井巷工程施工计划doc

2024-06-16

井巷工程施工计划doc(共5篇)

篇1:井巷工程施工计划doc

简答题

1.简答巷道断面尺寸应满足得要求。

答:巷道净断面,必须满足行人、交通、通风、安全设施服务、设备安装、检修和施工的需要。因此,巷道断面尺寸主要取决于巷道的用途,存放或通过它的机械、器材或运输设备的数量及规格,人行道宽度和各种安全间隙,以及通过巷道的风量等。

2、简答巷道断面设计的内容和步骤。

答 :首先选择巷道断面形状,确定巷道净断面尺寸,并进行风速验算;其次,根据支架参数和道床参数计算出巷道的设计掘进断面尺寸,并按允许的超挖值求算出巷道的计算掘进断面尺寸;然后,布置水沟和管缆;最后,绘制巷道断面施工图,编制巷道特征表和每米巷道工程量以及材料消耗一览表。

3、巷道断面设计的基本原则及巷道断面形状选择主要取决的因素。

答:基本原则:在满足煤矿安全、生产施工等方面技术要求的前提下,最大限度地提高断面利用率,缩小断面、降低造价,有利于加快施工速度,以获得最大的经济效益。

主要因素:(1)巷道的位置及围岩的性质(2)巷道的用途及服务年限(3)支护方式和支护材料(4)掘进方法及设备(5)通风要求

4、简述巷道维护原理。

答:巷道失稳主要是空间结构失稳,围岩材料失稳最终也表现在空间结构失稳上。巷道维护原理应是,支护体系、支护结构和参数以及工艺过程应适应围岩变形后的力学状态,确保支护特性与围岩变形力学特征相适应,最大限度发挥围岩自承能力。

具体说,巷道维护要做到:1)、加固浅层围岩;2)、充分利用和发挥深部围岩的承载能力;3)、综合治理,联合支护,长期监控

5、简述软岩巷道的围岩变形特征。

答:1)、围岩变形有明显的时间效应。表现为初始变形速度很大,变形趋向稳定后仍以较大速度产生流变,且持续时间很长,有的达数年之久。

2)、围岩变形有明显的空间效应。其一表现为围岩与掘进工作面的相对位置对其力学状态的影响;其二表现为巷道所在深度不仅对围岩的变形或稳定状态有明显影响。

3)、不仅顶板下沉量大和容易冒落,而且底板也强烈鼓起,并常伴随有两帮剧烈位移。尤其是粘土层,浸水崩解和泥化引起的底鼓更为严重。

4)、围岩变形对应力扰动和环境的变化非常敏感。表现为当软岩巷道受临近开掘或修复巷道、水的浸蚀、支架折损失效、爆破震动以及采动等的影响时,都会引起巷道围岩变形的急剧增长。5)、软岩巷道围岩自稳时间短。6.简答硐室施工特点。

答:硐室施工与一般巷道相比,具有以下特点:

1>硐室断面大、变化多、长度较短,大型施工机械难以进入工作面施工。

2>硐室往往与其他硐室、巷道、井筒相连,加之有硐室本身结构复杂,故其受力状态不易准确分析,施工难度较大。3>硐室的服务年限较长,工程质量要求较高。

7.简答压入式通风的特点及优缺点。

答:特点:局部扇风机把新鲜空气经风筒压入工作面,污浊空气沿巷道流出。

优点:有效射程大,冲淡和排除炮烟的作用比较强;工作面回风不通过扇风机,在有瓦斯涌出的工作面采用这种通风方式比较安全。

缺点:长距离巷道掘进需要风量大,所排出炮烟在巷道中随风流扩散、蔓延范围大,时间又长,工人进入工作面往往要穿过这些蔓延的污浊气流。

什么是抽出式通风?抽出式通风有哪些优缺点?其适用条件是什么?

通风机从井下或局部用地点抽出污浊空气的通风方法。

优缺点:(1)由于井下风流处于负压状态,当主要通风机因故停止运转时,井下风流压力提高,可使采空区瓦斯涌出量减少,比较安全。(2)漏风量少,通风管理较简单。

(3)当相邻矿井或采区相互贯通时,会把相邻矿井或采区积聚的有害气体抽到本矿井下,使矿井有效风量减小。

适用条件:抽出式是目前我国煤矿广泛采用的通风方式,特别适用于高瓦斯矿井和开采范围较大的矿井。

压抽混合式通风 在进、回风井巷口或井巷内分别安设主要扇风机,将新鲜风流送到井下并将井下污浊风流排至地面,使整个通风系统的风流处于部分正压和部分负压状态的通风方式。压抽混合式通风兼有压入式通风和抽出式通风两种通风方式的优点,在进、回风段风流集中,排出烟尘速度快,并且不易受自然风流干扰而造成风流反向,它是提高矿井通风效果的较好通风方式。其缺点是所需通风设备较多,进风侧井底车场和回风侧塌陷区均有程度不同的漏风。压抽混合式通风方式可用于地表有塌陷区或矿岩内含有放射性元素的矿井。8.简答半煤岩巷掘进机的选择原则。

答:当煤、岩的强度都不高时,应选用煤电钻钻眼;当煤、岩的强度都较高时,可都采用凿岩机打眼;当煤、岩的强度相差很大时,则可同时选用煤电钻和凿岩机,或选用岩石电钻钻眼。

9、简答巷道局部冒顶事故的处理措施。答:首先,加固好冒落前后完好的支架或巷道。

第二,及时封顶,控制冒顶范围的扩大。

第三,采用锚喷支护处理冒顶区。具备锚喷条件时,应优先考虑采用锚喷支护处理冒顶区。

巷道局部冒顶范围较大事故

1.小断面快速修复法2.一次成巷修复法 3.木垛法 4.打绕道法 巷道片帮的处理方法 1.木垛法

当巷道片帮不太严重,片帮一侧稍有冒顶、柱腿压折、煤矸挤入巷道时,先在顶梁下打上一根顶柱,然后清矸换新柱腿,用木料架木垛,支架用背板和荆笆背好后撤去顶柱。

2.撞楔法

巷道一侧片帮很严重,撤掉压坏柱腿时,煤岩会流出,并且片帮继续扩大,可用撞楔法处理。在片帮地点选择完好的柱腿,打上1.4m左右斜撞楔。然后,在顶梁下打上顶柱,换好新柱腿,支架顶帮要背严,依次将支架修好。

10、简述巷道底鼓的类型及机理。

答:底板岩体鼓入巷道的方式及其机理,一般可分为以下四类:

1)挤压流动性底鼓。两帮岩柱的压摸效应,应力的作用下,底板软弱岩层会因挤压而流到巷道内。

2)挠曲褶皱性底鼓。其机理是底板岩层在平行层理方向的压应力作用下向底板临空方向鼓起。

3)遇水膨胀性底鼓。膨胀岩是指那些与水的物理化学反应有关并随时间发生体积增大的岩石,主要是粘土岩,其矿物成分中含有物理化学性质活泼的蒙脱石。由于煤矿巷道经常积水,当巷道底板为膨胀岩时会引起膨胀性底鼓。

4)剪切错动性底鼓。当巷道直接底板为完整岩层且厚度大于1/7巷道宽度时,在较高的岩层应力作用下,常使底板出现剪切破坏,由此形成的楔块岩体在水平应力挤压下产生错动而使地板产生的鼓起称为剪切错动性底鼓。

巷道底鼓的防治措施

(一)卸压法 目前出现的卸压法有切缝、打钻孔、爆破及掘巷卸压等形式。

(二)用锚杆加固底板

(三)底板注浆

(四)巷道壁充填

(五)巷道中水的控制

11.简述巷道卸压方法种类。

答案:卸压方法有:1)、切缝卸压;2)、钻孔卸压;3)、松动爆破卸压;4)、卸压槽;

12、简述综放切眼锚网支护技术要求。

答:1>、设计时应首先确定合理的锚固力,正确选择锚杆类型。

2>、综放切眼巷道跨度大,巷道顶板锚杆支护效果尤为重要,以选用长锚杆或锚索加强支护为宜。否则,需在巷中增设中间立柱支撑。

3>、为增加顶板岩煤梁的抗剪能力,为岩梁提供两个支点,应使靠近巷道两帮的锚杆向煤体倾斜一定角度。

4>、综放切眼多为导硐扩帮施工,为确保施工安全,应加强临时支护,在临时支护保护下进行锚网支护作业。

13、简答锚喷支护的优点。

答:锚杆和喷射混凝土虽各有优点,但也都有不足之处。锚喷联合支护,恰能做到使二者相互取长补短,互为补充,是一种性能更好的支护形式。锚杆与其穿过的岩体形成承载加固拱,喷射混凝土层的作用则在于封闭围岩,防止风化剥落,和围岩结合在一起,对锚杆间的表面岩石起支护作用。锚杆与喷射混凝土联合使用,可以防止局部岩块的松动和坠落,从而加固与提高了岩石拱的承载能力。

14、简述预应力锚杆的作用。

答:预应力锚杆的作用:一方面在锥形体压缩区内产生压应力,增加节理裂隙或岩块间的摩擦阻力,防止岩块的转动和滑移,亦即增大了岩体的粘结力,提高了破碎岩体的强度;另一方面,锚杆通过锚头和垫板对围岩产生的压应力,改善了围岩应力状态,使压缩带内的岩石处于三向受力状态,从而使岩体强度得到提高。

15、简述锚杆支护作用原理。答:锚杆支护作用原理有以下几方面:

1)、悬吊作用:是指用锚杆将软弱的直接顶板吊挂于其上的坚固老顶上,或将松动的岩块连结在松动区外的完整坚固岩体上,使松动岩块不致冒落。

2)、组合梁作用:是指将层状岩体各层用锚杆连结并紧固,组合成类似铆钉加固的组合梁,提高了岩层整体抗弯能力。

3)、锚杆楔固作用:是在围岩中存在一组或几组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少围岩沿不连续面的移动。

4)、挤压加固作用:在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联接,便在围岩中形成一定厚度的均匀的连续压缩带。

锚杆支护锚杆的力学作用主要有悬吊作用、组合梁作用、组合拱作用、减跨作用、加固作用。锚杆产生悬吊效果、组合梁效果、补强效果,以达到支护的目的。具有成本低、支护效果好、操作简便、使用灵活、占用施工净空少等优点。

混凝土支护 喷射混凝土支护的作用原理。(1)加固与防风化作用(2)改善围岩应力状态作用(3)柔性支护机构作用(4)组合拱作用

此法施工简便,可在岩体开挖后立即喷射并与围岩密贴,具有加固、止水等多种效果;又能与金属网、锚杆、注浆、钢支撑等多种支护方式组合形成复合支护,是新奥法施工中不可缺少的重要支护手段。

16、简答煤矿中综合防尘技术。

答:(1)湿式钻眼。(2)喷雾,洒水,对防尘和降尘都有良好的作用。(3)加强通风排尘。(4)加强个人防护工作。因为掘进过程中产生的粉尘极易在空气中浮游,被人吸入体内,时间久了就易患煤肺病、矽肺病,严重影响工人的身体健康,所以要综合防尘。

17、简答道岔选择的原则。

答:1)与基本轨相适应2)与基本轨轨型相适应 3)与行驶车辆的类型相适应4)与车速相适应

18、简述光面爆破及其优点。

答:光面爆破的实质,是在井巷掘进设计断面的轮廓线上布置间距较小、相互平行的炮眼,控制每个炮眼的装药量,选用低密度和低爆速的炸药,采用不耦合装药同时起爆,使炸药的爆炸作用刚好产生炮眼连线上的贯穿裂缝,并沿各炮眼的连线---井巷轮廓线,将岩石崩落下来。

应用光面爆破可使掘出的巷道轮廓平整光洁,便于锚喷支护,岩帮裂隙少,稳定性高,超挖量小。所以光面爆破是一种成本低、功效高、质量好的爆破方法。

怎样才能实现光面爆破?

