化工机械专业英语翻译

2024-05-30

化工机械专业英语翻译(通用6篇)

篇1:化工机械专业英语翻译

第一单元 极限与公差

几何精度设计是在机械制图上使用的一个三维国际工程设计语言。这个语言主要由符号组成,这些符号是清楚地定义在由美国机械工程协会出版的ASME Y14.5M-1994中。这个制图标准在北美使用和全世界都认同。它代替了更早的ANSI Y14.5M-1982标准和已经发展到几乎等同于它的ISO副本。这个标准在确定使用各种几何符号的方式和在清楚地展示设计者的意图的其他方法上是完善的。

几何精度设计的合理使用保证了工程设计想要的形状、配合和功能,没有在车间的假想或每个人都诠释不同的精细制作的笔记。几何精度设计将通过在整个工程设计、制造和品质功能中提供相同的解释,增加制造公差,提升效率和品质来节约公司花销。我们的经验表明许多设计者、车间和品质控制人员,尽管在几何精度设计工作了许多年,但还是没有完全了解要求和没有利用到几何精度设计的所有优点。

设计和生产系统,复杂性,电算化,和全球制造对准确的工程图纸提出了强制性要求。功能测量,刀具,零件尺寸和制造受益于几何精度设计。几何精度设计的学习是重要的,因为它是设计、制造过程和质量三者沟通的粘合剂。

制造,设计系统需要一个易懂的语言,否则,它是不一致的和不可用的。一门技术语言被定义为一个标准,这个被广泛使用的标准是ASME Y14.5M-1994。我们的目的是让几何精度设计和制造过程协调一致。你可以已经在计算机辅助设计课或制图课上接触到几何精度设计。

第二单元

力学概论

力学的基本概念:

力学是用来处理运动,时间和力的科学分析的分支,它由静力学和动力学组成。静力学研究静态系统的分析,这时,时间不是一个考虑的因素;动力学则是随时间变化的系统。力是通过相配合的表面传递到机器各个构件的。例如,从齿轮到轴或一个齿轮通过啮合齿传动到另一个齿轮或连杆通过轴承传到杠杆,从V带到滚轮或从凸轮到传动件。有许多理由都必须知道力的大小。力在边界及配合表面的分布必须要合理,其强度必须在构成表面的材料的工作极限内。例如,如果作用在套筒轴承上的力太大,将会把油膜挤出,并导致金属表面的胶合,过热和轴承过快失效,动力学的研究主要是确定李的大小、时间和位置。

下面将说明一下我们这方面的研究

力:我们最早的关于力的想法是源于我们对推、举和拉河中物体的需要。因此力是一个物体对另一个物体的作用。自觉对力的联系包括力作用的位置,方向和大小,这些称为力的特性。

物质:物质是一种材料或实物,如果它完全封闭则称为物体。

质量:牛顿吧质量定义为物体的数量,由体积和密度来衡量。这定义并不是很多人满意的,因为密度是单位体积的质量。通过猜想我们可以谅解牛顿,可能他并不认为那是个定义。然而,他已经认识到了一个事实,那就是所有的物体都具有不同于重量的内在性质。所以,尽管月球重量不同于地球重量,但一块月球上的岩石仍有特定不变的本质数量。这个恒定的本质数量或物质食粮就是岩石的质量。

国际单位制最大的有点事它对任何物体有且仅有一个单位。长度的单位为米,质量的单位为千克,力的单位为牛顿,时间的单位为秒等等。为了和这种特性保持一致,就要求一个给定的单位或词不能仅一个被认可的技术名称在二个物理量中使用。然而,习惯叫做“重量”的这个词已经在技术和非技术领域广泛使用,表示着物体所受的引力和其本身质量。

粒子:粒子就是指尺寸小到可以忽略的物体。

刚体:物体要么是弹性的,要么是塑性的,只要作用上力都会产生变形。当物体形变量很小时,通常将其假想为刚体,即没有变形的能力,作此假想以便简化分析。

可变形的物体,作为应力和应变是由将要分析的作用力所提供的,则刚体假说将不再适用。因此我们认为物体时可变形的。这种分析常称为弹性物体分析,兵并应用这附加的假说,即在力作用范围内,物体仍保持弹性。

牛顿定律,牛顿三大定律是:

牛顿第一定律:如果一对平衡力作用在一个质点上,那么这个质点仍将保持静止或匀速直线运动。

牛顿第二定律:如果作用在质点上的力不是平衡的,则该质点将经历一个加速度且加速度与合理大小成比例,沿合力方向。

牛顿第三定律:当一对质点相互作用,作用力与反作用力其大小相同,方向相反,作用在过二个质点的直线上。

2,力和力矩:

当一个物体从一个组成系统中聚集到一起,任意两物体间相互作用的力称为约束力。约束力使物体以特定的方式运动。作用在系统上的力称为作用力。

有的力在作用中并没有实际的物理接触。例如,电力磁力和引力。有许多,但不是大多数的力我们会涉及到。这些力是通过物理的或机械上的接触相互作用的。

力是个矢量,力的要素是:力的大小,方向和作用点。力的方向包括那条沿力的指向为方向的直线。因此力可能沿直线正向,也可能沿直线反向。二个大小相等,方向相反,作用不共线的合力。任意二个这种力作用在物体上将会形成一个力偶,力臂是作用线的垂直距离,作用和面是通过二个作用力的平面。

第三单元

简单机械

图3-1给出了直杠的三种布置情况,每个例子中F是支点;P是作用力,作用在b点上;W是载荷,作用在c点上,当杠杆处于平衡时,为P使杠杆绕f转动的趋势必须与载荷w使杠杆往反方向旋转的趋势相平衡。忽略在支点上的摩擦力,以上关系可用数学式表达为:P*BF=WX从上式可以看出,施加的作用力乘以支点到一作用点应等于另一侧的乘积,从这可以导出“机械效率”这个量,它等于载荷除以作用力:

机械效率=W/P=bf/cf

图3-1A中如果bf/cf=3,就意味着30磅的载荷能被10磅的为所平衡。如果力稍超过这个数值,杠杆将会随着为P的增大而绕点f旋转,为P比载荷W增加得更快更大,这也是机械效率,但应忽略摩擦力的作用,显然,f、c间的距离越短,杠杆的力放大八月入越大。

图3-1A的布置情况可在钳子和剪刀上找到,而图3-1B的情况可在手推车中找到,f相相当是车轮,W为载荷,力P由操作者施加在手柄上。图3-1C中,杠杆的作用于是作为一种运动放大装置,它用在脚踏板上来驱动一些小机械。脚踏板上b的小运动可在c产生大运动。

图3-1D中所示的差动滑轮就是基于杠杆原理。半径为R的轮A和半径为r的轮B固定在轴上,并可以转动。力P是由一条位于轮边缘一个槽中的绳子所提供的,载荷 W由绕在驱动轴上的绳子来提升。当驱动轴静止时,力P促使轴的转动趋势与W促使轴的转动趋势相等,且方向相反。忽略轴承摩擦力的话,力P和大轮半径R的乘积将等于载荷W与驱动轴半径的乘积:P*R=w*r 机械效率还是等于W/P,也等于轮R与驱动轴R的比值。

这种情况和杠杆类似。然而杠杆只能移动载荷很短的距离。而差动滑轮能移动开荷 的距离,只限制于线强长度。

当轮A和绳由装辐条的轮代替时,差动涔轮就仅适于从井里提升一桶桶的水。然而更重要的是差动滑轮的原理在许多工具和机械中是很显而易见的。例如,螺刀,由手提供的力作用在大半径上就能在小半径上转化出很大的力作用在螺钉上。

