高等数学 学我所学,想我所想

1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。

2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

我的高等数学 学我所学,想我所想

第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式

我的高等数学 学我所学,想我所想

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。

第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如:道题的基本接替思路是,检验形式是“式,最后直接套用公式。

”,然后选用公式,再凑出公式的形第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

篇2:高等数学-极限

(2009-06-02 22:29:52)转载▼ 标签: 分类: 数学问题解答

杂谈 知识/探索

【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如: 这道题的基本接替思路是,检验形式是“式,最后直接套用公式。

第二种是取对数消指数。简单来说,“

”,然后选用公式,再凑出公式的形

”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

篇3:高等数学之极限存在准则及其应用

一、准备知识

(一) 数列极限的定义

定义:自变量取正整数的函数称为数列, 记作:

此时也称数列收敛, 否则称数列发散。

(二) 收敛数列的性质

1) 收敛数列的极限唯一;2) 收敛数列一定有界;3) 收敛数列的保号性, 若 且a>0 (<0) , 则埚N∈N+, 当n>N时, 有xn>0 (<0) ;4) 收敛数列的任一子数列收敛于同一极限。

二、极限存在准则

单调有界数列必有极限。

三、极限存在准则的应用

证明此数列极限存在。

证:xn姨姨显然单调递增, 且

(一) 斐波那契数列

斐波那契是意大利商人兼数学家。他在著作《算盘书》中, 首先引入阿拉伯数字, 将十进位值记数法介绍给欧洲人认识, 对欧洲的数学发展有深远的影响。在1202年, 斐波那契在他的著作中, 提出以下的一个问题:假设一对初生兔子要一个月才到成熟期, 而一对成熟兔子每月会生一对兔子, 那么, 由一对初生兔子开始, 12个月后会有多少对兔子呢?斐波那契数列, 令n=1, 2, 3…依次写出数列, 就是:

这就是斐波那契数列, 其中的任一个数, 都叫做斐波那契数。

用Fn表示第n个月的兔子的对数, 则有如下递推公式:

与斐波那契数列密切相关的一个重要极限是:

下面我们先来说明2) 式的含义并证明。

用数学归纳法容易证明:数列b姨2n-1姨是单调增加的;数列b2n姨姨是单调减少的。又对一切n, 1≤bn≤2成立, 即数列姨b2n-1姨b2n姨姨是有界的。根据“单调有界数列必有极限”的准则, 知数列b姨2n-1姨b2n姨姨的极限存在, 即 。

(二) 黄金分割 (Golden Section)

点C把线段A B分成两条线段A C和B C, 如果 , 那么称线段A B被点C黄金分割, 点C叫做线段A B的黄金分割点, A C与A B的比叫做黄金比。

那么, 黄金分割与斐波那契数列有何关系呢?原来, 黄金分割点的位置恰好是数列 的极限: 。

(三) 斐波那契数列的应用

1) 大自然中的斐波那契数列。花瓣的数目:

2) 音乐中的斐波那契数列。

(四) 黄金分割的应用

1. 叶子中的黄金分割

主叶脉与叶柄和主叶脉的长度之和比约为0.618。

2. 建筑中的黄金分割

这些金字塔底面的边长与高之比都接近于0.618。

黄金分割在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用。

参考文献

篇4:高等数学-极限

关键词:高等数学;极限数学;解题方式;内涵;探讨

中图分类号:G712 文献标识码:B 文章编号:1002-7661(2015)15-325-02

数学中极限理论主要是从产生一直到成熟的整个过程需要经历很长一段时间的发展,这是第二次出现数学危机当中所兴起的一种高效的科学的计算方式,它融合和升华了当前数学学习人的解题方式和解题经验,极限理论成为了高数解题中非常重要的解题思想和理论。国外在关于数学极限解题教学思想方面主要是使用的四元素的教学方式。四元素教学思想就是指对每一个数学的理念 都可以运用图像、图形、符号以及语言表达这四种形式来呈现给学生,通过这种方式来让学生可以通过四种不同类型的角度来对数学的概念进行直观的理解和掌握。