答:要实现光爆,必须做到周边眼爆破后既不把围岩壁的岩石炸碎,不产生明显的炮震裂缝,又把岩石沿炮眼连线整齐地切断下来,使围岩壁面规整,没有大的凹凸,符合设计要求。为此采取下列措施:

1、尽量减少爆炸裂隙

①控制冲击动压产生的粉碎性破坏,选择密度小的炸药,并通过合理的装药结构加大爆轰波峰压的衰减。选用爆速小。药卷直径小的炸药,对减少爆轰压力的效果更为显著。在装药结构方面采用不耦合装药。

②减小静压的破坏作用。主要措施是严格控制光爆炮眼的装药量,尽可能减小装药密度。

2、促进两炮眼间形成贯穿裂缝

两个周边光爆炮眼之间形成贯穿裂缝是光面爆破技术的关键。光爆炮眼同时起爆,也是产生光滑的贯穿裂缝的关键各个光爆炮眼都装入等量的炸药,有利于形成整齐的贯穿裂缝。防止两炮眼之间发生欠挖和超挖。

19、简述连续采煤机和掘进机相比的优缺点。

答:优点:1)、系统可靠,机构简单,造价低,故障少。

2)、即可用于掘进又可用于采煤。

3)、多顺槽开拓长壁工作面时,可保证工作面所需足够风量,对控制瓦斯积聚非常有利,高瓦斯矿井较适用。

缺点:1)、连续采煤机及配套梭车往复运行,对底板破坏比掘进机严重。2)、连续采煤机快受地质条件影响较大。

3)、巷道断面一般为矩形,对其他巷道断面适用性较差。仅适用于巷道宽度大的矿井。20、简述煤与瓦斯突出煤层的特征。答:我国煤与瓦斯突出具有下列特征:

1)、煤和瓦斯突出往往发生在地质变化比较剧烈、地应力较大的地区; 2)、煤质松软、干燥且瓦斯含量多、压力高就容易突出;

3)、开采深度愈大,煤层愈厚,倾角愈大,突出的次数就愈多,强度也愈大; 4)、煤体受到外力震动、冲击时,也容易发生突出。

21、简答岩石的孔隙性对岩石性质的影响。

答案:岩石的孔隙性对岩石其它性质有显著影响。孔隙度增大,消弱了岩石的整体性,使岩石的密度和强度降低,透水性增大;孔隙的存在,加快风化速度,进一步增大透水性和低力学强度。

篇2:井巷工程施工计划doc

井巷工程的任务:建筑地下空间,维护稳定。

介质:岩石和土。

材料:木、竹、石、金属、混凝土等 1.1.1井巷工程的概念

1.井巷工程:为进行采矿等工作,在地下煤层或岩层内所开掘的井筒、巷道和硐室等工程,总称为井巷工程;

2.巷道顶(底)板:构成巷道顶(底)部的岩石面,叫巷道顶(底)板,两侧的岩石面叫两帮;

3.工作面:正在施工的井巷,其末端随掘进工作不断向前移动的岩石面称为工作面;

4.横断面:垂直于巷道长轴线的断面称为井巷的横断面。5.巷道种类: 1)水平巷道

水平巷道:巷道长轴线与水平面平行的巷道。为满足运输、排水的方便,设有3‰~5‰的坡度。

平硐:是地面上有一个直接出口的水平巷道,用于运输、通风、行人和排水等,可沿岩层(或煤层)走向或与走向成一角度开掘。

隧道:是地面上有二个直接出口的水平巷道,用于运输、行人和排水等。石门:没有直接通达地面的出口,在岩层中开掘并与煤层走向垂直或斜交的水平巷道,用于运输、通风、行人和排水等。

煤门:在煤层中开掘并与煤层走向垂直或斜交的水平巷道。

平巷:沿岩层(或煤层)走向开掘且没有直通地面出口的水平巷道,用于运输、通风、行人和排水等。

2)倾斜巷道

倾斜巷道:巷道长轴线与水平面成一定倾角相交的巷道称为倾斜巷道。

斜井:有直接通达地面的出口,一般是从地面沿煤层倾斜方向开掘,用于提升煤和矸石、上下人员、下放材料设备、通风、排水等。

暗斜井:没有地面出口的倾斜巷道。

上(下)山:在运输大巷以上(下)沿煤(岩)层开掘,为一个采区服务的倾斜巷道。按用途和装备分为输送机上(下)山、轨道上(下)山、通风上(下)山和行人上(下)山。

3)垂直巷道

垂直巷道:巷道长轴线与水平面垂直的巷道称为垂直巷道。

立井:自地面往下开凿的垂直巷道。有主井、副井、风井。主井用于提升煤炭;副井用于提升材料、设备、矸石以及进风、排水、上下人员等;风井用于通风。

暗立井:没有直通地面的出口而设有提升设备的垂直巷道。用以将下部水平开采的煤炭提升至上部水平,也可以运送材料、设备、人员或用来进行通风和排水。

溜井:没有直通地面的出口,井筒内不装臵机械设备的垂直巷道。用以将上部水平开采的煤炭借自重下放到下部水平。

4)硐室

断面较大而长度较短的巷道。用于安装机电设备、存放材料或作其他用。变电所、水泵房、箕斗装载硐室、翻笼硐室、火药库、调度室和绞车房等。

矿山建设工程:

矿井生产准备工程:

矿井延深工程:

矿井辅助工程:

井巷工程设计与施工:以掘保采,以采促掘,采掘并举,掘进先行。

井巷工程研究的核心问题:破岩与维护——有效、经济、安全。

1.1.2 井巷设计与施工

井巷工程设计是按照矿井生产需要、服务年限和围岩性质,根据设计规范要求,经济合理地确定井巷的断面形状、尺寸和支护结构等。井巷施工是按照设计要求和施工条件,考虑安全规范要求,采用不 同方法、手段和材料开凿井筒、巷道或硐室等空间。

井巷施工最基本的过程,就是把岩石从岩体上破碎下来,形成设计所要求的井筒、巷道及硐室等空间。接着要采用一定的支护材料和结构,对这些地下空间进行必要的维护,防止围岩继续破碎和垮落。井巷施工方法:普通、特殊、机械 1.2 井巷建筑介质 1.2.1 岩石概述

1.岩石

由一种或多种矿物织成。是组成地壳的基本物质,由矿物或岩屑在地质作用下按一定规律而形成的自然地质体,包括岩浆岩、沉积岩、变质岩。2.岩块

从地壳中切取出来的小块体,不包含软弱面(岩体中的地质遗迹、层理、节理、断层、裂隙面),近似认为各向同性的连续介质。3.岩体

地下工程周围较大范围内的自然地质体。从煤矿采掘工程角度:包括岩石、地下水、瓦斯。岩体的性质复杂,是我们研究的主要对象。

4.表土

建井工作者把覆盖在地壳上部的第四纪沉积物成为表土,也称为松散性岩石,如:黄土、流沙、粘土等。5.基岩

表土以下的固结性岩石称为基岩。岩浆岩、沉积岩、变质岩。6.围岩 7.煤系地层

1.2.2 岩石的物理性质

1.2.2.1 岩石的相对密度、密度

1.相对密度(曾称比重)岩石的相对密度是指岩石固体实体积(不包括孔隙体积)的质量与同体积水的质量的比值。

2.密度 岩石单位体积(包括岩石内孔隙体积)的质量,称为岩石的密度,亦称质量密度。两种:干密度和湿密度。前者是单位体积岩石绝对干燥后的质量,后者是天然含水或饱水状态下的密度。1.2.2.2 岩石的孔隙性

岩石的孔隙性是指岩石的孔隙和裂隙的发育程度,它通常用孔隙度n和孔隙比e来表示。

孔隙度是指岩石试件内各种裂隙、孔隙的体积总和与试件总体积 V之比(常以百分数表示)。孔隙比是岩石试件内各种裂隙、孔隙的体积总和与试件内固体矿 物颗粒体积Vc之比。1.2.2.3 岩石的水理性质

1.岩石吸水率:W是指岩石试件在大气压 力下吸入水的质量与试件烘干后质量G之比值。

影响吸水率的因素:

⑴岩石所含孔隙,裂隙的数量、大小、开闭程度及其分布情况有关。

⑵试验条件,试验表明,整体岩石试件的吸水率要比同一岩石的碎块试样吸水率小,随着吸水水时间的增加,吸水率也会有所增大。吸水率对岩石力学性质有影响。2.岩石的透水性

地下水存在于岩石的孔隙和裂隙之中,而且大多数岩石的孔隙和裂隙是相互贯通的,因而,在一定水压作用下,地下水可在岩石中渗透,这种岩石能被水透过的性质,称为岩石的透水性。

影响因素:地下水压力、岩体应力状态、孔隙发育程度、连通程度等。

3.岩石的溶蚀性

由于水的化学作用而把岩石中某些组成物质带走的现象称为岩石的溶蚀性。导致岩石致密程度降低,孔隙度增大,强度降低。4.岩石的软化性

岩石浸水饱和后强度降低的性质,称为软化性,用软化系数(ηc)表示。ηc定义为岩石试件的饱和抗压强度(Rcw)与干抗压强度(Rc)的比值。5.岩石的膨胀性和崩解性

⑴膨胀性:软岩浸水后体积增大和响应的引起压力增大的性质,用膨胀应力和膨胀率来表示。

膨胀应力:岩石与水进行物理化学反应后,随时间变化会产生体积增大的现象,这时,使试件体积保持不变所需要的压力称膨胀应力。

膨胀率:岩石与水进行物理化学反应增大后的体积与原体积的比率。⑵崩解性:软岩浸水后发生解体的性质。

用耐崩解指数表示:岩石试件在承受干燥和湿润两个标准循环后,岩样对软化和崩解表现出来的抵抗力。1.2.2.4 岩石的碎胀性

岩石的碎胀性:岩石破碎后因岩块间空隙增多而总体积增大的性质称为碎胀性。碎胀程度的大小可用碎胀系数表示。1.2.3 岩石的力学性质 1.2.3.1 岩石的变形特性

㈠静荷载单向受压下岩石的变形特征 ⑴应力应变曲线

⑵体积应变,岩石的体积改变量ΔV与原体积 V的比值,也称体积改变率。也叫碎胀应变。

一般岩石具有在弹性阶段体积变小和塑性阶段体积增大的特点。岩石在塑性阶段体积增大的性质称为扩容现象,对于研究巷道变形和围岩对支护造成的压力等问题有重要意义。⑶三种破坏形式

脆性破坏:永久变形或全变形小于5%者为脆性破坏。具有这种特性的岩石称为脆性岩石。

塑性破坏:永久变形或全变形大于5%者塑性破坏。具有这种特性的岩石称为塑性岩石。过度状态:

(二)岩石在三向静荷载压缩下的变形特征 ⑴弹性段与单轴压缩基本相同;

⑵岩石表现出明显的由脆性向塑性转化;