滑轮是一种最基本的简单机械之一。它从根本上说是由一个轮子和一个支承组成,轮子的轮边带有槽,槽上绕着柔软的绳子,而支承有如固定的或可动的轴承组,一个往下的拉力会产生一个大小相同的向上的力。图3-1E中滑轮和可动组B结合时,如果饭略摩察力的话,绳中所有点的张力P是一样的,因此在绳松开的这边给定一个向下的拉力,将可以提起这个拉力两倍的重物W,而重物W的上升速度交为绳移动速度的一半。因此机械效率为2倍,若使用种种带有固定的和可动的轴承组的滑轮组合,那机械效率将比2倍还要大。例如熟知的轴承级和滑车组合就是一种基本的力放大装置。

现在来考虑一下图3-2中楔的运动。它由力P向左边击打。当角度Q越小,摩擦力F也越小时,以r表示的分力N将会越大。对于任一楔表面的粗糙度以及对奕的摩托车擦力,如果角Q大于一个给定值,即使力P撤掉后,楔仍会保持原位或像粘住了。

可楔紧的锥度在机床主轴中常用来夹抚持切削刀具,如钻头铰刀。其它应用楔原理的机械装置有木刨,子,刀,金属世削刀具和凸轮

丝杠可以认为是楔锥在一个圆柱体上。丝杠是由在实心圆柱上切削出连续不断的槽所形成的,这些被实心材料分开的,连续的,圆周的槽称为螺纹。螺纹和槽都是螺旋形的。

如果将图3-3右侧所示的图ACC`A`H上线段AB`和BD 在左侧直径为d的圆柱上,将会形成1。5图的螺旋。其对应的轴向距离l称为导程。导程角λ是用来度量螺旋的倾斜角。

一些早期的螺钉,其切削方法类似于用展开的如图3-3左边的螺旋一条柔软的金属薄板,以右螺角形式,缠绕在圆柱形毛坯上,以便右角的一臂能平行于轴线,斜边用在圆柱上形成螺旋,用作切削螺旋槽的导向。

如果滑动无件被约束为沿平行圆柱轴线运动,如图3-3中的F,沿着轴线00`运动,它就能被圆柱体的旋转、螺旋或是拉直螺旋的平移所驱动。另一种情况,楔的运动是很明显的。如果螺帽的一部分构件F,它限制了旋转运动但轴向运动是自由的,丝杆螺帽组合将会把螺旋运动转化成

第四单元

机构

基本类型

机构的目的是为了传递运动,而不管机构有没有变更。虽然机构有许多中组成形式,但总的来说只有三种分类,如图4-1所示

图中的每种机构,杆2和杆4都是通过O点和Q点联接到杆1的。这两种机构的运动传递方式如图4-1所示:(A)通过柔性的包裹联接器传递,如皮带,绳子,缆和链条等;(B)通过直接接触传递,如用凸轮,齿轮或是摩擦轮;(C)用刚性的联接杆或联轴器传递。在各种情况中杆2都是驱动件,它以每分钟n2转的转速转动,而杆4是从动件,以每分钟n4的转速转动,对于这三种情况,杆2和杆4的转速比是由Of的长度与Qf的长度比值所决定的。图4-1A中由于点f固定与OQ的中心,所以它的速率是一个常量,在图4-1B和4-1C中,由于点f将会随着物体的转动而移动,故其速率是变化的。直接接触的物体能设计成只会摆动,如图4-1B,或只会持续转动。在所有的情况中,点f都是位于有公法线和中心线的交点上。

直接接触机构

在大多数的情况中,直接接触的表面互相之间是滑动的,并仅仅只有滑动运动。这样表面情况是很容易恶化的。而在特定的条件下,表面磨损不厉害的纯滚动接触具有更高的效率。如果其他条件满足了,物体将会以匀速传递运动。这些特定的情况在齿轮联接和凸轮联接中是很有用的。纯滚动的条件是接触点位于中心线上。

共有三种纯滚动接触的情况,当两物体是圆柱体时,公法线和中心线是重合的,所能传递的载荷是由其表面摩擦所决定的,这就是所谓的基于摩擦的滚动。对于不依赖于摩擦的驱动,其公法线一定不能穿过驱动件或从动件的中心。忽略摩擦,且两相互接触物体间的力沿着法线作用时,当力的作用线没有穿过从动件的转动枢轴线时,从动件将被主动驱动。图4-1B中的物体,接触点在P,提供主动驱动。

任一直接接触物体,其速率比的公式中唯一的变量就是图4-1B中点f的位置。因此,保持匀速或恒定速率比的条件是公法线在一些固定点上通过中心线。尽管法线可能会转动,但只要它在相同点通过中心线,速率比将会保持恒定。

对于大多数给定的物体形状或轮廓,另一物体的,轮廓都能被构造出来,用于以匀速速率传递运动。这就是共轭轮廓。其本身就是存在能传递共轭运动的数学曲线;摆线和渐进线就是其中的两种;用于齿轮轮齿中。摆线就是跟踪空间中滚动轮边缘的一点所形成的轨迹。轮齿的轮廓是跟踪小圆边缘的一点在大圆内外侧滚动所形成的轨迹。渐开线就是处于大圆的内外侧,渐开线就是跟踪小圆边缘一点沿大圆内外侧滚动所形成的轨迹。渐开线也是跟踪从圆柱体上展开的线上的一点所形成的轨迹。通过研究一对渐开线的接触能很好地理解两渐开线轮齿表面的相互作用方式。图4-2中,由基圆1和基圆2产生的两条渐开线通过点m、f和n想联接,且应注意到由于基圆2比基圆1大,渐开线便有不同的形状。

第五单元

连杆机构

连杆机构也许可以定义为实体物体或连杆的载体,其中每根杆件通过销联接(铰链)或滑动接头至少和其他两个杆件相联接。为了满足这个定义,连杆机构必须形成一个无限的封闭的链或一系列封闭的链。很明显,由很多杆联接的链与只有一个杆相比,其性能是不同的。这在机械上就提出了一个非常重要的问题,那就是为传递运动而给定机构的适应性问题。其适应性取决于杆件和街头的数量。

自由度,三杆机构(包括三杆联接在一起的)很明显是一个刚性框架;连杆之间不可能有相对运动,为了表达四杆机构中连杆的相对位置,只需知道任意两杆间的夹角。(算上固定连杆OQ,图5-1C所示机构有4个连杆,因此是四杆机构。)这个连杆机构有一个自由度。要确定五杆机构中连杆的相对位置需要两个角度,也就是它有两个自由度。

带有一个自由度的连杆机构,其运动是有约束的。例如,连杆所有点在其它连杆上的轨迹是固定而又确定的。通过假定连杆上所求轨迹是固定的,并移动与约束相协调的连杆,轨迹是很容易得到的或很容易可视化观察到。

四杆机构。当所受约束的连杆机构中的一个构件固定时,这个连杆机构将变成一个在机械中能够完成有用的机械功能的机构,在销连接的连杆机构中,输入杆(主动杆)和输出杆(从动杆)通常是以枢轴的连接方式连接到固定杆上的;这个连接杆(连接件)通常既不是输入杆,也不是输出杆。由于任意连杆都能固定。如果四种机构中,连杆都不等长,并且都有不同的输入-输出关系,那么就能得到四杆机构。这四种机构也就是所谓的基本连杆机构的转换。

当图5-1左边中最短杆a固定时,杆b和杆d就能完成整圈的旋转运动。这就是双曲柄机构。若曲柄b以恒定的速度转动,则曲柄d将以变化的速度作同向转动。双曲柄机构本身,或者和别机构联接起来时,其曲柄都能提供有用的运动效果,图中,曲柄b是主动杆,它以匀速率逆时针旋转;曲柄d为从动件;三者都能同时完成整圈的旋转运动。但当b转过150°的角度是,从动杆d只能转动50°的角度。这就是意味着从B运动到B’时,曲柄d将比b转得慢,而从B’运动到B时,d比b转得快。如果将同样比例的曲柄d联接到包装机械的主轴上,例如联接运动较慢的轴上,那它将会暂停运动或者停顿。这在必须慢速的地方将派上用场。