一、高等数学教学中极限理念教学的概念和内涵

高数中的极限理论是生成与微积分在实际运用过程中所表现出来的弊端而提出的完善理念,我们也可以说极限理念是微积分理论的一种衍生物,他不不但扩增了微积分教学和积分教学的运用范围,而且在很大程度上提升了数学科学的质量,高数中的极限理论体系的健全和完善的微积分教学以及对微积分的使用为高数数学教学打下了非常坚实的理论基础。

高等数学中对课题的分析与研究是离不开对极限理念的运用和解题方式的使用,甚至在所有的数学分析与实际解题过程中,对基础性的理念都和极限理念有着不可分割的关系。在很多的数学编著当中,也经常将极限理念以及数学函数的理论当成最基本的思想方式,并且运用极限理念来对实际的数学问题进行解决,这也成为了当前高等数学中对数学问题的分析和初等数学问题分析的最大区别。

高数中极限理念可以应用在常规性的数学解题思想无法解答的数学问题上,比如瞬时的速度、曲线的长度以及曲面的面积等,使用极限解题的思维方式在变量与常量之间建立起一种有效的联系,在有限和无限之间形成一种一对一的联系,从无限的角度上来分析常量和变量相互间的关系,这种方式同样也是矛盾分析法在数学教学问题分析中的应用。极限理论不但在当前数学教学中得到了非常广泛的运用,同时对物理学的教学和研究同样也起到了非常重要的引导性作用,这个极限理念本身的思维方式的普遍性有着非常大的关系。

二、高等数学中运用极限理念解题的思路和方式

当前高等数学教学中所采用的极限理念解题的方式通常包含了以下几种方式:

1、破敛性解题方式

在对数学实际问题进行解答的过程中,首先需要判断在对这个问题在求解过程中的难易程度,在运用极限方式下不能直接进行解答的前提下,需要对求解的极限的变量进行对应的调整,依照解题的实需要来进行成倍的放大或者是成倍的减小,在放大减小之后所产生的变量通常对求解的过程是非常重要的,并且其原有的极限值与自变量的极限值通常是一样的,也就是说运用破敛型的解题方式可以具体的求出极限的值。

2、运用洛必达法则解答

洛必达法则往往是应用在于类型出现不定式的数学问题的求解当中。洛必达法则在实际的运用法则中还是比较灵活的,运用变形之后的法则也可以取得非常明显的求解效果,这种方式主要是被应用在极限求解的类型当中,对洛必达法则的使用需要注意问题是需要先对数学题目进行验证和判断是否满足对洛必达法则的使用,也就是需要先明确极限的具体类型,在题目符合洛必达法则之后方可对其进行应用。

3、等价无穷小变量方法

在高等数学的学习过程中,等价无穷小变量相对来讲还是比较常见的一种,在实际的使用起来还是比较方便和实用的,良好的灵活性在对其进行应用的同时也同样需要判断他是否满足实际使用的需要,通常只有在极限式的解答过程当中,出现相乘或者相除的因式的时候,可以用等价无穷小的变量来进行替代和解答,并且在求解的过程中不能对相加和相减的部分实施替代。

比如:在求解 的时候,当 时,因为 的类型为 ,所以当分子和分母同时除以x?的时候,分子的极限值就是2,但是分母的极限为0,不能使用四则元算法则,但是依照无穷大和无穷小的相互关系可以具体的推导出,函数的倒数的极限也是0,由此可以看出函数的极限是无限大,当想x的值趋向无穷大的时候,sin x的的值就会表现出一种循环变化的状态,也不能使用运算法则。但是当x的值趋向无穷大的时候,x的倒数就趋向无穷小,此时sin x就属于一个有界的函数。 可以依照有界函数和无穷小量的乘积是一个无穷小这个量的原则,可以具体的推导出函数的极限值就是0。

四则运算法则。在进行求解的过程中,在求解的过程中首先需要判断该题目是否满足四则元算法则,高等数学中会有很多类型的题目,在表面上是不会给出所有的满足条件,但是可以创造必要的条件,这也是数学解题过程中的一个非常重要的解题方式。