⑶屈服极限,强度峰值、残余强度与围压大小成正比;

⑷大部分岩石在一定临界围压下出现屈服平台,呈塑性流动现象;

⑸达到临界围压后,继续提高围压,不在出现峰值,应力—应变出现单调增长趋势。

1.2.3.2 岩石的强度特性与理论

岩石抵抗外载破坏的能力称为岩石的强度 1.静荷载下岩石的强度性质

⑴大多数情况下,岩石表现为脆性破坏; ⑵同种岩石强度并非常数,变化很大;

⑶不同受力情况下,岩石的极限强度相差悬殊。

三向等压抗压强度>三向不等压抗压强度>双向抗压强度>单向抗压强 度>单向抗剪强度>单向抗弯强度>单向抗拉强度。2.动荷载下的岩石强度性质比静荷载大

3.非连续岩石的强度特性

非连续面(也叫弱面):层理、节理、断层和裂隙面等。

当岩石的非连续面与加载方向成30°时,岩石强度最低;而岩石的非连续面与加载方向正交或平行时强度最高。4.莫尔强度理论

5.格里菲斯岩石强度理论 1.2.3.3 岩石的硬度

岩石的硬度是岩石抵抗其他较硬物体侵入的能力。硬度与强度又有区别。1.2.4 岩石的分类

1.2.4.1 岩石分类概述

按成因不同,将岩石分为岩浆岩、沉积岩、变质岩三类,对于采掘工程来说,又要求对岩石进行定量的区分,以便能正确地进行工程设计,合理地选用施工方法、施工设备、机具与器材,准确地制定生产定额和材抖消耗定额等。因此,提出了岩石工程分级与岩体工程分类问题。1.2.4.2 常见岩石分类方案 1.普氏岩石分类

用一个综合性的指标” 坚固性系数f”来表示岩石破坏的相对难易程度,R通常称f为普氏岩石坚固性系数。

fC10普氏分级的优点:

普氏岩石分级法简明,便于使用,因而多年来在苏联及一些东欧国家获得广泛应用。

缺点:它没有反映岩体的特征。关于岩石坚固性正各方面表现趋于一致的观点,对少数岩石也不适用,如粘土就钻眼容易,而爆破困难。根据f的大小将岩石分为10级15种

2.根据锚喷支护需要,按照煤矿岩层特点制定的围岩分类。3.岩心质量指标分类(RQD)4.围岩松动圈岩石分类 小松动圈:0~40cm 中松动圈:40 ~150cm 大松动圈:150 ~300cm,甚至更大 1.2.4.3 软岩的概念

软岩又称不稳定岩石、大松动圈岩石等。

井巷工程——围岩变形量大、变形持续时间长、支护破坏严重。

1.3 井巷建筑材料

巷道支护材料:木材、竹材、石材、金属、水泥、混凝土、钢筋混凝土和砂浆等。1.3.1 水泥 1)细度

水泥颗粒的粗细对水泥的性质有很大影响。2)凝结时间

水泥与适量的水混合后制成水泥浆,经过一定时间,便会发生物理化学变化而逐渐变稠,失去可塑性,称为初凝,开始具有强度时称为终凝。之后其强度逐渐增加,称为硬化。

初凝和终凝过程称为凝结过程,强度增长过程称为硬化过程。

初凝时间和终凝时间。

初凝时间为水泥加水拌和起至水泥浆开始失去可塑性所需的时间;终凝时间为水泥加水拌和起至水泥浆完全失去可塑性并开始产生强度所需的时间。

水泥的凝结时间对使用具有重要意义。水泥的初凝不宜过早;水泥的终凝不宜过迟。3)强度 4)水化热

5)水泥的储存条件 1.3.1.1 硅酸盐水泥

硅酸盐水泥:凡是以适当成分的生料(石灰石、粘土、铁矿物)烧至部分熔融,所得以硅酸钙为主要成分的硅酸盐水泥熟料,加入适当的石膏,磨细制成的水硬性胶凝材料,称为硅酸盐水泥。

国家标准规定:硅酸盐水泥的初凝时间不得小于45min,终凝时间不得大于390min。

硅酸盐水泥的应用

在常用的水泥品种中,硅酸盐水泥的标号较高,常用于重要结构中的高强度混凝土、钢筋混凝土和预应力混凝土工程。

硅酸盐水泥的凝结硬化较快,适用于早期强度高、凝结快的工程,地下工程的喷浆及喷射混凝土支护等宜于采用。

硅酸盐水泥在水化过程中放出大量的热,因此,适于冬季施工,同样原因不宜用于大体积混凝土工程。

硅酸盐水泥抗软水侵蚀和抗化学侵蚀性差,所以不宜用于受流动的软水侵蚀和有水压作用的工程,也不适用于受海水和矿物水作用的工程。1.3.1.2 普通硅酸盐水泥

凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥。

国家标准规定:普通水泥的强度等级分为32.5、32.5R、42.5、42.5R、52.5和52.5R六个类型。

1.3.1.3 混合材料及掺混合材料的硅酸盐水泥 1)水泥混合材料

在水泥磨细时,所掺入的天然或人工的矿物材料,称为混合材料。

混合材料按其性能可分为活性混合材料和非活性混合材料。

活性混合材料常用的有粒化高炉矿渣、火山灰质混合材料和粉煤灰。

火山灰质混合材料包括火山灰、硅藻土、沸石、凝灰 岩、烧粘土、煅烧的煤矸石,煤渣与粉煤灰等。

非活性混合材料例如石英砂、粘土、石灰石、慢冷矿渣等。2)掺混合材料的硅酸盐水泥 矿渣硅酸盐水泥:

火山灰质硅酸盐水泥:

粉煤灰硅酸盐水泥: 三种水泥共同特性是:

凝结硬化速度较慢,早期强度较低,但后期强度增长较快,甚至超过同标号的硅酸盐水泥;

水化放热速度慢,放热量也低;对温度的敏感性较高,温度较低时,硬化很慢,温度较高时(60~70°C以上)硬化速度大大加快,往往超过硅酸盐水泥的硬化速度;

抵抗软水及硫酸盐介质的侵蚀能力较硅酸盐水泥高。

这三种水泥的抗冻性差。

矿渣硅酸盐水泥和火山灰质硅酸盐水泥的干缩性大,而粉煤灰硅酸盐水泥的干缩性小。火山灰质硅酸盐水泥的抗渗性较高,矿渣硅酸盐水泥的耐热性较好。

除能用于地面外,还特别适田于地下和水中的一般混凝土和大体积混凝土结构以及蒸汽养护的混疑土构件。1.3.2 混凝土

普通混凝土是由水泥、砂、石和水按适当比例配合、拌制而成拌合物,经过一定时间硬化而成的人造石材。1.3.2.1 混凝土的组成材料

1)水泥 混疑土强度的产生,主要是由于水泥硬化的结果。起胶结作用。2)细骨料 在混凝上中,凡粒径小于4.75㎜的骨料称为细骨料。一般多以天然砂为细骨料。其中以石英砂为最佳。

3)粗骨料 在混凝土中,凡粒径大于4.75㎜的骨料称粗骨料,常用的有卵石(砾石)与碎石两种。

4)水 凡是能饮用的自来水和清洁的天然水,都能用来拌制和养护混凝土。

污水、酸性水、含硫酸盐水和含油脂、糖类的水均不许 使用。

1.3.2.2 混凝土的主要技术性质 1)混凝土拌和物的和易性

混凝土拌合物的和易性,是指新拌合的混凝土拌合物在保证质量均匀、各组成成分不离析的条件下,适合于搅拌、运输、浇灌和捣实的综合性质。它包括有流动性;粘聚性;保水性等三方面的性能。2)混凝土的强度与强度等级

混凝土强度包括抗压、抗折、抗剪、抗弯等,其中以抗压强度为最大,在工程中为主要的承压构件。

按其强度不同分为C7.5、C10、C15、C20、C25、C30、C40、C45、C50、C55、C60、C65、C70、C75、C80共16个强度等级。

影响混凝土强度的因素很多,其中水泥强度等级与水灰比是影响混凝土强度的主要因素。

1.3.2.3 混凝土外加剂

在混疑土拌和时或拌和前掺入的、其掺量一般不大于水泥重量5%,并能显著改善混凝土性能的材料称为混凝土外加剂。

1)减水剂 能保持混凝土混合物的和易性不变而显著减少其拌和水量的外加剂称为减水剂。减水剂有多种,如M型(木质磺酸钙)、MF型等。

2)速凝剂 速凝剂的作用是使混凝土快凝并迅速达到较高强度,喷射混凝土一般都需掺速凝剂。红星I型和71l型等速凝剂的性能如下:加速水泥硬化,初凝l~5min,终凝l0min以内;提高混凝土早期强度,但掺入这两种速凝剂的混凝土后期强度降低。1.3.2.4 混凝土的配合比

混凝土配合比是指混凝土各组成材料数量之间的比例关系。

合理确定水泥、水、砂与石子这四项基本组成材料用量之间的三个比例关系。即水与水泥之间的比例关系,常用水灰比表示;砂与石子之间的比例关系,常用砂率表示;水泥浆与骨料之间的关系,常用单位用水量表示。

混凝土水灰比(水:水泥)是决定混凝土强度及其和易性的重要指标。1.3.3 钢材

金属材料作支架有许多优点:强度大,可支撑较大的地压,使用期长,可多次复用,安装容易,耐火性强,必要时也可制成可缩性结构。初期投资虽然大些,但可回收,总成本还是经济的。1.3.3.1 常用钢材分类

按品质:普通钢、优质钢、高级优质钢。

按化学成分:碳素钢、合金钢(低、中、高)。

按用途:型钢、钢筋、工具钢。

碳素钢、低合金钢:型钢和钢筋、钢丝、锚具,以及矿山工程中常用的钢绞线、锚杆螺纹钢等。

1.3.3.2 常用建筑钢材的主要化学成分

碳素钢:以铁为基体,除含碳外,还含有少量的硅、锰、硫、磷等。属钢中的伴随元素。

1.3.3.3 常用建筑钢材的力学性能与特点

作为主要的受力结构材料,主要力学性能有抗拉性能、抗冲击性能、耐疲劳性能及硬度。

1.3.3.4 常用钢材加工方法及对钢材性能的影响 1)冷加工强化 2)时效强化 3)热处理 4)焊接

1.3.3.5 矿用钢材种类、特点和要求

常用的矿用钢材有工字钢、角钢、槽钢、轻便钢轨、矿用工字钢以及矿用特殊型钢等。

矿用工字钢也称钢梁,作梁、作腿。

矿用特殊型钢U18、U25、U29、U36。制作可缩性拱型支架。槽钢规格:120㎜×53㎜×5㎜;12#。与锚索组合支护。1.3.4 木材

常用的坑木有松木、杉木、桦木、榆木和柞木等。其中以松木用得最多。

巷道断面设计

巷道断面设计主要是选择断面形状和确定断面尺寸。

巷道断面设计原则:在满足安全、生产和施工要求的条件下,力求提高断面利用率,取得最佳的经济效果。

巷道断面设计的内容和步骤

㈠选择巷道断面形状和支护方式;

㈡确定巷道净断面尺寸,计算巷道的设计掘进断面尺寸,算出巷道的计算掘进断面尺寸;

㈢布臵水沟与管缆;