通过将最短杆a作为主动杆能得到四杆机构的第二种转换。如图5-1右所示,在杆a做整圈旋转运动的同时;其相对的杆,可能在杆b,c,或杆d,却只能在φ角的范围内摆动。这称为曲柄摇杆机构。它是产生带有急回动作的摆动运动的有用装置。产生急回运动的原因是:当杆a逆时针旋转时,会带动杆 c从B摆动到B’,其摆过角度为θ1,而杆c从B’摆动到B时,其摆过的角度为θ2。由于曲柄a的转速是恒定的,且θ1大于θ2,因此摇杆从右摆动到左的时间将长于其它摆动途径。只有当活动杆件沿一个方向移动,急回装置快速将杆件送回初始位置时,机械才是做有用功。

图5-1右所示的极端位置,曲柄a与连接杆b共线,且假定摇杆c为主动杆时,就必须提供方法使从动杆a通过死点。在用脚踏式操作的磨刀机上,脚踏板连接着杆c,磨刀机主轴连接着杆a,就是靠着磨刀机的角动量使杆通过死点。

在四杆机构的第三种转换中,最短杆a为连接杆,其它的杆件只能摆动,这就是双摇杆机构。

连杆机构的综合,在连杆机构中,用图形法和分析法很容易测定出杆件的位移,速度和加速度。设计或综合连杆来满足特定要求就难得多了。还没有可用的方法来设计双曲柄机构以满足给定的输入-输出的关系谱。能做的就是调查一些选定的特定结构的性能特性。并挑选出其中最佳的

在曲柄摇杆机构中,设计者能控制摇杆的摆动角度,并在一定的程度上控制急回。而曲柄和要干的位移,速度和加速度却无法关联起来。

若四杆机构中的连杆总是以相同或相反的方向转动,并且他们的转动范围远小于180°,那么就有可能将曲柄转动在3点,4点,5点或者甚至更多的位置关联起来。图形法和分析法都能建立这种关联。

第六单元 飞轮

飞轮是一个连接到机械主轴上的重的轮子,它的目的是为了抵消和减轻在机械速度上由所提供的或所需要的动力的造成的速度不均匀性引起的任何波动。飞轮也被用来测试制动器和储存可以在紧急情况下使用的能量,或者可以在快速释放时提供大的力。

抵抗一个旋转物体使其速度发生变化的办法是改变它的惯性矩。这个性质取决于对旋转轴的材料的处置上。惯性矩是与物体的每个构件的重量和它们到旋转轴的距离的平方获得的乘积成正比。普通几何形状物体的惯性矩可以在手册中得到;对于非普通的形状,它们可以由整体的积分或者通过经验来确定。从惯性矩的性质可知,一个飞轮的材质在尽可能离旋转轴远的地方集中是最有效的。因此最好的飞轮有一个通过轮辐或圆盘连接到中心轮毂重的轮缘。

一个飞轮的运行情况完全取决于扭矩或作用在它身上的转动力。如果一个顺时针的扭矩作用在一个固定的飞轮一段时间,这个飞轮将获得一个顺时针角度方向的速度,它与平均扭矩乘以时间段的积成正比,与飞轮的惯性矩成反比。如果一个旋转飞轮受到与它旋转方向相同的一个扭矩作用,它的速度将提升;反之,速度将下降。飞轮的惯性矩越大,由一个给定的扭矩引起的速度变化将越小。如果没有扭矩作用在飞轮上,它的速度将不会改变。

在一个往复式发动机的每个旋转期间作用在曲柄轴上的扭矩都会变化。这种变化是由于在汽缸中的蒸汽或气压的不均匀性和连杆(将活塞压力转变为曲柄轴扭矩)与曲柄轴之间的变化的夹角造成的。当曲柄和连杆是共线的,这时将没有扭矩传递给曲柄,每次旋转这种情况会发生两次。在发动机上飞轮的一个附带的功能是带领曲柄轴经过这些死点位置。

所有的旋转机械都构件都具有惯性矩和像飞轮一样都会对扭矩变化作出反应。这些构件启动、暂停或速度变化所需要的扭矩被称之为惯性扭矩或惯性载荷。惯性载荷存在于所有机械中,当机械启动时它们的存在尤其明显。

飞轮在间歇地传递机械功的机械上是特别有用的。例如,在冲床上,在活塞的下行冲程期间冲压或成型金属盘所需的大的力才会发生。在下行冲程的剩余时间,整个上行冲程和冲程之间的时段,机器是空转的,来自驱动马达的所需的动力是很低的。使用一个具有传递足够大的扭矩去创造冲孔成型所需的大的力的驱动马达是不经济的。飞轮作用于储存在机器空转时由低动力马达造成的能量和在下行冲程做工部分释放部分能量。

在1880年代,一个快速旋转的飞轮被用作鱼雷推动系统的动力源;据报道,在450米的距离将获得24海里/时的速度。在飞机上,直径25厘米,转速52000转/分钟的飞轮有足够的能量去升起和降下起落架。这个飞轮储能系统重90千克,低于完成相同功能的液压系统。在公交运输方面的一个近来(1970年)的应用是在无轨电车上使用飞轮的提议。新型的高密度的钢轮,重300千克,转速为每分钟20000转,它将允许电车离开电线行驶在临近十公里的区域内。在飞轮上获得高密度储能能力的关键在于由材料可以带动的旋转引起的离心应力的大小。相同的材料,平的圆盘可以比轮缘形的轮子多储能百分之50,而锥形的等压力盘可以比轮缘形的轮子多储能百分之100。

第八单元 材料的热处理

热处理是在固态下加热和冷却材料来改变它的的物理性质的工艺。根据所使用的工序,钢可以被硬化来抵抗切割运动和磨损,或者它可以被软化来进行进一步加工。结合适当的热处理,可以消除内部应力,细化晶粒,增加韧性,或生产一个韧性的内部和硬的表面的材料。直到热处理之前,在机械车间制造的大部分产物只有很少的价值或没有价值。热处理不仅可以用于钢上面,也可以用在许多非铁金属上面,例如铝,铜和黄铜。钢热处理的工序包括硬化淬火,回火,退火和表面淬火。

在许多人处理工艺上,加热的速度是重要的。热度以一定的速率从钢的外部传导到内部。如果钢加热太快,外部将会比内部更热,不会得到均匀的结构。如果工件在形状上是不规则的,为了消除变形和裂纹,缓慢的加热速度是更加必要的。工件越重,为了达到均匀的结果,加热时间必须更久。尽管已经达到了正确的温度,工件也应该保持在这个温度相当一段时间来使它最厚的截面达到相同的温度。

1硬化

硬化是一个加热和冷却的过程来增加它的硬度和拉伸强度,降低延展性,和得到一个良好的晶粒结构。这工序包括在温度的临界点加热金属,随后快速冷却。随着金属被加热,铁和碳之间发生物理和化学的改变。这个临界点或临界温度是钢具有最理想特性的点。当钢达到在1400到1600华氏度间的某个温度,如果它被快速冷却,这个变化对制出硬,又强的材料是理想的。如果金属缓慢冷却,它将会变回原本的状态。通过把热的金属投入水,油或盐水中(淬火),可以得到所想要的特性。金属对比之前是非常强和硬的和有更少的延展性。

2回火

已经通过快速淬火硬化的钢是脆的和不适合于大部分用途。通过回火,硬度和脆性将减少到耐用条件所需要的点。随着这些性质减少,钢的抗拉强度也会减小,而在延展性和韧性会增加。这个工艺包括了淬硬钢再加热到低于临界范围的某个温度,随后以任何速度冷却。虽然这个过程软化了金属,但它完全不同于退火,在这个过程中回火有助于对物理性质的精细控制,和在大部分过程中,回火不会把金属软化到退火将达到的程度。最后从硬化金属完全回火所得到的结构被称为回火马氏体。