篇5:高等数学极限习题500道汇总

当xx0时,设1=o(),1o()且limxx0存在, 1求证:limlim.xx0xx01 21若当x0时,(x)(1ax)31与(x)cosx1是等价无穷小,则a1313A. B. C. D.. 2222 答()当x0时,下述无穷小中最高阶的是A x2 B1 cosx C 1x21 D xsinx 答()求极限lim(n 求limnln(2n1)ln(2n1)之值. 求极限lim(1)nnsin(n22).nnn11)ln(1). 2nlimx0e x21x2的值_____________ 3xsinxan1an2 设有数列a1a,a2b(ba),an2求证:limynlim(an1an)及liman.nnn 设x1a,x2b.(ba0)xn2记:yn1xn12xnxn1,xnxn1 1,求limyn及limxn.nnxn(12x)sinxcosx求极限lim之值. x0x2 设limu(x)A,A0;且limv(x)Bxx0xx0试证明:limu(x)v(x)AB.xx0 limln(1x)x11(x1)2 A. B.1 C.0 D.ln2 答()sinxxlim(12x)x0 A.1 B.e2 C.e D.2 答()设u(x)1xsinf(u)1fu(x)1求:lim及limu(x)之值,并讨论lim的结果.u1x0x0u1u(x)11.f(u)u2x x29lim2的值等于_____________ x3xx6 ex4exlimxx3e2ex 1A. B.2 C.1 D.不存在3答:()(2x)3(3x)5limx(6x)8 1A.1 B.1 C.5 D.不存在233答:()(12x)10(13x)20xx33x2lim____________ limx的值等于____________ 求极限lim3 .xx0eex(16x2)15x1xx2x116x412x求lim之值. x0x(x5)3已知:limu(x),limu(x)v(x)A0xx0xx0问limv(x)?为什么?xx0 关于极限limx053e1x结论是:55A  B 0 C  D 不存在 34 答()设limf(x)A,limg(x),则极限式成立的是xx0xx0f(x)0xx0g(x)g(x)B.limxx0f(x)C.limf(x)g(x)A.limxx0 D.limf(x)g(x)xx0 答()f(x)excosx,问当x时,f(x)是不是无穷大量. limtanxarctanx01x D. 22 答()A.0 B.不存在.C.arctan(x2)limxx 2 答()A.0 B. C.1 D.limx2x12x3A.2 B.2 C.2 D.不存在 答()设f(x) 32e1x,则f(0)___________ limarccotx01x 2 答()A.0 B. C.不存在.D.limacosx0,则其中ax0ln1xA.0 B.1 C.2 D.3e2xex3xlim的值等于____________ 答()x01cosx lim2(1cos2x)x0 xA.2 B.2 C.不存在.D.0答:()px2qx5设f(x),其中p、q为常数.x5问:(1)p、q各取何值时,limf(x)1;x(2)p、q各取何值时,limf(x)0;x(3)p、q各取何值时,limf(x)1.x5(x2n2)2(x2n2)2(3x22)3求极限lim. 求极限lim. x(xn1)2(xn1)2x(2x33)2 已知limx1x43AB(x1)c(x1)20(x1)2试确定A、B、C之值. ax3bx2cxd已知f(x),满足(1)limf(x)1,(2)limf(x)0.2xx1 xx2试确定常数a,b,c,d之值.已知limx1(ab)xb3x1x34,试确定a,b之值. 1"上述说法是否正确?为什么? (x)"若lim(x)0,则limxx0xx0 当xx0时,f(x)是无穷大,且limg(x)A,xx0证明:当xx0时,f(x)g(x)也为无穷大.用无穷大定义证明:limx1 2x1. 用无穷大定义证明:limlnx. x1x0用无穷大定义证明:limtanx 用无穷大定义证明:limx20x101. x1 "当xx0时,f(x)A是无穷小"是"limxxf(x)A"的:0(A)充分但非必要条件(B)必要但非充分条件(C)充分必要条件(D)既非充分条件,亦非必要条件 答()若limxxf(x)0,limg(x)0,但g(x)0.0xx0证明:limf(x)xx)b的充分必要条件是 0g(x limf(x)bg(x)xx0.0g(x)1用数列极限的定义证明:liman0 用数列极限的定义证明:limann,(其中0a1).n1用数列极限的定义证明:limn(n2)152lim1cos(sinx)2ln(1x)的值等于___________ n2n2. x02(cosx)sinx求极限lim1x0x3之值.