㈣绘制巷道断面施工图,特征表、工程量表、材料消耗量表。2.1 巷道断面形状的选择

按构成的轮廓线分:折线形、曲线形;矩形类、梯形类;拱形类和圆形类。

巷道断面形状

选择巷道断面形状主要考虑:

㈠作用在巷道上的地压大小和方向在选择巷道断面形状时起主要作用。㈡巷道用途和服务年限是选择巷道断面形状不可缺少的重要因素。

㈢矿区的支架材料和习惯使用的支护方式,也直接影响巷道断面形状的选择; ㈣掘进方法和掘进设备对于巷道断面形状的选择也有一定影响。

㈤需要风量大的矿井,选择通风阻力小的断面和支护方式,有利于安全和具有经济效益。

巷道所处的位臵及穿过的围岩性质也应重视。2.2 巷道断面尺寸的确定

2.2.1 巷道净宽度的确定

直墙拱形巷道的净宽度系指巷道两侧内壁或锚杆露出长度终端之间的水平间距。

矩形巷道的净宽度,系指巷道两侧内壁或锚杆露出长度终端之间的水平间距。

梯形巷道,当其内通行矿车、电机车时,净宽系指车辆顶面水平的巷道宽度;当其内不通行运输设备时,净宽系指自底板起1.6m高水平的巷道宽度。

2.2.2 巷道净高度的确定

1.矩形、梯形巷道净高:自渣面或底板到顶梁或顶部喷层面、锚杆露出长度终端的高度。

2.拱形巷道净高:自渣面至拱顶内沿或锚杆露出长度终端的高度。主要是确定净拱高和自底板起的墙高。H=h0+h3-hb H—拱形巷道净高; h0—拱形巷道拱高; h3—拱形巷道墙高; hb—巷道内道碴高度。

⑴拱高h0 高跨比。半圆拱:h0=R=B/2,圆弧拱:B/3,个别h0=2B/5 ⑵壁(墙高)h3 自巷道底板至拱基线的垂直距离

架线电机车导电弓子顶端与巷道拱壁间最小安全间隙要求、管道的装设要求、人行高度要求、1.6m高度人行道宽度要求以及设备上缘至拱壁间最小安全间隙要求,按图2.4、2.5和表2.5中公式计算,取其最大值,按只进不舍原则,0.1m进级。

无轨运输巷道净高度,除满足行人、通风等要求外,运输设备的顶部距巷道顶部(支护)或管线下缘的距离不得小于0.6m,最后确定的净高度要满足安全间隙对巷道高度的要求。

一般,架线电机车运输的巷道,按其中架线电机车导电弓子和管道装设要求计算即能满足要求;其它如矿车运输、仅铺设输送机或无运输设备的巷道一般只按行人高度要求即能满足要求,但在人行道范围1.8m以下,不得架设管线和电缆。

2.2.3 巷道的净断面面积 1.矩形巷道净断面积:S=BH B—巷道净宽; H—巷道净高。

2.梯形巷道净断面积:S=(B1+B2)H/2; B1、B2—巷道顶梁、底板处净宽; H—巷道净高。

3.半圆拱巷道:S=B(0.39B+h2)h2—渣面起巷道壁的高度。

4.圆弧拱巷道:S=B(0.24B+h2)2.2.4 巷道风速验算

生产矿井的巷道通常兼作通风用,因此还要进行最优的风速验算:

Q VVmaxSV——通过巷道的风速,m/s; Q——通过巷道的风量,m3/s; S ——巷道的净断面面积,m2 Vmax——巷道允许通风的最高风速,m/s。

《煤矿安全规程》规定如右表,《煤矿工业设计规范》规定:矿井主要进风巷的风速一般不大于6m/s;输送机巷道采区风巷一般不大于4m/s。设计时,应在不违反《煤矿安全规程》的原则下,按规范要求确定巷道断面,以留有余地。

2.2.5 巷道的设计掘进面积

确定巷道的设计掘进面积首先必须确定支护参数和道床参数,然后根据表2.4、2.6或2.7中的有关公式进行计算。

(一)支护参数的确定

支护是影响煤矿技术经济指标和安全生产的关键技术问题,长期以来,棚式支架和砖石、混凝土砌碹是支护的主要形式,近年来,金属支架和锚喷支护得到发展。支架参数的选取,就是确定坑木的直径、金属和钢筋混凝土构件的断面高度以及背板厚度、喷层的厚度或锚杆外露的长度,所有这些只寸的选取方法,将在第六章中介绍。

(二)道床参数的选择

道床参数的选择是指钢轨型号、轨枕规格和道碴高度的确定。

①钢轨型号是根据巷道类型、运输方式及矿车容积与轨距来选取,以每米长度的质量表示。常用的有15、22、30和38kg/m。

②轨枕规格:轨枕的类型和规格应与选用的钢轨型号相适应。表2.10 ③道碴高度:一股采用坚硬的碎石或不易风化的矸石或卵石做道碴,颗粒度以20~30mm为宜。

(三)巷道设计掘进断面

巷道净尺寸加上支护和道床参数便可得到巷道的设计掘进尺寸,从而求得巷道设计掘进断面积。

2.2.6 巷道计算掘进断面积

考虑到巷道在施工中出现超挖观象,因此,设计掘进断面尺寸应

加上允许超挖值δ(75mm),作为计算掘进断面尺寸。并以此计算出巷道的掘进工程量和支护材料消耗量。

2.3 水沟与管缆的布臵

2.3.1 水沟设计 2.3.1.1水沟布臵

(1)水平巷道及倾角小于16°的倾斜巷道的水沟,一般布臵在人行侧。也可布臵在非人行侧;少穿越运输线路。

(2)在倾角大于16°的巷道中,当涌水量小或巷道较窄时,水沟与人行台阶可在巷道同侧平行或重叠布臵;当涌水量较大或巷道较宽时,水沟和人行台阶可分设在巷道两侧。

(3)专用排水行道、中间设人行道的巷道、有底鼓的巷道和铺设整体道床的巷道,水沟也可布臵在巷道中间。

(4)巷道横向水沟,一般应布臵在含水层的下方、上(下)山的下部车场的上方、胶带机接头硐室的下方或出水点处。

(5)金属或木支架巷道的水沟为使立柱牢固和流水畅通,水沟中线与立柱之间的距离应大于0.5m,或者水沟与立柱的最小距离应大于0.3m。(6)在水平和倾斜的砌碹巷道中,可将沿水沟一侧的巷道基础加宽

50mm以上,以便搭设水沟盖板,同时应使水沟底板掘进面比巷道基础浅50~100mm。

(7)在倾角小于或等于10°的行人及车辆来往频繁的主要巷道,水沟上面要加设盖板,盖板顶面应与道渣面平齐。2.3.1.2 水沟砌筑

永久性和临时性水沟。混凝土浇筑、片石砌筑、钢筋混凝土预制。2.3.1.3 水沟坡度和流速

3‰~5‰的坡度,与巷道一致。平巷不宜小于3‰,巷道中横向水沟的坡度不宜小于2‰,采区中的其他巷道可选用5‰。

水沟采用混凝土砌筑时最大流速为5~10m/s,不衬砌的水沟为3~4.5m/s。水沟的最小流速,应以不使煤泥等杂物沉淀为原则,其值一般不应小于0.5m/s。2.3.1.4 水沟的断面

对称倒梯形、半倒梯形和矩形。水沟的断面尺寸,根据水沟的流 量、坡度、支护材料和断面形状等确定。设计部门提供。2.3.1.5 水沟盖板

为行人方便,大巷及小于15°上(下)山的水沟,一般设臵盖板。规格及材料消耗见表2-12。盖板的宽度比水沟净宽加宽150mm,厚度不小于50mm,采用钢筋混凝土预制板。无运输设备的巷道、大于15°上(下)山和采区巷道的水沟可不设盖板。2.3.2 管缆布臵 2.3.2.1 管道布臵

(1)管道通常应部臵在人行道一侧,也可布臵在非人行道一侧。管道架设可采用管墩架设、托架固定或锚杆悬挂等方式,并考虑检修方便。若架设在人行道上 方,管道下部与道渣面或水沟盖板面保持1.8m和1.8m以上的距离,若架设在水沟上,应以不妨碍清理水沟为原则。(2)当管道与管道呈交叉和平行布臵时,应保证管道之间有足够的更换距离。管道架设在平巷顶部时,应不防碍其他设备的维修与更换。(3)管道与运输设备之间必须留有不小于0.2m的安全距离。

(4)在架线式电机车运输巷道内,为防止电流腐蚀,管道应尽量避免沿巷道底板架设。

2.3.2.2 电缆布臵

(1)通信电缆和动力电缆不宜设在同一侧。如受条件限制设在同一侧时,通信电缆应设在动力电缆上方0.1m以上的距离处,以防电磁场作用干扰通讯信号。(2)电缆与管道在同一侧敷设时,电缆要悬挂在管道上方并保持0.3m以上的距离。

(3)电缆悬挂高度应保证当矿车掉道时不会撞击电缆,或者电缆发生坠落时,不会落在轨道上或运输设备上。

(4)高压电缆和低压电缆在巷道同侧布臵时,相互之间距离应大于0.1m以上;同时高压电缆之间、低压电缆之间的距离不得小于50mm,以便摘挂方便。(5)人行道一侧最好不敷设动力电缆。

2.3.3 绘制巷道断面施工图、编制巷道特征表和每米巷道工程量及材料消耗量表

巷道断面施工图按1:50的比例绘制,并附巷道特征表、每米巷道工程量及材料消耗量表。不同轨距的巷道断面施工图已由设计单 位编出。

2.4 巷道断面设计示例

[例题)某煤矿,年设计能力为90万t,低瓦斯矿井,中央分列式通风,井下最大涌水量为320m3/h。通过该矿第一水平东翼运输大巷的流水量为160m3/h,采用ZK10—6/250架线式电机车牵引1.5吨矿车运输,该大巷穿过中等稳定的岩层,岩石坚固性系数f =4~6,需通过的风量为48m3/s 巷道内敷设一趟直径为200mm的压风管和一趟直径为l00mm的水管。试设计运输大巷直线段的断面。

2.4.1 选择巷道断面形状、年产90万吨矿井的第一水平运输大巷,一般服务年限在20年以上,采用 600mm轨距双轨运输的大巷,其净宽在3m以上,又穿过中等稳定的岩层,故选用螺纹钢树脂锚杆与喷射混凝土支护,半圆拱形断面。2.4.2 确定巷道净断面尺寸

㈠确定巷道净宽度B 查表2-2知ZK10—6/250电机车宽A1=1060㎜,高h=1550㎜;1.5吨矿车宽1050㎜,高1200㎜。根据《煤矿安全规程》,取巷道人行道宽C=840㎜,非人行道一侧宽a=400㎜。又查表2-3知本巷双轨中心线b=1300㎜,两电机车之间的距离为:1300-(1060/2+1060/2)=240㎜﹥200mm故巷道净宽度B=a1+b+c1=(400+1060/2)+1300+(1060/2+840)=3600㎜。㈡确定巷道拱高h0 半圆拱巷道拱高h0=B/2=3600/2=1800㎜,半圆拱半径R=h0=3600/2=1800㎜

㈢确定巷道壁高h3 按架线电机车导电弓子要求确定h3由表2-5中半圆拱巷道壁高公式得

h3h4hc(Rn)2(kb1)2 h32000410(1800300)2(360870)21552

2.按管道装设要求确定h3

h3h5h7hbR2(KmD/2b2)