因为硬化金属的主要成分马氏体的不稳定性,所以回火是合理的。从300到400华氏度的低温不会造成硬度降低,它主要用于消除内部应变。随着回火温度的增高,马氏体的分解将以更快的速度发生,和在大约600华氏度,变成被称为回火马氏体的结构是非常快的。

回火工艺可以被描述成沉淀和结块,或渗碳体聚结的工艺。大量渗碳体的沉淀是在600华氏度,这会产生硬度降低。温度升高会造成碳化物的聚结,而硬度会继续降低。

3退火

退火的主要目的是软化硬的钢以致使它可以被机加工和冷加工。通常这是通过加热金属到稍稍在形成奥氏体的临界温度之上,并保持这个温度直到工件的温度处处相同,和那时以一个缓慢的可控速度冷却以致使工件的表面温度和中心温度近似相等来完成的。这个过程被称为完全退火,因为它消除了之前结构的所有的痕迹,提纯了结晶结构,和软化了金属。退火也消除了以前在金属产生的内部应力。

当硬化的金属二次加热到临界范围之上,组织将变回奥氏体,和缓慢冷却,那时将提供足够的时间完成奥氏体到更软的结构的转变。对于亚共析钢,这些结构是珠光体和铁素体。通过参考平衡态图标,可以注意到过共析钢退火温度是更低的,稍稍在A线之上。没有理由去加热到A线之上,因为在这个点硬的组织渗碳体开始析出。通过加热到更低的临界范围之上和缓慢冷却,所有的马氏体会转变成珠光体。在钢里面任何自由的渗碳体都不收这些处理的影响。

第九单元 材料的选择与机械零件的强度

1材料的选择

这些年来,工程材料的选择已经显得非常重要。此外,选择过程应该是一个对材料的连续不断的重新评价过程。新材料不断出现,而一些原有的材料的可以被利用的数量可能会减少。环境污染,材料的回收利用.工人的健康及安全等方面的关心经常会对材料选择附加新的限制条件。为了减轻重量或者节约能源,可能会要求使用不同的材料,来自国内和国际的竞争.对产品维修方便性要求的提高和顾客的反馈等方面的压力。此外,材料与材料加工之间的相互依赖关系已经被人们认识得更清楚,新的加工方法的出现通常会促使人们对被加工材料进行重新评价。因此,为了能在合理的成本和确保质量的前提下获得满意的结果,设计工程师和制造工程师都必须认真仔细地选择,确定和使用材料。

制造任何产品的第一步工作都是设计,设计通常可以分为几个明确的阶段,(a)总体设计b)功能设计c)生产设计。在总体设计阶段,设计者着重考虑产品应该具有的功能。通常要设想和考虑几个方案,然后决定这种想法是否可行;如果可行,则应该对其中一个或几个方案作进一步的改进,在此阶段,关于材料选择唯一要考虑的问题是:是否有性能符合要求的材料可供选用,如果没有的话,是否有较大的把握在成本和时间都允许的限度内研制出一种新材料。

在功能设计或工程设计阶段,要做出一个切实可行的设计,在这个阶段要绘制出和相当完整的图纸,选择并确定各种零件的材料,通常要制造出样机或者实物模型,并对其进行试验,评价产品的功能,可靠性,外观和适用性等,虽然这种试验可能会表明,在产品进入到生产阶段之间,应该更换某些材料,但是,绝对不能将这一点作为不认真选择材料的借口,应该结合产品的功能,认真仔细地考虑产品外观,成本和可靠性。一个很有成就的公司在制造所有样机时,所选用的材料应该和其在生产中使用的材料相同,并尽可能使用同样的制造技术,这样做对公司是很有的。功能完备的样机如果不能根据预期的销售量经济地制造出来,或者是样机与正式生产的装置在质量和可靠性方面有很大不同,则这种样机就没有多大的价值。设计工程师最好能在这一阶段全部完成材料的分析,选择和和确定工作,而不是将其留到生产设计阶段去做。因为,在生产设计阶段材料的更换是由其他人进行的,这些人对产品的所有功能的了解可能不如设计工程师。

在生产设计阶段中,与材料有关的主要问题是应该把材料完全确定下来,使它与现有的设备相一对一,能够利用现有设备经济地进行加工,材料的数量能够比较容易地保证供应。

在制造过程中,不可避免地会出现对使用中的材料作一些更改的情况,经验表明,可以采用某些理家材料作为替代品。然而,在大多数情况下,在进行生产以后改换材料要比在开始生产前改换材料所花费的代价要高在生产设计阶段做好材料选择工作,可以避免大多数的这种材料更换情况,在生产制造开始后出现了可供使用的新材料的。当然,这些新核燃料可能降低成本,改进产品性能。但是,必须对新材料进行认真的平价,以倚其所有性能都被人们所了解。应当时刻牢记,新材料的性能和可靠性很少能像现有材料那样为人们所了解大部分的产品失效和产品责任事故案件是由于在选用新材料作为替代材料之前,没有真正了解它们的长期使用性能而引起的。

产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序,在材料选择过程中,五个最觉的问题为:(A)不了解或者未能利用关于材料应用方面的最新和最好的信息资料(B)未能和考虑产品可以的合理用途,如有可能,设计人员还应进一步和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的控告生产大家,并且赢得判决(C)所使用材料的数据不全或者有些数据不确定,尤其是当具长期性能数据是如此的时候(D)质量控制方法不适当和经验证明由一些完全 不称职的人员选择材料。

通过对上违一个问题的分析,可以得出这些问题是没有充分理由存在的结论,对这些问题的分析和研究以给避免这些问题的指明方向。以往采用最好的材料选择办法也不能避免发生产品责任诉讼,设计人员工业界按照适当的程序进行最佳选择,可以大减少诉讼的数量。

因为所生产的压痕尺寸的函数,这表明由于硬度是非破坏性试验,而且不需要专门的,因而硬度是一个容易测量的性能,通常可以直接在实际的机械零件上进行硬度试验。

第十单元

车床及其他机床

车床

1.车床用于旋转工件,并朝着生成所需要加工的表面方向进给切削刀具。2.最常见的车床形式是图10-1a中以图解方式显示的六角车床,它由一个支撑着床头箱,拖板和六角刀架的水平床身组成,工件夹在卡盘和夹头中,或者安装在机床主轴端部的花盘上。3.工件的旋转由一台电机通过一个齿轮系驱动主轴提供。4.切削刀具安装在横向滑板及六角刀架上,在横向滑板上的刀具在平行于工件旋转轴线方向或在工件旋转轴线的法线方向驱动或给进。六角刀架可以通过分度头将各种刀具定位并可以沿车床的床身方向驱动或给进。

5.现代六角车床由计算机控制所有工件和刀具运动,这些车床称为计算机数字控制(CNC)车床,而且刀具或横向滑板可以在水平面上的任一方向进给以使工件上产生所需的廓形。6.图10-1b说明的是通过工件旋转以及托板沿车床床身运动所产生的柱面,这一工序称为外圆车削。

7.车床设定的进给运动也就是工件每转一圈刀具移动的距离,机床的进给量f的定义是:刀具或工件每一行程或每转一圈,刀具相对于工件在进给运动的方向的位移,这样,为了车削长度为Lw的柱面,工件的转数是Lw/f,则加工时间Tm由下式给出的Tm=Lw/(fnw),式中nw是工件的旋转速度。