(0a1). 设limf(x)A,试证明:xx0对任意给定的0,必存在正数,使得对适含不等式0x1x0;0x2x0的一切x1、x2,都有f(x2)f(x1)成立。已知:limf(x)A0,试用极限定义证明:limxx0xx0 f(x)A. x2n1x求f(x)lim2n的表达式 xn与ynxnyn是否也必发散?若数列同发散,试问数列 nx1 2nx2n1(其中a、b为常数,0a2),设f(x)lim(1)求f(x)的表达式;x2n1sinxcos(abx)(2)确定a,b之值,使limf(x)f(1),limf(x)f(1).x1x1应用等阶无穷小性质,求极限limx015x13xarctan(1x)arctan(1x). . 求极限lim2x0xx2x1n求极限lim(14x)(16x)(1ax)1. 求极限lim(n为自然数).a0. x0x0xx(52x)x2. x3x3131213求极限lim 设当xx0时,(x)与(x)是等价无穷小,f(x)f(x)(x)a1,limA,xx0(x)xx0g(x)f(x)(x)证明:limA.xx0g(x)且lim 设当xx0时,(x),(x)是无穷小且(x)(x)0证明:e(x)e(x)~(x)(x). 若当xx0时,(x)与1(x)是等价无穷小,(x)是比(x)高阶的无穷小.则当xx0时,(x)(x)与1(x)(x)是否也是等价无穷小?为什么? 设当xx0时,(x)、(x)是无穷小,且(x)(x)0.证明:ln1(x)ln1(x) 与(x)(x)是等价无穷小. 设当xx0时,f(x)是比g(x)高阶的无穷小.证明:当xx0时,f(x)g(x)与g(x)是等价无穷小. 若xx0时,(x)与1(x)是等价无穷小,(x)与(x)是同阶无穷小,但不是等价无穷小。试判定:吗?为什么? (x)(x)与1(x)(x)也是等价无穷小 sinxxx(A)1(B)(C)0(D)不存在但不是无穷大 lim 答()1limxsin之值xx(A)1(B)0(C)(D)不存在但不是无穷大 答()已知limx0AtanxB(1cosx)Cln(12x)D(1ex2)1(其中A、B、C、D是非0常数)则它们之间的关系为(A)B2D(B)B2D(C)A2C(C)A2C 答()xn1设limx0及lima存在,试证明:a1. 设x1计算极限lim(1x)(1x)(1x)(1x)nnnxnn242n21x2x3(a21)xax33x23x2求lim(sincos)计算极限lim(a0)计算极限lim xxax2xxx2a2x2x22exexcosxlim(cosxcosxcosx) 计算极限lim 计算极限limx0xln(1x2)x02222nnan满足an0及lim设有数列nan1r(0r1),试证明liman0. nannan满足an0且limnanr,设有数列(0r1),试按极限定义证明:liman0. n设limf(x)A(A0),试用“”语言证明limxx0xx0f(x)A. 1试问:当x0时,(x)x2sin,是不是无穷小? x设limf(x)A,limg(x)B,且AB,试证明:必存在x0的某去心邻域,使得xx0xx0在该邻域为f(x)g(x). ln(13x2)11计算极限lim. 设f(x)xsin,试研究极限lim 23x2x0f(x)arcsin(3x4x4)x 设数列的通项为xn则当n时,xn是(A)无穷大量(B)无穷小量n1(1)nn2,n(C)有界变量,但不是无穷小(D)无界变量,但不是无穷大  答()以下极限式正确的是(A)lim(011x)xe(B)xlim(011x)xe1x(C)lim(11)xe1(D)lim(11)xxxxx0 答()设x110,xn16xn(n1,2,),求limnxn. eax1设f(x)x,当x0,且limxf(x)Ab,当x00则a,b,A之间的关系为(A)a,b可取任意实数,A1(B)a,b可取任意实数,Ab(C)a,b可取任意实数,Aa(D)a可取任意实数且Aba答:()ln(1ax)设f(x)dx,当x0,且limf(x)A,b,当x0x0则a,b,A之间的关系为(A)a,b可取任意实数,Aa(B)a,b可取任意实数,Ab(C)a可取任意实数且abA(D)a,b可取任意实数,而A仅取Alna答:(1cosax设f(x)x2,当x0,且limf(x)b,当x0x0A则a,b,A间正确的关系是(A)a,b可取任意实数Aa2(B)a,b可取任意实数Aa22(C)a可取任意实数bAa2(D)a可取任意实数bAa22 答())设有lim(x)a,limf()A,且在x0的某去心邻域xx0ua内复合函数f(x)有意义。