2h3180090022018002(360300335/2430)21633

3.按人行高度要求确定h3 h31800hbR2(Rj)2

h3180022018002(1800200)21195

综上计算,并考虑一定的余量,确定本巷道壁高为h3=1820㎜。则巷道高度H=h3-hb+h0=1820-220+1800=3400㎜。㈣ 确定巷道净断面面积S和净周长P 由表2-6得净断面面积S=B(0.39B+h2)

式中:h2为道碴面以上巷道壁高,h2= h3-hb=1820-220=1600㎜。故S=3600×(0.39×3600+1600)=1081400㎜2=10.8㎡ 净周长P=2.57B+2h2=2.57×3600+2×1600=12500㎜=12.5m ㈤ 用风速校核巷道净断面面积 查表2-8,知Vmax=8m/s,已知通过大巷风量Q=48m3/s,计算得:

Q48V4.448

S10.8

设计的大巷断面面积、风速没超过规定,可以使用。㈥ 选择支护参数

本巷道采用锚喷支护,根据巷道净宽3.6m、穿过中等稳定岩层即属Ⅲ类围岩、服务时间大于l0年等条件,确定选用锚固可靠、锚固力大的树脂锚杆,杆体为¢18mm螺纹钢,每孔安装两个树脂药卷,锚固长度≥700mm,设计锚固力≥80kN。锚杆长度2.0m,成方形布臵,其间排距0.80m×0.80m,托板为8×150×150mm的方形钢板。喷射层厚T1=100mm,分两次喷射,每次各喷50mm厚,故支护厚度T=T1=100㎜。㈦选择道床参数

根据本巷道通过的运输设备,已选用30kg/m的钢轨,其道床参数hc、hb分别为410㎜和220㎜,道渣至轨面高度ha=hc-hb=410-220=190㎜。采用钢筋混凝土轨枕。

㈧确定巷道掘进断面面积 表2.6公式

巷道设计掘进宽度 B1=B+2T=3600+2×100=3800㎜。巷道计算掘进宽度 B2= B1+2δ=3800+2×75=3950㎜。巷道设计掘进高度 H1=H+hb+T=3400+220+100=3720㎜。巷道计算掘进高度 H2=H1+δ=3720+75=3795㎜。

巷道设计掘进断面面积S1=B1(0.39B1+h3)=3800×(0.39×3800+1820)=12547600㎜2,取S1=12.55㎡。

巷道计算掘进断面面积S2=B2(0.39B2+h3)=3950×(0.39×3950+1820)=13273975㎜2,取S2=13.27㎡。2.4.3 布臵巷道内水沟和管缆

已知通过本巷道的水量为160m3/h,采用水沟坡度为0.3%,查表2-12得:水沟深400㎜、水沟宽400㎜,水沟净断面面积0.16㎡;水沟掘进断面面积0.203㎡,每米水沟盖板用钢筋1.633kg、混凝土0.0276m3,水沟用混凝土0.133m3。管子悬吊在人行道一侧,电力电缆挂在非人行道一侧,通信电缆挂在管子上方,如图2-9所示。

2.4.4 计算巷道掘进工程量和材料消耗量 表2.6公式 每米巷道拱与墙计算掘进体积V1=S2×1=13.27×1=13.27m3;

每米巷道墙脚计算掘进体积V3=0.2×(T+δ)×1=0.2×(0.1+0.075)×1=0.04m3;

每米巷道拱与墙喷射材料消耗V2=[1.57(B2-T1)T1+2h3T1]×1 =[1.57(3.95-0.10)0.10+2×1.82×0.10]×1=0.968m3;

每米巷道墙脚喷射材料消耗V4=0.2T1×1=0.2×0.1×1=0.02m3;

每米巷道喷射材料消耗(不包括损耗)V= V2+ V4=0.968+0.02=0.988 m3; 每米巷道锚杆消耗N=(P1-0.5a)/aa′ 式中,P1为计算锚杆消耗周长, P1=1.57B2+2h3=1.57×3.95+2×1.82=9.84m;、a、a′为锚杆间距、排距a = a′=0.8m。

故 N=(9.84-0.5×0.8)/0.8×0.8=14.75根 折合质量为 14.75 [lπ(d/2)2ρ]=14.75 [2.00×3.14(0.018/2)×7850]=58.90kg l——锚杆长度,l=2.0m; d——锚杆直径,d=18mm;

ρ——锚杆材料密度,ρ=7850kg/m3。

每排锚杆数 N ×0.8=14.75 ×0.8=11.8根≈12根

每米巷道粉刷面积 Sn=1.57B3+2h2=1.57 ×3.75m+2 ×1.60m=9.1m2 式中 B3——计算净宽,B3=B2-2T=3.95m-2×0.10m=3.75m。

2.4.5 绘制巷道断面施工图、编制巷道特征表和每米巷道掘进工程量材料消耗量表.根据以上计算结果,按1:50比例绘制出巷道断面图(图2-10),并附上工程量及材料消耗量表。这些施工图表发至施工单位,作为指导施工的依据。

巷道断面设计练习

篇3:矿山井巷施工通风安全原则

对于矿山井巷施工而言, 其中的通风环节安全工作的基础之一, 其主要作用在于稀释和排除井巷中的瓦斯、粉尘等, 在很大程度上降低作业环境的温度, 保障施工人员的正常呼吸等, 可见矿井通风的重要性。在实际工作中, 由于矿山开采的环境十分复杂, 以至于矿山施工过程中常会遇到各种有害气体, 影响施工人员正常工作, 而常见的措施包括如下几个方面, 即 (1) 加强通风; (2) 从根源上降低有毒有害气体含量; (3) 净化井下进风道中的风流; (4) 加强对施工环境的检查等。考虑到矿井空气的污浊程度与矿井的通风状况、生产的操作方式和各种有害气体的涌出情况以及所采取的各种防治技术措施有关。本文就从“通风”这一角度, 分析如何保障矿山井巷的正常施工。

2 加强通风安全管理的一般对策

为了保证矿山井巷施工通风安全, 可以从如下几个方面着手:

(1) 提高施工人员的通风安全意识。

如何在实际工作中, 提高相关人员的通风安全意识, 首先需要提高相关领导的重视, 让他们知道只有建立了职责明确、机构健全、规范科学的矿井安全管理体系才能更好的保证通风安全;其次是利用灵活多样的教育形式, 包括板报、墙报或者标语等, 让员工明白良好的通风能够在很大程度上预防事故的发生;最后通过给员工讲解通风安全的典型案例, 以现身说教的形式对他们进行教育, 需要注意的是, 在说教的过程中, 说教人员应该对事故的原因、具体防范措施进行详细的分析。只有通过先培训后操作的方式, 才能让员工真正掌握矿井通风安全技术。

(2) 完善通风安全相关规章制度。

实际工作中, 只有当具有了比较完善的通风安全管理规章制度, 才能指引施工人员在矿山开采生产过程中实现安全生产。所以相关部门应该严格按照规章规定来进行施工过程中的通风管理, 并建立完善的管理规章制度, 需要重视的方面包括对巷道内有害气体的检查、排放和监测等、巷道的贯通以及通风设施管理制度等。

(3) 提高设备和技术水平。

对于矿井通风而言, 良好的设备是其重要保障之一, 所以相关部门必须加大对通风设施的优化配置, 以便提高实际的通风性能, 保证施工的正常进行。值得注意的是, 保障通风安全不仅需要性能优越的通风设施, 同时还需要科学有效的矿井通风系统。所以在实际施工过程中, 必须根据实际情况选择合适的通风系统, 以便达到降低通风阻力, 保证生产所需风量的目的。

3 施工过程中通风安全原则

3.1 采区通风设计的一般原则及相应要求

施工过程中, 保障通风安全的原则之一在于根据实际情况确定采区的通风系统, 而确定采区通风系统的应满足的条件如下所示:

(1) 必须保证巷道内风流的稳定性, 实际操作中要避免对角风路的现象以及尽可能的降低巷道的漏风量, 通过这样的方式来保障巷道内的风流不被加热和污染;

(2) 如何处理工作面的通风问题, 对于其中的回采以及掘进工作面, 则需要采用独立通风的方式;

(3) 应该根据实际情况选择上、下行通风, 对于煤层倾角比较大的, 其中的回采工作面则应该选择上行通风;

(4) 根据检测得到的数据来选择合适的风速;

(5) 如果在风道中, 有机电设备存在时, 则应该安装一定数量的瓦斯自动检测报警断电器;

(6) 在巷道内必须设置一定的安全措施, 比如能够控制逆转风流的措施, 防止有害气体涌入风流的措施等;

(7) 考虑到矿山施工过程中, 巷道的大小、长短等有差别, 则应该根据实际需要来分配风量等。

3.2 局部通风安全系统的一般设计原则

对于整个矿井通风系统而言, 局部通风系统占据着十分重要的地位, 其一般设计原则有如下几点:

(1) 鉴于局部通风系统作为整体的一个部分, 所以在实际工作中, 矿井和采区通风系统设计应为局部通风创造一定的条件;

(2) 该系统自身应该具备安全性、可靠性以及经济合理性等;

(3) 该系统应该采用低噪声且具有高效率的通风机;

(4) 对于局部区域, 如果一台通风机不能很好完成任务时, 可以选择两台或者多台风机联合运行, 以便达到更好的效果。

3.3 合理的选择矿井通风系统

所谓的矿井通风系统, 其实质上包括三大方面, 分别是通风方法、通风方式以及通风网路。只有当选择了合理的通风系统时, 才能保证在矿井施工过程中通风的安全性, 以下就一一分析上述三个方面:

(1) 矿井的通风方法。

实质上指的是通风的工作形式, 主要有三种形式, 包括压入式、抽出式以及压入与抽出的联合形式。

(2) 通风的方式。

实际工程中, 每个矿井都必须有两个或者两个以上的井筒, 分别作用是进风和回风, 就其布置方式而言, 一般又分为中央并列式、中央分列式、对角式以及混合式等。

(3) 通风网络。

所谓的通风网络, 指的是巷道内的风流在经过井巷间时的联接形式, 一般包括四种方式, 即串联、并联、角联以及复杂联。

在选择通风系统的同时, 还需要注意的一点是, 在现有的通风系统基础上, 如何对巷道内的风量进行调节。对于局部地区需要调节风量时, 可以采用增阻法、减阻法和辅助通风机法。当需要对整个矿井进行风量调节时, 可以从如下几个方面着手, 即调节通风设备的实际转速;调节通风设备的工作轮叶片安装角;以及调节通风设施的工作风阻。

3.4 降低有害气体的安全原则

降低有害气体的一般原则包括, 首先从根源上减少有害气体的产生, 其次可以通过加强通风。对于如何加强通风而言, 可以考虑如下几个方面: (1) 通过合理分配和调节风量来保证各工作区域都能有足够的风量; (2) 尽可能的减少漏风现象; (3) 当需要停工时, 做到:停工不停风; (4) 时刻检测有害气体的含量, 以便及时处理等。

4 结语

对于矿山井巷施工通风安全原则而言, 还需要注重的一点是“管理原则”, 以便让通风安全管理组织能够高效的运行。该管理原则主要包括统一指挥原则、债权一致原则、分工与协作原则以及动态组织原则等。对于矿山施工工程而言, 通风安全管理是一项全面性、系统性很强的工作, 只有当任何一个环节都不出现问题时, 才能保证工程能够正常的运行。

摘要:对于矿山井巷施工而言, 其中的通风环节安全工作的基础之一, 其主要作用在于稀释和排除井巷中的瓦斯、粉尘等, 在很大程度上降低作业环境的温度, 保障施工人员的正常呼吸等, 可见矿井通风的重要性。首先分析了加强通风安全管理的一般对策, 在此基础上进一步分析了施工过程中通风安全原则, 包括采区通风设计的一般原则及相应要求, 局部通风安全系统的一般设计原则, 以及合理的选择矿井通风系统等。

关键词:矿山,通风系统,安全原则

参考文献

[1]吴超等.矿井通风与空气调节[M].长沙:中南大学出版社, 2008, 10.