8.在此应当强调t,是刀具沿工件走一次(一次切削)的时间,但是,这一次通过并不意味着加工工序的完成,如果首次切削用于以高进给来去除大量材料(粗切),在操作过程中产生的力将有可能引起机床结构的明显挠曲,引起的精度损失可能需要以小进给量进一步加工(精切),使工件直径在规定的界限内并提供光滑的加工表面。由于这些原因,在粗切时常被加工成稍大一点的尺寸,留下少量材料在随后的精加工中去除。立式镗床

9.水平主轴的车床不适于车削沉重的大直径工件,否则机床主轴的轴线将不得不升高到机床操作工够不到固定刀具或固定工件的装置的高度,此外,在垂直的花盘上安装零件或在顶尖之间支撑零件会有困难,因此使用了一种与车窗相同的工作原理,但具有垂直轴线的机床并称为立式镗床(图10-2),这种机床像车床那样旋转工作并向刀具施加连续的,线性的进给运动。

10.(立式镗床)使用单刃刀具,而且进行的作业一般限于车削,端面车削和镗削。

11.便于定位大型工件的水平工件台由一个带有径向T型槽的,起夹持作用的旋转工作台构成

卧式镗床

12,这里介绍的另一种实用单刃刀具并具有旋转主运动的机床是卧式镗床(图10-3),这种机床主要用于沉重的圆柱形工件,在这种工件内有一个待加工的内圆柱形表面,一般讲,在描述机床时,使用卧式或立式来讲。两个词指的是提供主运动的机床轴(主轴)的姿态,可见,在卧式镗床中,主轴是水平的。

13,此类机床的主要特征是,工件在加工过程中保持静止,所有造型运动都施加在刀具上。最常见的加工工序是镗削,如图所示,镗削是通过旋转刀具来实现的,刀具安装在与主轴相连接的镗杆上,然后沿旋转线进给主轴,镗杆和刀具的进给是用于移动工件的机床运动只是用来给工件定位,在进行加工时一般不使用,端面车削工序可以通过使用专门刀具架(图10-4),在其旋转时径向进给刀具来实现。

此外先前推导的镗削和端车加工时间和金属切削率的公式仍将适用。刨床

14,刨床适用于在非常大的部件上加工平面,在这种机床(图10-5)上,线性运动作用在工件上,二刀具则垂直于该运动的方向进给,主运动通常利用变速马达通过齿条与齿轮传动来实现,而且进给运动是断续的工序用提供的T型槽固定在机床的工作台上,加工时间tm和金属切削率zw可以按下面公式估算:tm=bw/(fnr),式中bw是待加工面得宽度。Nr是切削行程的频率,f是进给量,金属切削率zw由下式给出zw=fapv,式中v是切削速度,ap是切口深度(去除材料层的深度)

第十一单元基本的加工工序——切削、镗削、和磨削

基本的加工工序

机床是从早期的埃及人的脚踏动力车床和约翰。威尔金森的镗床发展而来,它们用于为工件和刀具两者提供坚固的支撑并且可以精确控制它们的相对位置和相对速度。基本上讲,在金属切削中一个磨尖的楔形工具以紧凑变形的切削形式从有韧性的工件表面去除一条很窄的金属。切削是一种废弃的产品,与其他工件相比它相当短但是比未切削的部分厚度有相对的增加。机器表面的几何形状取决于刀具的形状和加工操作过程中刀具的路径。

大多数加工工序产出不同几何形状的部件。如果一个粗糙的圆柱形工件绕中心轴旋转而且刀具穿破工件表面并与旋转中心平行的方向前几,就会产生一个旋转面,这道工序叫做车削。如果以类似的方式加工一根空心管的内部,则这道工序叫镗削。制造一个直径均匀变化的锥形外表面叫做锥体车削。短的锥面或柱面也可以仿形车削。如果刀具尖端以一条半径可变的路径前进,就可以制造出像保龄球杆那种仿形表面。如果工件足够短(约1英寸)而且支撑具有足够的刚性,仿形表面可以通过进给一个垂直于旋转轴的仿形刀具来制造。

常常需要的是平坦的或平的表面。它们可以通过径向车削或端面车削来完成,期中刀具尖端沿垂直于旋转轴的方向运动。在其他情况下,更方便的是固定工件不动;以一系列直线式切削的方式使刀具横过工件作往复运动,在每次切削行程前具有一定横向进给量。这一工序叫做刨削,是在牛头刨床上进行的。对于大一些的工件,很容易保持刀具固定不动,而像龙门刨削那样在其厦门拉动工件。仿形面可以通过使用仿形刀具来制造。

在每次往复时进给刀具。也可以使用多刃刀具。钻削使用两刃刀具,孔深可达钻头直径的5~10倍。不管是钻头转动还是工件旋转,切削刃与工件间的相对运动是一个重要的因素。在铣削操作中,有许多切削刃的旋转铣刀与工件相接合,这种工件相对铣刀运动缓慢。根据铣刀的几何形状和进给的方式,可以加工出平面和仿形面。可以使用水平或垂直旋转轴,工件可以沿三个坐标方向中的任意一个进给。

基本的机床

机床用于以切削的形式从韧性材料上去除金属来加工特殊几何形状和精密尺寸的部件。切屑是废品,其变化形状从像钢这样的韧性材料的长的连续带状到铸铁形成的易于处理、彻底断掉的切屑,就处理的观点来讲,不想要长的连续带状屑。机床完成5种基本的金属切削工艺:车削,刨削,钻削,铣削和磨削。其他所有金属切削工艺都是这5种基本工艺的变形。因此,仅有4种使用专用可控几何形状的刀具的基本机床:

1、车床

2、刨床

3、钻床

4、磨床。例如:镗削是内部车削:铰削、攻丝和平底锪孔是修改已钻好的孔,与钻削有关;滚齿与切齿基本上是铣削作业;弓锯削和拉削是刨削和研磨的一种形式;而研磨、超精加工、抛光和磨光则是磨削和研磨切削加工作业的各种变化形式。磨削工艺形成碎屑,但是磨粒的几何形状不可控制。

不同加工工艺切削材料的量和速度可能很大,如在大型车削作业或极小,如研磨或超精加工作业,只有表面高出的点被去除。

机床完成3种主要功能:

1、刚性支撑工件或工件的夹具以及切削刀具;

2、提供工件与切削工具间的相对 运动;

3、提供了一定范围的进给和速度,通常每种情况有4~32种选择。加工中的速度和进给

切削速度、进给和深度是经济加工的3个主要变量,其他变量还有工件和刀具材料,冷却剂以及切削刀具的几何形状,金属切削的速率和加工所需的功率就取决于这些变量。

切削深度,进给和切削速率是在任何金属切削作业中都必须建立的机器设置,它们都会影响切削力,功率和对金属切削的速率。切削的深度是唱针进入唱片的量或者是槽的深度。切削速度由任意时刻唱片表面和对于拾音器臂内的唱针的速度来表示进给由唱针每圈径向向内的前进量或者把两个相邻槽的位置间来表示可以通过把它们与留声机的唱针和唱片相比较给出其定义。

第十二单元 计算机辅助设计

好的工程设计需要保证一个部件或机构正确的运转和持续相当长的一段时间。此外,在设计过程的功能性因素包含重量,强度,热性能,运动学和动力学。

第十五单元

柔性制造、一、柔性制造的定义

制造的演变用图表示为一个连续统一体,如图15-1所示。如此图显示的那样,制造的过程和系统处在把手工操作到最后实现全盟的集成制造的过度状态。计算机集成制造的前一步叫做柔性制造。

柔性在现代制造环境中是一个重要的特征。它意味着一个制造系统是用途多且适应性强,同时又能进行产量相对较大的制造。柔性制造系统是多用途的,这是因为它能制造多种多样的部件。它适应性强,因为它能很快地加以改变来制造完全不同的另一种部件。这种柔性在竞争激烈的国际市场上可能成败有别。