试判定limf(x)A是否xx0 成立。若判定成立请给出证明;若判定不成立,请举出例子,并指明应如何加强已知条件可使极限式成立。x22xb,当x1设f(x)x1 适合limf(x)Ax1a,当x1则以下结果正确的是(A)仅当a4,b3,A4(B)仅当a4,A4,b可取任意实数(C)b3,A4,a可取任意实数(D)a,b,A都可能取任意实数 答()1bx1 当x0设f(x) 且limf(x)3,则xx0a 当x0(A)b3,a3(B)b6,a3(C)b3,a可取任意实数(D)b6,a可取任意实数 答()设(x)(1ax)213 ex2ex求lim. 1,(x)eecosx,且当x0时(x)~(x),试求a值。x3ex4ex2x2axsin设lim()8,则a____________. lim(13x)x____________. xx0xa 当x0时,在下列无穷小中与x2不等价的是(A)1cos2x(B)ln1x2(C)1x21x2(D)exex2 答()当x0时,下列无穷小量中,最高阶的无穷小是(A)ln(x1x2)(B)1x21(C)tanxsinx(D)eexx2 答()计算极限limx011x2excosxxxnn122 lim3x5sin4_____________________ x5x32x计算极限limx13n(x1)(x1)(x1)xxn计算极限 lim n1x1(x1)x1x计算极限 lim(cosx0 讨论极限limarctanx).x11的存在性。研究极限limarccot1的存在性。x0xx1x22x3研究极限lim. xx1 当x0时,下列变量中,为无穷大的是sinx11(A)(B)lnx(C)arctan(D)arccotxxx 答()limx11________________。lnx1n设an0,且liman0,试判定下述结论“存在一正整数N,使当nN时,恒有an1an”是否成立? 若limanA试讨论liman是否存在? nn设有数列 an 满足lim(an1an)0,试判定能否由此得出极限liman存在的nn结论。an1an满足an0;设有数列r,0r1,试证明liman0 nan设limxx0f(x)存在,limg(x)存在,则limf(x)是否必存在?xx0xx0g(x)f(x)A0,则是否必有limg(x)0.xx0g(x)若limf(x)0,limxx0xx0 当x0时,下列变量中为无穷小量的是11sinx2x2(B)ln(x1)(A)1(C)lnx(D)(1x)1x 1 答()设xx0时,f(x),g(x)A(A是常数),试证明limxx0g(x)0.f(x)若limg(x)0,且在x0的某去心邻域内g(x)0,limxx0xx0f(x)A,g(x)则limf(x)必等于0,为什么?xx0 若limf(x)A,limg(x)不存在,则limf(x)g(x)xx0xx0xx0是否必不存在?若肯定不存在,请予证明,若不能肯定,请举例说明,并指出为何加强假设条件,使可肯定f(x)g(x)的极限(xx0时)必不存在。nlimeee1n2nn1ne(A)1(B)e(C)e(D)e2 答()lim(12n12(n1))____.n x0limxcos2x2(A)等于0;(B)等于2;(C)为无穷大;(D)不存在,但不是无穷大.答()设f(x)1sin,试判断:xx(1)f(x)在(0,1),内是否有界;(2)当x0时,f(x)是否成为无穷大.设f(x)xcosx,试判断:(1)f(x)在0,上是否有界(2)当x时,f(x)是否成为无穷大 设(x)1x,(x)333x,则当x1时()1x(A)(x)与(x)是同阶无穷小,但不是等价无穷小;(B)(x)与(x)是等价无穷小;(C)(x)是比(x)高阶的无穷小;(D)(x)是比(x)高阶的无穷小.答()x3ax2x4设limA,则必有x1x1(A)a2,A5;(B)a4,A10;(C)a4,A6;(D)a4,A10.答()x21当x1时,f(x)ex1(A)等于2;(B)等于0;1x1的极限(C)为;(D)不存在但不是无穷大.答()设当x0,(x)(1ax)2321和(x)1cosx满足(x)~(x).试确定a的值。