[2]魏平儒, 王永建, 程远国.矿井通风系统可靠性分析[J].焦作工学院学报, 1994, (3) .

篇4:煤矿井巷工程的现场施工管理

关键词:煤矿;煤矿井巷工程;施工管理;人力资源管理

通过对我国煤矿井巷工程的行业现状进行分析,不难发现,我国的煤矿工程安全事故频发、工程质量参差不齐、施工工期长短不定。当前局面的产生原因既有历史问题,也有当下问题。在我国,煤矿数量巨大,设计、施工、管理水平均各有高低。在此因素的影响下,多数煤矿开采作业从井巷工程的初期就埋下了事故隐患,包含大量不可测的危险因素。采矿工程的安全进行是保障工程质量的首要条件,因此,必须狠抓现场施工管理。

1 煤矿井巷工程的现场施工管理的重要性

1.1 工程进度的保障

为保证采矿作业高效进行,安防是首先需要考虑的问题,施工现场管理则是保证安防工作顺利进行的重要基础。

统计数据显示,从建国以来,超过80%以上的煤矿事故发生原因都与煤矿工程安全问题有着直接或间接的联系。在煤矿井巷工程中,危险因素多,技术要求高,更易出现安全问题。究其原因,是因为煤矿井巷工程的绝大部分作业时间都处在地下环境,不安全因素复杂多样,且一旦出现安全事故,对于施工者、施工方、企业而言,不仅有重大财产损失,更极有可能造成人员伤亡,最终导致工程流产。

矿井巷工程的现场施工安全问题频现,一方面是因为当前安全技术限制,导致问题预估能力差、灾难出现后的应急反映不够科学、迅速。另一方面则是施工方安全意识不到位,对现场施工管理不严格,一味迎合市场化经济体制发展,贪图经济利益,抛弃人性化管理,降低了煤矿施工工程的安全属性要求,从工程施工管理源头失去了控制的主动权,因此,在煤矿工程开始动工的前夕,煤矿产业施工方就必须认识到安全问题的重要性,加强对现场施工的管理。

1.2 工程质量的保障

为保证工程的验收质量,工程责任制是确保人员分工科学性的重要保障,施工现场管理则是保证人员分工合理性的保障。

众所周知,施工质量差会给日后工程投入使用造成巨大安全隐患,也不利于开采期间的施工人员人身安全。一方面,生产成本和井巷维护成本会大大提升,另一方面,危险因素每时每刻都威胁着周遭人们的生命安全。通过笔者近几年来在行业的观察,不少单位工程甚至在施工阶段就因井巷变形、支护失效而造成重大事故,耗费大量基建投资。

因此,在工程施工开始前,必须通过施工现场管理核定工程阶段性负责人及其领导队伍,责任到队、责任到人,防止纠缠不清、互相扯皮、拖泥带水,拒绝因责任问题的相互推诿而导致的“烂尾工程”,从经济利益上促使施工企业努力提高工程质量,力争为企业创收。

2 煤矿井巷工程的现场施工管理的措施

2.1 严格控制弯道井巷曲率

在煤矿井巷工程的实际操作中,弯道曲率半径是否合理,在通常情况下对煤矿施工工程的顺利进行密切相关。在我国,煤矿井巷工程中最常见的电机车大多数都是 7t 自粘式电机车。尽管该电机车有着不可取代的优越之处,但在采矿井巷中,7t 自粘式电机车的运输性能却存在不确定性,其曲率半径有两种常见的半径参数,分别为12m和15m;在煤矿井巷工程施工作业过程中,由于施工现场环境复杂,当出现曲率过大的情况时,耙矸机绳索所受应力瞬间增大,极易造成零件磨损。

基于这一情况下煤矿企业应注意加强现场施工管理,严格控制弯道井巷曲率,及时更换损坏零部件,防止绳索断裂导致伤人后果。与此同时,与曲率相关的施工隐患也应在管理中严格注意。比如,当曲率半径过大时,煤矿井巷工程中会产生大量由于巷道迎头爆破而产生的石块,石块堆积在井道口,会导致巷道坡度过大,给煤矿生产运输带来施工困难和安全隐患。

2.2 严格控制车场起坡方法

在我国目前的主流煤矿采区中部车场设计中,两种车场起坡方式在日常施工中最为常见:单道起坡与双道起坡。与双道起坡相比,单道起坡在中部车场拔口中所占用的工程量将相对较小,技术高的工人甚至可以节省一副弹簧道岔,施工较为方便。双道起坡的工程量则相对较大,中部车场拔口必须在原有基础上再使用一副弹簧道岔,有时还需要再利用一副固定道岔。

由于单道起坡的成本低廉,很多煤矿企业都在中部车场设计过程中使用了单道起坡的方式,以节省时间和施工成本等。然而,单道起坡尽管成本较低,但其设计方式通常存在着一定的安全隐患。例如,空重车以及材料车在下放操作中,由于单道起坡的局限性,为了保证空车顺利通过道岔,打点挂钩人员必须在工程进行时立于道岔处,通过人工对空重车或材料车进行助推,这种操作方式危险性大,失误率高,仅仅一时疏忽就有可能造成打点挂钩人员的伤亡。双道起坡的方式则更为安全,虽然其设计方式施工量较大,但是双道起坡能保证空车顺利通过道岔,无需打点挂钩人员进行人工助推,降低打点挂钩人员工作的危险性,也确保空车及其他材料车顺利运行。

因此,煤矿井巷工程的现场施工管理中,企业不能仅仅从时间成本与经济成本方面考虑,造成井巷施工安全问题。而是应细化煤矿井巷工程的现场施工管理,严格使用双道起坡,确保工程顺利推进。

3 结束语

由于煤矿井巷工程施工中存在大量不安全因素,煤矿企业在井巷施工过程中针对这些安全性因素加强现场施工监管,确保严格按照安全施工的准则进行,由此,努力提高煤矿开采作业安全性,避免由于采矿工程的设计不合理导致采矿生产中安全事故的发生。煤矿企业也应在加强现场施工管理的同时提高系统管理和监察力度,及时发现施工过程中的问题,杜绝安全隐患,保证工程质量。

参考文献:

[1]罗凌云.论煤矿井巷工程中工程变更投资的控制[J].湖南城市学院学报(自然科学版),2014,02:35-38.

[2]鲁大亮,程洪连,杨东山.浅谈煤矿井巷漏垮冒顶的预防及其处理[J].中小企业管理与科技(下旬刊),2011,04:240.

篇5:井巷工程总结

煤巷:沿煤层掘进的巷道,在掘进断面中,若煤层占4/5(包括4/5在内),就称它为煤巷。半煤巷:沿煤层掘进的巷道,在掘进断面中,若煤层占1/5-4/5,就称它为半煤巷。岩石可钻性:岩石被碎岩工具钻碎的难易程度 断面净高,净宽:1.巷道净宽度 梯形巷道的净宽度分两种情况:

a.当其内通行矿车、电机车时,指的是车辆顶面水平的巷道宽度;

b.当其内不通行运输设备时,从底板起1.6 m高水平的巷道宽度。

直墙拱形(半圆拱形、圆弧拱形、三心拱形)巷道的净宽度指巷道两侧内壁或锚杆出露长度终端之间的水平距离。

矩形断面巷道的净宽度指巷道两侧内壁或锚杆出露长度终端之间的水平距离。

2.巷道净高度

梯形巷道净高度指的是从渣面或底板至顶梁或顶部喷层面、锚杆露出长度终端的高度。

直墙拱形巷道净高度指是从道渣面至拱顶内沿或锚杆露出长度终端的高度,包括净拱高和自底板起的壁高。

矩形巷道净高度指的是从道渣面至拱顶内沿或锚杆露出长度终端的高度。

岩石分级的意义:不同的岩石,其物理力学性质都不相同。施工时,选用的方法、设备及参数都有不同,耗损的材料也不一样,故要对岩石进行工程分级。方法:1.普氏分级法f 2.我国煤炭部门制定的围岩分级标准3.岩心质量指标分级法(R.Q.D)

凿岩机工作原理:风动凿岩机环阀冲程:压缩空气从操纵阀经气道进入滑阀的前腔再进入气缸的后腔施加于活塞的左端面,此时,活塞的右端即汽缸的前腔与大气相通,所以,活塞左右两端面的压力不同,从而推动活塞自左向右运动,开始冲击行程。当活塞右端面越过排气口时气缸前腔被封闭,前腔的余气受活塞压缩,被压缩的余气压力逐渐升高,并经回程气道至滑阀的后腔,使滑阀的左端面压力逐渐升高。当活塞的左端面越过排气口后,汽缸后腔与大气相通,压缩空气突然逸出造成压力骤然下降,这时,作用在滑阀左端面上的余气压力大于右端面上的压力,滑阀被推向右运动,关闭了原来压缩空气的通道。同时,活塞冲击钎尾,结束冲程,开始回程。

回程:当滑阀移至右端,封闭与汽缸后腔的通路后,压缩空气将沿滑块左端的气路经回程通路进入汽缸前腔推动活塞做回程运动。当活塞左端面越过捧气口,活毫将压缩汽缸后腔的余气,使压力逐渐升高,并使滑阀右端面所受余气压力增高。当活塞右靖越过排气口后,汽缸前腔与大气相通,压缩空气突然逸出,压力骤然下降。这时作用在滑阀右端的压力高于左端的压力,从而推动滑阀向左端运动,封闭了回程气道的通路,回程结束,压缩空气又从滑阀右端进入汽缸后腔,开始又一个冲程运动。断面设计:

简述巷道断面设计原则和步骤

原则:在满足安全、生产和施工要求的条件下,力求提高断面利用率,取得最佳的经济效果。

内容和步骤:首先,根据巷道的服务年限、用途和围岩性质,选择巷道断面形状和支护方式;其次,根据巷道中所通过的设备尺寸、支护参数与道床参数、通风量与行人要求等确定巷道的净断面尺寸(并进行风速验算),计算巷道的设计掘进断面尺寸,并按允许的超挖值,求算出巷道的计算掘进断面尺寸;然后,布置水沟和管缆;最后,绘制巷道断面施工图,编制巷道特征表和每米巷道工程量及材料消耗表。

岩巷炮眼布置:按其用途和位置可分为:掏槽眼、辅助眼和周边眼 起爆顺序:掏槽眼

辅助眼

周边眼 影响炮眼布置的因素:①岩石性质和结构;②巷道断面形状和大小;③炸药性能和装药量。故工作面的炮眼布置不能一成不变,必须根据具体情况进行布置或调整 一)掏槽眼