这是一个平衡的问题。独立的计算机数字控制(nc)机床有着高度的柔性,但是只能处理批量相对较小的制造。正相反,系列连锁生产线能进行批量较大的制造,但都不很灵活。柔性制造试图运用工业技术在灵活的与制造运行间达到最佳的平衡。这些工业技术包括自动化的材料、处理,成组技术及计算机和分布数字控制。

柔性制造系统(FMS)是一个独立的机床或一组机床服务于一个自动材料处理系统。它是由计算机控制的而且有对刀具处理的能力。由于他有刀具处理能力并受计算机控制,这样的系统可以不断的重新配置来制造更加多样的部件,这就是它被称作柔性制造系统的原因。

一个制造系统要成为柔性制造系统必须具备的要素有:

1、计算机控制

2、自动处理材料能力

3、刀具处理能力

柔性制造向全面集成化制造的目标迈进了重要的一部。它实现了自动制造过程的集成化。在柔性制造中,自动化的制造机器(如车床、铣床、钻床)和自动化材料处理系统之间,通过计算机网络进行即时的沟通。这是小规模的集成,图15-2是柔性制造系统的一个样例。

二、柔性制造的概况

通过综合几个自动化的制造概念,柔性制造系统向全面集成化的目标迈出了重要的一步,这些观念是:

1、独立机床的计算机数字控制

2、制造系统的分布式数字控制

3、自动化的材料处理系统

4、成组技术,零件族

当这些自动化工艺,机器和观念合成到一个集成的系统时,就产生柔性制造系统。在柔性制造系统中,和计算机起了重要作用,当然大的劳动量比手工操作的制造系统要小得很多。然而,人仍然在柔性制造系统的操作中起了至关重要的作用,人的任务包括几个方面:

1、设备故检、维护和修理

2、刀具的变换和设置

3、安装和拆卸系统

4、数据输入

5、部件程序的变换

6、程序的开发

柔性制造系统设备像所有制造设备一样,必须有人监管以免出现失常、机器程序错误,以及故障。当发现问题时检修人员必须确定问题的根源,然后给出正确的措施,人还要采取指定的措施来修理运行不正常的机器。甚至当所有系统正常运转时,定期的维护也是必要的。

操作人员还要根据需要设置机床,换刀具,以及重新配置系统。柔性制造系统的刀具处理能力消弱了,但并没有消除,在刀具变换和设置上仍需要人力。在装卸柔性制造系统时也是这样,一旦原材料被送到自动化材料处理系统上,它就会以规定的方式,在系统中移动。然而,初装到材料处理系统仍然是由人员完成的,成品的拆卸也是同样。

与计算机的交流仍需要人力完成,人开发零件程序,通过计算机控制柔性制造系统。当重新配置FMS制造另一种类型零件时,他们还在必要的时候变换程序。人在柔性制造系统中劳动力密集型的成分越来越少,但仍然是很重要的。

柔性制造系统中的各层控制都是由计算机来完成的。在柔性制造系统中独立的机床是由CNC来控制点。整个的系统是由DNC来控制的。自动化的材料处理系统是计算机来控制的,其他的功能如数据收集、系统监控、刀具控制、运输控制也是计算机控制的,人机交互是柔性制造系统中的关键。

二、柔性制造的历史发展

柔性制造产生于20世纪60年代中期,当时英国莫林斯有限公司开发了24号系统。24号系统是一个真正的FMS。然而,它从一开始就注定是失败的,因为自动化、集成化和计算机控制技术还没有发展到能够恰好支持这一系统的程度。第一个FMS是超前的开发。因此,最终因不能工作而被放弃。

在20世纪60年代和70年代的其余时间里,柔性制造仍然是一个学术观念。然而,随着复杂计算机控制技术在20世纪70年代末和80年代初的出现,柔性制造便成为可能。在美国最初的主要用户是汽车、卡车和拖拉机制造商。

四、柔性制造的理由 在制造中,生产率和柔性之间经常存在协调一致的问题。在该领域的一端是具有高生产率却低柔性的连续生产线,在该领域的另一端是能提供最大柔性的独立的计算机数字控制的机床,但它只能进行低生产率的制造。柔性制造处在此连续统一体的中间。在制造中总是需要一个系统,这个系统比单个机床能制造更大批量且用于更多制作过程,但仍保持其柔性。

连续生产线能以高生产率制造大量的零件。这条生产线需要大量的准备工作,但却能制造出大量的相同的零件。它的主要缺点是即使一个部件在设计上有小的改变都能造成整个生产线的停产和建构改变。这是一个致命的弱点,因为这意味着没有高成本,耗时停工和变化连锁生产线结构是不能制造出不同的零件的,即使是来自同一个零件族。

传统上计算机数字控制机床是用来制造少量在设计上稍有不同的零件。这种机床很适合这一用途。因为它们能迅速地改变程序来适应设计上小的或者更大的改变。然而,作为独立的机床它们不能大量地或高生产率地制造零件。

柔性制造系统比独立的计算机数控机床具有更大的生产能力和更高的生产率。它们在柔性方面比不上计算机数字控制机床,但它们却相差不多。柔性制造的中间性能的特殊意义在于大多数制造要求中等量的生产率来制造中等及的产品。同时有足够的柔性以快速改变结构来制造另一个零件或产品。柔性制造填补了制造中长期存在的空白。

柔性制造以其基本能力给制造者提供了许多有点:

1、在一个零件族内具有柔性

2、随意进给零件

3、同时制造不同的零件

篇2:化工机械专业英语翻译

However,while a postmortem yields good information,it is better to avoid the process altogether by specifying the bearing correctly in The first place.To do this,it is useful to review the manufacturers sizing guidelines and operating characteristics for the selected bearing.Equally critical is a study of requirements for noise, torque, and runout, as well as possible exposure to contaminants, hostile liquids, and temperature extremes.This can provide further clues as to whether a bearing is right for a job.1 Why bearings fail About 40% of ball bearing failures are caused by contamination from dust, dirt, shavings, and corrosion.Contamination also causes torque and noise problems, and is often the result of improper handling or the application environment.Fortunately, a bearing failure caused by environment or handling contamination is preventable,and a simple visual examination can easily identify the cause.

Conducting a postmortem il1ustrates what to look for on a failed or failing bearing.Then,understanding the mechanism behind the failure, such as brinelling or fatigue, helps eliminate the source of the problem.Brinelling is one type of bearing failure easily avoided by proper handing and assembly.It is characterized by indentations in the bearing raceway caused by shock loading-such as when a bearing is dropped-or incorrect assembly.Brinelling usually occurs when loads exceed the material yield point(350,000 psi in SAE 52100 chrome steel).It may also be caused by improper assembly, Which places a load across the races.Raceway dents also produce noise,vibration,and increased torque.A similar defect is a pattern of elliptical dents caused by balls vibrating between raceways while the bearing is not turning.This problem is called false brinelling.It occurs on equipment in transit or that vibrates when not in operation.In addition, debris created by false brinelling acts like an abrasive, further contaminating the bearing.Unlike brinelling, false binelling is often indicated by a reddish color from fretting corrosion in the lubricant.False brinelling is prevented by eliminating vibration sources and keeping the bearing well lubricated.Isolation pads on the equipment or a separate foundation may be required to reduce

running torque,stiffness,nonrepetitive runout,and radial and axial play.In some applications, these items are so critical that specifying an ABEC level alone is not sufficient.

Torque requirements are determined by the lubricant,retainer,raceway quality(roundness cross curvature and surface finish),and whether seals or shields are used.Lubricant viscosity must be selected carefully because inappropriate lubricant,especially in miniature bearings,causes excessive torque.Also,different lubricants have varying noise characteristics that should be matched to the application.For example,greases produce more noise than oil.