3x22求a,b使lim(axb)1 设lim(3x24x7axb)0 , 试确定a,b之值。xx1x设x11,xn12xn3(n1,2,),求limxn n设x14,xn12xn3(n1,2,),求limxn. n计算极限lim(xxxx)计算极限limx0x1xsinxcos2x xtanx计算极限limx04tanx4sinx22cosax研究极限lim(a0)的存在性。x0xetanxesinx2n xn收敛,并求极限limxn.设x1(0,2),xn12xnxn.(n1,2,),试证数列设x10,xn12xnxn(n1,2,),试研究极限limxn. n2 设x12,xn12xnxn(n1,2,),试研究极限limxn.n2 设a1,b1是两个函数,令an1anbn,bn1liman存在,limbn存在,且limanlimbnnnbnnanbn,(n1,2,)试证明:2 ecosxe计算极限 limxxx计算极限lim 2xx0xnxxx 计算极限lim(1212)x xxxnn若limxnyn0,且xn0,yn0,则能否得出"limxn0及limyn0至少有一式成立"的结论。设数列xn,yn都是无界数列,znxnyn,zn是否也必是无界数列。试判定:31计算极限limxsinln(1)sinln(1) xxx 1 如肯定结论请给出证明,如否定结论则需举出反例。极限lim(cosx)xx02A.0; B. C.1; D.e. 答()12 exex极限lim的值为()x0x(1x2)A.0; B.1; C.2; D.3. 答()极限lim1cos3x的值为()x0xsin3x123A.0; B.; C.; D.. 632 答()下列极限中不正确的是 xtan3x32A.lim; B.lim;x0sin2xx1x122 x21arctanxC.lim2;D.lim0.x1sin(x1)xx 答()cos ln(1xx2)ln(1xx2)极限limx0x2A.0; B.1; C.2; D.3. 答()1x 极限lim(cosx)x0A.0; B.e; C.1; D.e. 答()1212 当x0时,与x为等价无穷小量的是A.sin2x;  B.ln(1x);C.1x1x; D.x(xsinx). 答()当x1时,无穷小量1-x是无穷小量x1的12xA.等价无穷小量;B.同阶但非等价无穷小量; C.高阶无穷小量;D.低阶无穷小量. 答()当x0时,无穷小量2sinxsin2x与mxn等价,其中m,n为常数,则数组(m,n)中m,n的值为 A.(2,3); B.(3,2); C.(1,3); D.(3,1).  答()1 已知lim(1kx)x0xe,则k的值为1A.1; B.1; C.; D.2. 2 答()1极限lim(1)2的值为x2xA.e; B.e; C.e; D.e1414x 答()下列等式成立的是21A.lim(1)2xe2; B.lim(1)2xe2;xxxx 11C.lim(1)x2e2;D.lim(1)x1e2.xxxx 答()1极限lim(12x)xx0A.e; B.1e; C.e2; D.e2. 答()极限lim(x1x4xx1)的值为()A.e2; B.e2; C.e4; D.e4. 答()2x1极限lim2x1x2x1的值是A.1; B.e; C.e12; D.e2. 答()下列极限中存在的是A.limx2111xx; B.limx01e1;C.limxsin; xxx 答()极限limtanxsinxx0x3的值为A.0;B.1b C.12 D.. 答()极限limsinxxxA.1; B.0; C.1; D.. 答()已知limacosxx0xsinx12,则a的值为A.0; B.1; C.2; D.1. 答()已知limsinkxx0x(x2)3,则k的值为A.3; B.32; C.6; D.6. 答()D.lim1x02x1 x21设lim(axb)0,则常数a,b的值所组成的数组(a,b)为xx1 A.(1,0); B.(0,1); C.(1,1); D.(1,1). 答()4x23设f(x)axb,若limf(x)0,则xx1a,b的值,用数组(a,b)可表示为A.(4,4); B.(4,4); C.(4,4); D.(4,4)答()极限limx26x8x2x28x12的值为A.0; B.1; C.12; D.2. 答()下列极限计算正确的是A.limx2nxn1x2n1; B.xlimsinxxsinx1;C.limxsinxx0x30; D.lim(n112n)ne2. 答()极限lim(x3x2xx21x1)的值为A.0; B.1; C.1; D.. 