掏槽眼的作用: 首先将工作面上某部分岩石破碎下来,使工作面形成第二个自由面,为其它炮眼的爆破创造有利条件。掏槽的好坏对提高破岩效率、循环进尺都起着决定性的作用。因此,必须选择合理的掏槽方式和装药量,使岩石完全破碎以形成理想的槽腔。掏槽眼的分类:斜眼掏槽、直眼掏槽和混合掏槽 1)、斜眼掏槽适用范围:是巷道掘进中是一种常见的掏槽方法,它适用于各种岩石.2)、斜眼掏槽主要包括楔形掏槽和锥形掏槽,其中以楔形掏槽应用最为广泛。3)、掏槽眼数量:根据断面大小和岩石坚固程度来决定,一般是6~8个,两两对称地布置在巷道断面中央偏下的位置上,与工作面夹角大致55°~70 ° 之间,槽口宽度,一般为1.0~1.4m,掏槽的排距约为0.3~0.5m ,两眼底距离为200mm左右。

锥形掏槽所掏出的槽子是一个锥体,由于炸药相对集中程度高,只要严格掌握好钻眼质量,即使在坚硬的岩石中,也可取得较好的爆破效果。掏槽眼数,多数情况采用3个或4个。该方法国钻眼工作很不方便,在煤矿中应用甚少。

斜眼掏槽法 特点是:掏槽面积较大,适用于较大断面的巷道,可以充分利用自由面,逐渐扩大爆破范围;但因炮眼倾斜,掏槽深度受到巷道宽度限制,不便于深孔作业与多台凿岩机同时作业。(二)

辅助眼

辅助眼又称崩落眼,是大量崩落岩石和继续扩大掏槽的炮眼。辅助眼要均匀布置在掏槽眼与周边眼之间,其眼距一般为500~700mm,炮眼方向一般垂直于工作面,装药系数(装药长度与炮眼长度比值)一般为0.45~0.60。(三)周边眼

爆落巷道周边岩石,最后形成巷道断面设计轮廓的炮眼。周边眼布置合理与否,直接影响巷道成型是否规整。现在光面爆破已较成熟,一般应按光面爆破要求进行周边眼布置。一

通风方式

其通风方式可分为三种:压入式,抽出式,混合式 一)压入式通风

局部扇风机把新鲜空气经风筒压人工作面,污浊空气沿巷道流出。在通风过程中炮烟逐渐随风流排出.当巷道出口处的炮烟浓度下降到允许浓度时(此时巷道内的炮烟浓度都已降到允许浓度以下),即认为排烟过程结束。

为了保证通风效果,局部扇风机必须安设在有新鲜风流流过的巷道内,并距掘进巷道口不得小于l0 m,以免产生循环风流。为了尽快而有效地排除工作面的炮烟,风筒口距工作面的距离一般以不大于10 m为宜。

这种通风方式可采用胶质或塑料等柔性风简。

优点:有效射程大,冲淡和排出炮烟的作用比较强;工作面回风不通过扇风机,在有瓦斯涌出的工作面采用这种通风方式比较安全;工作面回风沿巷道流出,沿途一起把巷道内的粉尘等有害气体带走。

缺点:长距离巷道掘进排出炮烟需要的风量大,所排出的炮烟在巷道中肪风流而扩散,蔓延范围大,时间又长,工人进入工作面往往要穿过这些蔓延的污浊气流。二)抽出式通风

局部扇风机把工作面的污浊空气经风筒抽出,新鲜风流沿巷道流人。风筒的排风口必须设在主要巷道风流方向的下方,距掘进巷道口也不得小于10 m。

在通风过程中,炮烟逐渐经风筒排出,当炮烟抛掷区内的炮烟浓度下降到允许浓度时,即认为排烟过程结束。

优点:在有效吸程内排尘的效果好;排除炮烟所需的风量较小;回风流不污染巷道。抽出式通风只能用刚性风简或有刚性骨架的柔性风简。

缺点:风机的有效吸程小,工作面排除有害气体的时间长。

三)混合式通风:这种通风方式是压入式和抽出式的联合运用。吸入口和抽出口的距离不应小于15 m,风机串联。三

通风管理

作好长距离独头巷道通风,主要办法:最大限度地减少风管和防止风管漏风。

其措施如下:

1、增大风管直径和每节风管长度,可减小连接时的阻力;

2、提高风管接头质量和改进接头方法;

3、风管须尽量吊挂平直;

4、加强检修、防止漏风。

四、掘进中的综合防尘技术

1、采用湿式凿岩;

2、喷雾、洒水;

3、加强通风排尘工作;

4、加强个人防护工作。

装载机的选择:1巷道断面的大小2装载机宽度及生产率、适应性和可靠性3操作、制造和维修的难易程度4装载机与其它设备的配套5装载机的造价和效率

装岩生产率的提高措施:1爆破工作:控制岩石的块度,底板平整性。2调车组织协调:合理协调整个工作过程,优化总体效率。3加强装岩调车的组织工作。4提高工人的操作技术。5优化装岩机的工作状态(稳定电压、风压等)。

调车方法:在巷道掘进的装岩过程中,当采用矿车运输时,一个矿车装满后,必须退出,调换一个空车继续装岩,将装满矿石的矿车调出去空车进来的方法,即为调车方法。

1、固定错车场调车法:错车不能紧跟工作面,效率较低,一般用于工程量较小,工期较缓的工程。

2、动错车场调车法1)浮放道岔:双轨菱形,单轨菱形。2)翻框式调车器。

沿煤层掘进的巷道,在掘进断面中,若煤层占4/5(包括4/5在内),就称它为煤巷。

沿煤层掘进的巷道,在掘进断面中,若煤层占1/5-4/5,就称它为半煤巷。煤巷掘进方法 :钻眼爆破法,水力掘进法,机械掘进法,风镐掘进法

半煤岩巷施工:炮眼布置特点:

由于煤层较软,掏槽眼应布置在煤层部分。施工组织

半煤岩巷道的两种施工组织方式:一种是煤、岩不分掘分运,全断面一次掘进;另一种是煤、岩分掘分运。

全断面一次掘进时,工作组织简单.掘进速度快,但煤的灰分很大,煤的损失也很大,这种施工组织方式用在煤厚小于0.5m、煤质不好的半煤岩巷道较为合适.煤、岩分掘分运:煤的灰分小,煤的损失也少。工作组织复杂,掘进速度较慢。当煤层厚度大于1.2m时,岩石工作面可以钻垂直炮眼(眼深不小于0.65m),这样钻眼和爆破效果较好。若煤层较薄,岩石工作面的炮眼,应平行巷道轴线方向

岩巷施工与煤巷施工比较:

2、锚杆作用原理

1)悬吊承托作用:锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳定岩层上,以增强较软弱岩层的稳定性。在软弱围岩中,锚杆的作用是将直接顶板的破碎岩石悬吊在其上部的自然平衡拱上。2)组合梁作用:顶板锚杆的作用,一方面体现在锚杆的锚固力增加了各岩层间的接触压力,避免各岩层间出现离层现象;另一方面增加了岩层间的抗剪刚度,阻止岩层间的水平错动,从而将作用范围内的几个岩层锚固成一个较厚的组合岩梁。3)挤压加固拱作用:在弹性体上安装具有预应力的锚杆,能形成以锚头和紧固端为顶点的锥形体压缩区。因此,如将锚杆沿拱形巷道周边按一定间距径向排列,当围岩产生变形时,锚杆会对围岩产生压应力作用,每根锚杆周围形成的锥形体压缩区彼此重叠连接,便在围岩中形成一个均匀的连续压缩带。它不仅保持自身的稳定,而且能承受地压,阻止围岩的松动和变形。二 喷射混凝土支护 一)支护特点a 喷射使混泥土层有致密的组织结构和良好的物理力学性能,粘结力大;b 加入速凝剂,早期强度大;c 喷层较薄,属柔性支护。

二)作用原理1)加固与防止风化作用 2)改善围岩应力状态作用 3)柔性支护结构作用4)

组合拱作用

巷道施工的两种基本形式:一次成巷:把巷道施工中的掘进、永久支护、水沟掘砌三个部分工程视为一个整体,在一定距离内,按设计及质量标准要求,互相配合,前后连贯地、最大限度地同地施工,一次完工。

分次成巷:把巷道掘进和支护等分成两个部分,先将整条巷道掘出来,临时支架维护;再拆除临时支架进行永久支护和水沟掘砌。

优缺点

一次成巷:永久支护下工作,作业安全;无需拆除临时支架,施工速度快;节约材料,成本低;施工质量好

分次成巷:施工速度慢;材料消耗量大、成本高;分次成巷使用环境:急需通风的巷道 按照掘进与永久支护的相互关系,其作业方式有:平行作业、顺序作业、交替作业

平行作业:掘进由一部分工人进行作业,同时永久支护由另一部分工人进行,掘进作业始终要求在支护作业段的前面。

顺序作业:掘进与支护两大工序在时间上按先后顺序施工,即先将巷道掘进一段距离,然后停止掘进,边拆除临时支架,边进行永久文护工作。交替作业:在两条或两条以上距离较近巷迢中,由一个施工队分别交替进行掘进和永久支护工作。即将一个掘进队分成掘进和永久支护两个专业小组,当甲工作面掘进时,乙工作面进行支护,甲工作面转为支护时,乙工作面同时转为掘进,掘进和永久支护轮流交替进行。施工组织:坚持正规循环作业,展开多工序平行交叉作业。

一、坚持正规循环作业

在巷道掘进过程中,包括主要工序(钻眼、爆破、装岩、临时支护等)和辅助工序(通风、铺轨和接长管线。永久支护过程中,锚眼、安装锚杆和喷设注浆等。这些工序是按一定顺序周而复始进行的,称循环作业。

二、多工序平行作业:为缩短时间,提高工效。应尽量安排能同时进行的工序平行作业。

三、循环图表编制

一、硐室的施工特点(1)硐室的断面大、变化多,长度比较短。(2)受力状态复杂,施工难度大。(3)硐室服务年限长,工程质量要求高。

二、硐室施工方法 针对不同硐室,不同性质的岩石等,具体施工方法较多,但可归为三类:(一)全断面一次掘进法:常用于围岩比较稳定、断面不太大的硐室;可采用大型设备,取得较快速度;采用常规设备,全断面一次掘进硐室高度以不超过4-5m为宜。(二)台阶工作面施工法:适用于岩层稳定或比较稳定的硐室施工

(三)导硐施工法:导硐施工法多用于松软破碎带,特大断面也可采用。交岔点设计方法1作图法2计算法

1、交岔点施工方法 1)在稳定和稳定性较好的岩层中,交岔点可采用用全 断面一次掘进法,随掘随锚喷或先锚后喷,一次完成。

2)在中等稳定岩层中,或巷道断面较大时,可先将一条巷道掘出,并将边墙先行锚喷,余下周边喷上一层厚30~50mm的混凝土或砂浆(岩石条件差对,可加打锚杆)作临时支护,然后回过头来再刷帮挑顶,随即进行锚喷。

采用砌碹支护的交岔点,开始以全断面由主巷向支巷方向掘砌,至断面较大处,改用以小断面向两支巷掘进.架设棚式临时支架维护顶板,掘过柱墩端面2m,先将此2 m砌好,然后再回过头来,由小断面向柱墩进行刷砌,最后在岔口封顶并做好柱墩端面(齐脸,迎险)。