Nonrepetitive runout(NRR)occurs during rotation as a random eccentricity between the inner and outer races,much like a cam action.NRR can be caused by retainer tolerance or eccentricities of the raceways and balls.Unlike repetitive runout, no compensation can be made for NRR.NRR is reflected in the cost of the bearing.It is common in the industry to provide different bearing types and grades for specific applications.For example,a bearing with an NRR of less than 0.3um is used when minimal runout is needed,such as in disk—drive spindle motors.Similarly,machine—tool spindles tolerate only minimal deflections to maintain precision cuts.Consequently, bearings are manufactured with low NRR just for machine-tool applications.

Contamination is unavoidable in many industrial products,and shields and seals are commonly used to protect bearings from dust and dirt.However,a perfect bearing seal is not possible because of the movement between inner and outer races.Consequently,lubrication migration and contamination are always problems.

Once a bearing is contaminated, its lubricant deteriorates and operation becomes noisier.If it overheats,the bearing can seize.At the very least,contamination causes wear as it works between balls and the raceway,becoming imbedded in the races and acting as an abrasive between metal surfaces.Fending off dirt with seals and shields illustrates some methods for controlling contamination.

Noise is as an indicator of bearing quality.Various noise grades have been developed to classify bearing performance capabilities.

Noise analysis is done with an Anderonmeter, which is used for quality control in bearing production and also when failed bearings are returned for analysis.A transducer is attached to the outer ring and the inner race is turned at 1,800rpm on an air spindle.Noise is measured in andirons, which represent ball displacement in μm/rad.With experience, inspectors can identify the smallest flaw from their sound.Dust, for example, makes an irregular crackling.Ball scratches make a consistent popping and are the most difficult to identify.Inner-race damage is normally a constant high-pitched noise, while a damaged outer race makes an intermittent sound as it rotates.如何延长轴承寿命 轴承失效的原因

在球轴承的失效中约有40%是由灰尘、脏物、碎屑的污染以及腐蚀造成的。污染通常是由不正确的使用和不良的使用环境造成的,它还会引起扭矩和噪声的问题。由环境和污染所产生的轴承失效是可以预防的,而且通过简单的肉眼观察是可以确定产生这类失效的原因。

通过失效后的分析可以得知对已经失效的或将要失效的轴承应该在哪些方面进行查看。弄清诸如剥蚀和疲劳破坏一类失效的机理,有助于消除问题的根源。

只要使用和安装合理,轴承的剥蚀是容易避免的。剥蚀的特征是在轴承圈滚道上留有由冲击载荷或不正确的安装产生的压痕。剥蚀通常是在载荷超过材料屈服极限时发生的。如果安装不正确从而使某一载荷横穿轴承圈也会产生剥蚀。轴承圈上的压坑还会产生噪声、振动和附加扭矩。

类似的一种缺陷是当轴承不旋转时由于滚珠在轴承圈间振动而产生的椭圆形压痕。这种破坏称为低荷振蚀。这种破坏在运输中的设备和不工作时仍振动的设备中都会产生。此外,低荷振蚀产生的碎屑的作用就象磨粒一样,会进一步损害轴承。与剥蚀不同,低荷振蚀的特征通常是由于微振磨损腐蚀在润滑剂中会产生淡红色。

消除振动源并保持良好的轴承润滑可以防止低荷振蚀。给设备加隔离垫或对底座进行隔离可以减轻环境的振动。另外在轴承上加一个较小的预载荷不仅有助于滚珠和轴承圈保持紧密的接触,并且对防止在设备运输中产生的低荷振蚀也有帮助。

造成轴承卡住的原因是缺少内隙、润滑不当和载荷过大。在卡住之前,过大的摩擦和热量使轴承钢软化。过热的轴承通常会改变颜色,一般会变成蓝黑色或淡黄色。摩擦还会使保持架受力,这会破坏支承架,并加速轴承的失效。

材料过早出现疲劳破坏是由重载后过大的预载引起的。如果这些条件不可避免,就应仔细计算轴承寿命,以制定一个维护计划。

另一个解决办法是更换材料。若标准的轴承材料不能保证足够的轴承寿命,就应当采用特殊的材料。另外,如果这个问题是由于载荷过大造成的,就应该采用抗载能力更强或其他结构的轴承。

蠕动不象过早疲劳那样普遍。轴承的蠕动是由于轴和内圈之间的间隙过大造成的。蠕动的害处很大,它不仅损害轴承,也破坏其他零件。

篇3:化工机械专业英语翻译

1 化工专业英语的翻译特点

1.1 语态特点

化工专业英语通常使用被动语态, 在日常工作和科学研究过程中被动语态的使用频率最高, 最为常见的应用句型为“It…”。因为被动语态在英语表达过程中通常将最为想要表达的信息和语言放置在句首位置, 这样利于抓住所要表达信息中的重点内容。对于化工专业的科技人员而言, 通常关注活动、行为以及实施等内容, 对于与事件发生者之间的关系并未着重关注, 因此, 工作人员可以在强调句型中快速获取关键信息。另外一个方面, 被动语态的英语翻译方法更加符合化工专业的语言特点, 不仅能够将所要描述的内容更加规范化和客观化, 还能够在一定程度上减少主观意向的错误率。此外, 一般现在时态在化工专业英语的翻译过程中也较为普遍。化工专业英语的使用过程中, 通常使用一般现在时态, 主要是由于化工专业所涉及和表达内容并没有准确的时间限制, 一般时态主要用于客观事物的表达和陈述, 并未涉及到时态的变化。因此, 使用一般时态能够进一步体现出化工专业的客观性, 通常被广泛应用于化工英语的翻译过程中。此外, 在实际的翻译过程中, 需要尊重原文含义的表达, 使用准确而又通俗的汉语语言将专业的化学英语翻译出来, 因此, 平时对于汉语的结构和应用应同样重视, 避免由于汉语表达有误出现翻译不准确的情况。

1.2 专业性强

化工英语是一门专业性和应用性较强的学科, 学习重点主要侧重于阅读和翻译, 因此, 掌握更多的专业术语和化工专业词汇对于翻译工作十分重要。英语用于特殊专业的过程中, 每一专业所对应的英语语言和专业术语完全不同, 充分体现出不同专业的专业性和科学性。化工专业同样如此, 例如:吸附塔为Adsorbent chamber、抽余液塔和抽出液塔为Raffi nate and extract columns、煤气化为Coal gasifi cation、贫溶液为Lean solution。除了上述的专业术语外, 化工专业还存在一些缩略词, 同样作为化工专业的特点之一, 如:CO2为二氧化碳、CCR为连续催化重整、CAP为醋酸-丙酸纤维素等。化工专业英语与其他学科的英语语言同样, 在行为上具有一定的连贯、清晰和简单等语言特点, 不宜使用过于复杂的语句和手法, 主要遵循简单明了以及结构严密的翻译原则。

2 化工专业英语的翻译技巧

2.1 句子的翻译技巧

从化工专业英语特点得出, 被动语态在翻译过程中使用较为频繁, 早期统计结果表明:被动语态的使用比重占据英语专业的30%左右, 因此, 被动语态在化工专业的翻译过程中占据重要作用。被动语句在翻译的过程中仍然翻译为汉语语言之中的被动语句, 由“给、使、让”等汉语语言来表达英语被动语态中的助词含义。除此之外, 一些化工专业英语语句的被动语句被翻译为汉语语言之中的主动句。另外, 长句的翻译是综合利用语言灵活性的翻译过程, 汉语和英语本身存在巨大的语言差距, 汉语较为松散, 英语则较为紧凑、逻辑思维较为严谨, 因此, 在翻译的过程中, 可以根据翻译句型的长短特点, 采取顺译、倒译等方法。