答()数列极限lim(nn2nn)的值为A.0; B.12; C.1; D.不存在. 答()x2已知lim3xcx1x11,则C的值为A.1; B.1; C.2; D.3. 答()已知limx2ax6x11x5,则a的值为A.7; B.7 C.2; D.2. 答()ex2,x0设函数f(x)1,x0,则limf(x)x0xcosx,x0A.1; B.1; C.0; D.不存在. 答()1cosx,x0设f(x)xx1,则 ,x01e1xA.limx0f(x)0;B.xlim0f(x)xlim0f(x);C.xlim0f(x)存在,xlim0f(x)不存在; D.xlim0f(x)不存在,xlim0f(x)存在. 答()tankx设f(x)x,x0,且limx3,x0x0f(x)存在,则k的值为 A.1; B.2; C.3; D.4. 答()下列极限中,不正确的是 1A.lim(x1xx3)4;B.xlim0e0;1C.limsin(x1)x0(12)x0;D.limx1x0. 答()若limf(x)x0xk0,limg(x)x0xk1c0(k0). 则当x0,无穷小f(x)与g(x)的关系是A.f(x)为g(x)的高阶无穷小;B.g(x)为f(x)的高阶无穷小;C.f(x)为g(x)的同阶无穷小; D.f(x)与g(x)比较无肯定结论. 答()当x0时,2sinx(1cosx)与x2比较是()A.冈阶但不等价无穷小; B.等价无穷小;C.高阶无穷小; D.低阶无穷小. 答()当x0时,sinx(1cosx)是x3的 A.冈阶无穷小,但不是等价无穷小; B.等价无穷小;C.高阶无穷小; D.低阶无穷小. 答()设有两命题: xn必收敛;命题“a”,若数列xn单调且有下界,则命题“b”,若数列xn、yn、zn满足条件:ynxnzn,且yn,zn都有收敛,则xn必收敛 数列则A.“a”、“b”都正确; B.“a”正确,“b”不正确;C.“a”不正确,“b”正确; D.“a”,“b”都不正确. 答()设有两命题: 命题甲:若limf(x)、limg(x)都不存在,则limf(x)g(x)必不存在;xx0xx0xx0xx0命题乙:若limf(x)存在,而limg(x)不存在,则limf(x)g(x)必不存在。xx0xx0则A.甲、乙都不成立; B.甲成立,乙不成立;C.甲不成立,乙成立; D.甲、乙都成立。答()设有两命题: 命题“a”:若limf(x)0,limg(x)存在,且g(x0)0,则limxx0xx0xx0xx0xx0xx0f(x)0;g(x)命题“b”:若limf(x)存在,limg(x)不存在。则lim(f(x)g(x))必不存在。则A.“a”,“b”都正确; B.“a”正确,“b”不正确;C.“a”不正确,“b”正确; D.“a”,“b”都不正确。答()若lim,f(x),limg(x)0,则limf(x)g(x)xx9xx0xx0A.必为无穷大量;B.必为无穷小量;C.必为非零常数;D.极限值不能确定 .设有两个数列an,bn,且lim(bnan)0,则 n 答()anA.,bn必都收敛,且极限相等;anB.,bn必都收敛,但极限未必相等;an收敛,而bn发散;C.an和bn可能都发散,也可能都D.收敛. 答()下列叙述不正确的是 A.无穷小量与无穷大量的商为无穷小量; B.无穷小量与有界量的积是无穷小量;C.无穷大量与有界量的积是无穷大量;D.无穷大量与无穷大量的积是无穷大量。答()下列叙述不正确的是 A.无穷大量的倒数是无穷小量;B.无穷小量的倒数是无穷大量;C.无穷小量与有界量的乘积是无穷小量;D.无穷大量与无穷大量的乘积是无穷大量。答()若limf(x),limg(x),则下式中必定成立的是 A.limf(x)g(x);B.limf(x)g(x)0;xx0xx0xx0xx0C.limxx0f(x)c0;D.limkf(x),(k0).xx0g(x)答()设函数f(x)xcos1,则当x时,f(x)是 xA.有界变量; B.无界,但非无穷大量; C.无穷小量; D.无穷大量. 答()若limf(x)A(A为常数),则当xx0时,函数f(x)A是 xx0A.无穷大量;B.无界,但非无穷大量;C.无穷小量;D.有界,而未必为无穷小量 . 答()设函数f(x)xsin1,则当x0时,f(x)为 xA.无界变量;B.无穷大量;C.有界,但非无穷小量;D.无穷小量. 答()f(x)在点x0处有定义是极限limf(x)存在的 xx0A.必要条件;B.充分条件;C.充分必要条件;D.既非必要又非充分条件. 答()