3)在稳定性较差的岩层中,可采用先掘砌好柱墩再刷砌扩 大断面部分的方法。

4)在稳定性差的松软岩层中掘进交岔点时,不允许一次暴露的面积过大,可采用导硐施工法 ppt图

(一)在稳定表土层内开挖斜井

在稳定表土层内开挖斜井时,其施工方式与井口所处地形有关:

井口选择在山坡处,只需将井口位置的浮土和风化碎石清除干净即可开掘,井口需用混凝土或石材砌筑;井口选择在表土层较厚的平地,由于直接开硐掘进,顶板不易维护,需要明槽开挖后才能开硐掘进。

2)施工方法:避开雨季施工;在斜井井口四周修好排水沟;开挖明槽;明槽边坡支护;开硐掘进多采用短段掘砌施工,段距2-4m。

(二)在不稳定表土层施工:降低水位法;冻结法;注浆法;沉井法 支护:锚喷、砌碹、U形可缩性支架。

上山施工应注意的问题的措施:上山一般都是由运输水平自下向上掘进。但在有瓦斯突出的煤层,如无专门措施,只能由上一水平向下掘进,那时的掘进特点和下山一样;布孔:注意底板上浮问题,底鼓夹制作用。掏槽眼布置在底部;巷道布置:双巷同掘,一般每隔20-50m掘一条贯通的联络巷,一是满足通风要求,二是可用作爆破时施工人员的避炮硐。单巷掘进,必须每隔25-100m为避炮硐室。通风:瓦斯较轻,一般聚在巷道顶部,因此要注意通风检查措施。

1、尽量双巷掘进 ;

2、加强通风;

3、加强瓦斯检查;

4、停风时,全体人员必须撤出。装岩:人工装岩:链板输送机

倾角<25º。溜槽:铁溜槽 倾角25º~35º,搪瓷溜槽 15º~28º,底板作溜槽,倾角>35º。机械装岩:倾角<10º,ZMZ-17型装岩机,倾角<30º,耙斗装岩机。提升:专用小绞车,分段提升可采用临时绞车;重车带空车,滑轮上加装刹把。

下山掘进:破岩与通风:下山掘进无沼气聚集问题,通风工作较上山掘进容易;装岩、提升:下山掘进,矿岩少积聚在工作面上,因此要加强装岩,尽量采用机械装岩。目前,装岩的机器主要采用耙斗装岩机,下山应注意机械安放牢固,防止下滑。提升:<25º,链板输送机;<30º,矿车、箕斗;>30º,箕斗。排水:

对水的处理,应视其来源不同,从而采取不同的对策:

1、上部平巷水沟漏水,混凝土或陶管将上部水沟密封起来。

2、含水层涌水,截流引至泵房水仓,注浆封水。

3、工作面积水,水泵排水,潜水泵、卧式水泵、喷射泵,水量不大,将水排入矿车或箕斗内一起运出。安全工作:防止跑车:提高警惕,严守规程操作;经常检查提升装置及辅助设施;采取切实可行的安全措施;工作面前方设置挡车器。立井井筒表土施工方法

一、普通施工方法 1.井圈背板普通施工2.吊挂井壁施工3.板桩法

二、特殊施工方法1 .冻结法2 .钻井法3 .沉井法4 .注浆法5 .帷幕法 立井井筒延深

延深方法:利用辅助水平延深井筒:由生产水平经辅助暗井到达辅助水平,在辅助水平布置延深用的巷道、硐室和安设延深施工设备。

利用延深间延深井筒:设计井筒时若顶留有延深间,或者将井筒内的梯子等设备拆除后,梯子间有足够的断面积可以作延深间用;或者井筒内设计有两套提升没备,将其中一套改装为吊桶提升能不影响生产时都可以考虑采用此法延深井筒。

利用反井延深井筒:利用反井延深井筒如图。在井筒延深施工前,如果已有一个井筒到达延深新水平(a),或生产时使用的下山已经到达延深新水平(b),并有巷道通往延深井的井底位置时,即可采用此法延深。

延深井筒的保护设施:一)保护岩柱二)人工保护盘 立井施工设备的布置 1.吊桶位置

1)采刚临时提升机凿井时,应考虑井架受力均衡和地面没置提升机的可能性,提升机房位置应不影响永久建筑物施工。

2)吊桶应尽量布置在永久提升间内,并使提升中心线与罐笼出车方向或箕斗井临时罐笼出车方向一致,以利于井底车场施工时的提升改装和井简装备工作。

3)吊桶应尽量靠近地面卸矸方向一侧布置,使溜矸槽少占井筒有效面积和避免溜矸槽装车高度不足。

4)吊桶与其他设备的间隙必须满足《煤矿安全规程》和《矿山井巷工程施工及验收规范》的有关规定。

2.抓岩机位置:抓岩机的位置应充分发挥抓岩机的效率,满足它与其他设备间安全间隙的要求。

3.吊泵位置:吊泵的位置应靠近井帮,不影响抓岩机的工作,布置在溜矸槽的两侧或对面,另外吊泵和吊桶对称布置。以上主要设备的位置初步确定后,便可确定封口盘,吊盘等主梁的位置。

其他设备和管线如安全梯、风筒、压气管等,应结合井架类型、允许的出绳方向和地面凿井绞车的布置条件,在满足安全间隙的前提下予以适当布置。

松软岩层巷道施工:松软岩层:特殊的地质岩体,对于煤矿来说,主要指巷道掘在松软岩层具有松、散、软、弱四种属性。松:指岩石结构疏松,密度小,空隙度大。散:岩石胶结程度很差或未胶结。软:岩石强度很低,塑性大。弱:结构弱面多。松软岩层巷道施工:“避,调,降,挡,测。”1巷道位置的合理选择。巷道位置应选择在受压力较小,且受压均匀的地方,巷道才能得到较好的维护。受压力小时,要求巷道布置在支撑压力范围之外。应将巷道布置在遇水膨胀量小,质地均匀,较坚硬的岩层中。2巷道断面形状的选择。地压较小选直墙半圆拱形:巷道周围受到较大的地压选圆形断面;垂直方向大,水平较小选直立椭圆形,近似椭圆形;水平压力大,垂直小选曲墙,直墙,半圆拱,平卧椭圆形3破岩方式的选择,要尽量不破坏围岩。a只放开心炮,再用风镐刷大;b掘进机掘进,减少爆破扰动和超前小导洞施工。4支护方式和结构的选择、支护时间。要及时的进行支护。最好分两次支护。第一次支护,减少变形,但允许围岩产生一定的变形,放掉一部分应力。第二次支护加强锚喷支护,钢筋网,金属骨架,砌碹,多采用异形料石或混凝土块。支护时间的确定,一次支护应尽快支护,二次支护应在围岩得到稳定,初始支护与围岩组成的支护系统基本稳定之后进行。支护方式:锚喷+U形钢联合支护、锚喷+砌碹联合支护、锚喷+弧板联合支护。5加强巷道底板管理。底鼓防治:减小压力:泄压,减小应力集中。加强支护:采用高强度支护。锚喷支护做初次支护。筑底拱可二次支护同时进行。圆碹作一次支护,则先底拱后墙,最后砌拱。地板注浆,增加其强度6加强监控,收敛计,水准仪,多点式位移计、声波探测仪,雷达探测仪等7借鉴新奥法指导软岩巷道施工。

斜井断面设计步骤如下:1斜井井筒断面形状和支护型式的选择与平巷基本相同.但斜井服务年限长,且从受力性能好、采用石材整体式支护及锚喷支护的方便等因素考虑,斜井断面多采用半圆拱形、圆弧拱形或三心拱形断面.2.根据斜井井筒内的提升设备类型及设施进行断面布置.串车斜井井筒内通常有轨道、人行道.管路和水沟等;箕斗斜井为出煤井,一 般不铺设管路和电缆;胶带输送机斜井内除胶带输送机外,还设有人行道和检修道.3.根据斜井提升设备尺寸、井内设施尺寸和《煤矿安全规程》规定的安全间隙,确定斜井井简断面尺寸.4.斜井井筒若是作为矿井进出风的主要通道,则必须进行风速校核。直至斜井井筒断面尺寸既能满足提升运输和井内各种设施布置,又能满足通风要求时,断面才能最后确定。

立井筒表土施工:普通施工方法1.井圈背板普通施工法(适用于较稳定的土层)2.吊挂井壁施工法(用于稳定性较差的土层中的一种短段掘砌施工方法)3板桩法(适用于厚度8至10米厚的不稳定土层,与其他方法相结合,应用深度更大)

二、井筒表土特殊施工法1.冻结法。2钻井法3沉井法

立井基岩施工:以钻眼爆破施工方法为主,重型凿岩机配以伞形钻架,抗水炸药爆破,采用抓岩机装岩,吊桶堤升,米用井圈背板锚喷支护作为临时支护,料石井壁、混凝土井壁、钢筋混凝土井壁和锚喷支护井壁作为永久支护,多用以抽出式为主、压入式为辅通风方式,注浆堵水吊泵排水.主要工作包括:破岩、装运、支护以及通风捧水等辅助工作。

斜井表土施工:1.在稳定表土层内开挖斜井时.其施工方式与井口所处地形有关:若斜井井口选择在山坡处·则只需将井口位置的浮土和风化碎石清除干净即可开掘。斜井井口需用混凝土或石材砌筑;若斜井井口选择在表土层较厚的平地,由于直接开硐掘进,顶板不易维护,这时需要明槽开挖后才能开硐掘进.2)施工方法:避开雨季施工、在斜井井口四周砌好排水沟、开挖明槽、明槽边坡支护、开硐掘进多采用短段掘砌施工,段距2-4m,2在不稳定表土层施工,降低水位法、冻结法、注浆法。沉井法.

立井井筒延深方法;

一、利用辅助水平延深井筒。这种延深方法,是由生产水平通过延深辅助暗井到达辅助水平,并在辅助水平布置廷深用的巷道、硐室和安设延深施工设备。这种延深方法的特点是,对矿井的正常生产提升影响较小·但是延深辅助工程量大,延深准备期长,投资大,占用设备多.延深路线:生产水平一延深辅助暗井一辅助水平一廷深施工工程(巷道硐室)一井筒延深。

二、利用廷深间延深井简.这种延深方法具有延深辅助工程量小,延深准备工期短。施工总投资少等优点。这种延深方法的缺点是提升吊筒容积小,提升一次循环时同较长,影响井筒廷深施工速度。井倚延深施工过程:1准备工程2井筒掘砌3.保护岩柱拆除.

三、利用反井延深井筒.采用反井延深井筒时。是由延深新水平自下向上开凿一小断面反井,在小断面反井掘进至延深辅助水平时,再自上向下按照井筒设计断面分段刷大和砌壁.一)普通反井施工法二)吊罐反井施工法,三)钻机反井施工法。

岩巷维护与修复:一)未产生本质破坏的巷道。加固支护:采前预加固、采后加固。二)己产生本质破坏(断面积缩小、冒顶片帮)的巷道:修复方法:扩巷修复、加固支护、小断面快速修复法。1)扩巷修复①扩巷工艺流程:爆破扩巷、临时支护、永久支护。a.垂直巷壁浅孔小炮剥帮b.平行巷壁深孔爆破剥帮.2)冒顶岩巷修复:①岩巷局部冒顶;加固冒落区前后完好的支架(木垛封顶,控制冒顶范围的扩大、锚喷支护封顶)②大范围冒顶修复:a.小断面快速修复法b.一次成巷修复法c木垛法d绕道法。

上一篇:高二600字周记作文下一篇:婚礼欢迎词