篇6:考研高等数学之极限复习方法

大家好,今天我们来说一下极限的复习方法。我们都知道高等数学在整个考研数学中占到了56%的比例。所以复习好高等数学至关重要。而极限是高等数学的基础,所以极限学习的成败也就在一定程度上决定了高等数学的成败。

我们先看一下高等数学的整体框架:

从中我们可以看出:高等数学用极限定义的连续,可导,级数;并且导数应用中用洛必达法则求极限。而不定积分是导数的逆运算,定积分的定义也用到了极限思想。所以学好了极限就相当于为整个高等数学的学习奠定了基础。在这里,向蠢鲜将给大家分享一下极限的复习方法。

1.牢记极限的知识体系

这一点对学习任何知识都适用。大家只有掌握了极限的知识体系,才能清楚极限包含的内容以及可能的重难点。极限这章包括了三个部分:首先是极限的概念以及无穷小和无穷大的介绍;然后是极限的基本性质;最后是极限的计算方法。大家可以把这个知识体系与考纲做个对照,就会发现极限的计算是重点。在清楚了重点后,复习极限时就可以做到详略得当,有的放矢。

2.理解极限知识点内容

在牢记知识体系之后,大家要做的自然是理解知识点。首先是极限的概念以及无穷小和无穷大的介绍。针对极限的概念,大家没必要像定积分定义那样记的那么准。历年考研几乎没考过用定义来求极限。所以,大家要做的是理解这个概念,并能用自己的话来表述。特别是教材或者参考书上针对概念的注解是大家需要关注的。至于无穷小和无穷大,关键也是要理解内涵,并且与极限联系。然后是极限的基本性质。大家也不需要强记性质。大家需要做的还是理解。即要多问问自己这条性质怎么来的。比如说函数极限的局部有界性和数列极限的有界性。那么大家就要想想为什么函数极限是局部有界呢?再比如函数极限的局部保号性及推论是怎么来的?我想如果大家都能给出证明的话,那这些性质也就自然记住了。最后是极限的计算。这个是重点。每年的考研必考至少一道关于极限的计算大题。但是在学习极限时,很多同学都是在这里出现了瓶颈。究其原因,我想主要是两点:一,方法理解不透彻。具体就是被极限式子的形式多,因而求极限的方法多,很多同学容易混淆,张冠李戴,没理解方法的使用条件和内涵。比如求极限的常用方法:等价无穷小替代。很多同学一看到题目有已知的等价无穷小就盲目的利用等价替换。殊不知等价无穷小替代是有条件的,即一般情况下整个式子的`乘除因子才能替代。再比如洛必达法则求极限。很多同学一看到0比0或者无穷比无穷就毫不犹豫的用这个法则。但是,在使用洛必达法则前,要满足三个条件。所以,希望大家对极限的求解方法要理解透彻,要注意这些方法的使用条件,这样才不会错。二。心态。因为求极限的方法比较多,而且题目更多。很多同学为了更好的巩固知识点,做了大量的题。这种想法是好的,但是同时会出现大量不会的题。所以一些同学就开始灰心丧气,心态失衡,继续题海战术。这样的恶性循环造成了否定自己,最终会的也不会了。针对这种情况,我建议大家要学会对求极限的题目进行归类。每一类做一些题目就够了。它的目的是巩固知识点不是为了做难题。大家只有掌握了方法和类型,以后做题就能对号入座,也就不用题海战术了。

3.练习巩固

在大家掌握了知识体系以及知识点后就需要适量的题目来巩固。在这里,我坚决反对题海战术。因为大家的时间有限并且题海战术在没理解知识点之前是没用的。现在社会做事情都讲究高效,我希望大家能够事半功倍。那么针对极限这章,我前面说了计算是重点。所以我希望大家对极限计算方法进行总结。大家可以按照以下思路来。首先,能代入,就用四则运算。然后,如果不能代入,就可以先看看能不能用等价无穷小化简。化简后,再看被极限式子类型(7种类型)。最后,根据类型以及方法的适用条件来选择合适方法。有了这个思路,大家就可以做一些题,然后自己总结归纳。

上一篇:近代史纲要下一篇:开学教育培训