2.2 专业术语的翻译技巧

化工科学技术在实际的翻译过程中, 通常采取以下翻译方式: (1) 音译法。英译翻译的方法通常应用于各类专业的翻译领域中, 特别是对于专业性较强的化工专业, 伴随科学技术的逐渐发展和先进技术的进步, 全新的专业术语脱颖而出, 音译法成为目前翻译过程中最为常见的翻译手段之一, 被广泛应用于翻译工作中, 指的是翻译人员根据单词的英文发音来对生涩的词汇进行与发音相似的翻译。例如:FOSS precision analysis instruments are widely used in the fi eld of chemical analysis and testing, 翻译为:福斯精密分析仪器广泛应用于化工分析测试领域; (2) 意译法。在化工专业的翻译过程中, 科学技术工作人员通过对原有语言理解的基础上, 将全新的专业词汇进行转换和意译。意译法作为化工专业翻译过程中最为常见和普遍的一种翻译手段, 不仅能够使得生涩的专业性词汇和技术语言翻译更加清晰和精准, 并利于全新词汇的记忆和理解。例如:The Holcosperse product line is available in several formats for the dispersion of agglomerating additives.Holcosperse allows for the reduction, and even elimination, of bridging, caking and compacting problems, 翻译为:Holcosperse产品系列中包含了多种形式, 均可以作为分散附聚添加剂。Holcosperse可以减少, 甚至消除桥接, 结块和压缩的问题; (3) 缩写法。化工专业的翻译过程中, 通常会遇到一些较为常见的英语词汇, 全称较于复杂和冗长, 并不利于记忆, 因此, 采取缩写的方法来代替较为复杂的词汇, 不仅利于记忆更加快速和便捷, 还能够保证翻译工作顺利进行。例如:AE is a nonionic surfactant in the fastest development, the largest amount of the species, this type of surfactant is prepared by the addition of fatty alcohol and ethylene oxide, 翻译为:脂肪醇聚氧乙烯醚是非离子表面活性剂中发展最快、用量最大的品种, 这种类型的表面活性剂是用脂肪醇与环氧乙烷通过加成反应而制得的。

3 结束语

综上所述, 化工专业英语的翻译过程具有复杂化和多变化的特点, 并没有固定的翻译模式, 因此, 在翻译过程中遵循基本的翻译原则以及常用的翻译标准和规范, 通过利用上述翻译规律能够顺利完成翻译工作, 进而提高专业英语的翻译准确性和有效性。

摘要:伴随国际贸易往来的逐渐加深和普遍, 化工专业的英语翻译工作起着越来越重要的作用, 不仅影响着国际贸易往来, 还关系到中外在化工方面的学术交流。同时, 伴随石化行业的迅速发展, 有时需要引进国外专利许可新建装置或对原有装置设备进行升级和改造, 化工相关的科学技术工作者需要详细了解化工专业英语的特点, 并熟练掌握其翻译技巧。通过对化工专业英语的特点进行详细分析, 探究了其翻译技巧。

关键词:化工,专业英语,特点,翻译技巧

参考文献

[1]冉明志.化工专业英语的特点与翻译技巧[J].前沿, 2012, (10) .

[2]吴霜.化工专业英语中定语从句的翻译技巧[J].科技信息, 2012, (35) .

篇4:机械专业英语实践性教学优化策略

关键词:机械专业;英语;实践性教学

一、高职机械专业英语实践教学现状

1.学生英语水平参差不齐

从生源质量的角度来分析,本科生和高职生之间存在一定的差异。高职学生的英语整体水平相对较低,其中,部分学生的英语水平甚至都达不到平均水平。因此,高职英语的教学内容如果超过了学生的实际学习能力,那么教学活动就很难顺利进行。由于各方面的原因,学生的学习方法上也会存在不同,这就对高职英语的教学活动产生不好的影响。

2.教师的教学方法过于单一

在高职英语教学中,学校的教学理念比较传统,这在很大程度上会对整体教育模式产生束缚。此外,受传统应试教育的影响,许多高职教师在英语教学过程中,采用讲解式的教学策略,对于学生主体地位不够重视。在实际的高职教学过程中,教师往往把自己作为教学的核心部分,并没有真正重视学生的反应,这一点对于学生学习能力的提升存在很大的阻碍。

3.英语考核方法不够科学

目前我国许多学校依然使用传统的教学考核评价体系,终结性测试重视课程内容的掌握,对于学生的语言应用能力则缺乏足够的重视。虽然全国高等学校英语等级考试可以对学生的英语水平进行一定的测试,但这种考查方式具有较大的局限性,难以将学习者的实际学习效果真正反映出来,并且过分注重卷面成绩,将会使学生变成考试机器,难以促进学生英语综合能力的提升。

二、机械专业英语实践性教学优化策略

1.及时转变教学理念

从某种意义上讲,在能力本位教育中所强调的是学生的主体作用,提升学生的自主学习能力。在这一教学理念中,教师的主要教学目标是培养学生的自主学习意识,提高学生的自主学习能力。从本质上来讲,只有激发学生的学习主动性,才能真正从传统教学模式中将学生与教师解放出来,为实践教学的顺利开展提供有利条件,并形成一种教学相长、共同进步的良好氛围。通过强化师生之间的沟通与交流,提升学生的英语运用能力。例如,在实际的课堂教学过程中,应当加强对学生的积极引导,使之能够主动提出问题,一方面,可以锻炼学生“说”的能力,另一方面,能够活跃课堂气氛。

2.培养学生学习兴趣

在实际的学习过程中,兴趣是最好的老师。对于高职学生来说,其往往因为自身基础差、底子薄,缺乏对英语的实际运用能力,难以真正高效地对单词有一个全面的掌握。所以,在实际的英语教学过程中,教师应当对相应的教学内容进行精心的组织安排,通过制订科学的措施,强化学生对该学科的学习兴趣。例如,教师可以组织英语演讲比赛、朗读比赛等活动,为学生创造一个运用英语进行交流的平台。

3.健全教学考核体系

要想有效提高学生的英语运用能力,教师要对教学考核体系加以优化与完善。在进行教学活动的最终评价时,教师不能够只注重考试成绩,要从全局出发,对学生的学习态度、实践效果等进行全面评价。就学生的考评而言,教师要充分重视学生的综合能力。此外,为了能够更好地展现学生的实际英语运用水平,应当引导其参与相应的社会测评考试,并通过测评,对学生的实际应用能力进行准确评价。需要特别注意的是,应采用一些过程性考核模式,对学生进行综合、客观的评价。

4.丰富课外活动内容

首先,就高职教学来说,其往往存在各种各样的比赛,因此,学生可以通过口语比赛的形式,进行口语的锻炼。此外,在学生完成相对专业的口语训练之后,教师可以对其进行充分引导,使之积极参与省市的口语比赛,这样不仅能够激发学生对于英语学习的兴趣,丰富学生的实践能力,还能够进一步提高学生的英语演说能力与自信。其次,除了参加比赛以外,学生可以积极参与校园英语广播台活动或英語角活动,自由地表达自己的想法,提高自己的口语交际能力。

三、结语

总而言之,在高职机械专业的英语教学过程中,对理论知识的学习和对英语语言的实际运用,是两个需要同时进行的关键性要素。完善与落实英语教学模式,可以充分调动学生的主动参与性,提高学生的学习兴趣,引导其积极参与各种实训活动,真正将英语的理论形式转化成应用模式;完善英语的考核制度,可以确保实践教学的顺利实施。

参考文献:

篇5:机械类专业英语部分翻译

力学概论

力学的基本概念:

力学是用来处理运动,时间和力的科学分析的分支,它由静力学和动力学组成。静力学研究静态系统的分析,这时,时间不是一个考虑的因素;动力学则是随时间变化的系统。力是通过相配合的表面传递到机器各个构件的。例如,从齿轮到轴或一个齿轮通过啮合齿传动到另一个齿轮或连杆通过轴承传到杠杆,从V带到滚轮或从凸轮到传动件。有许多理由都必须知道力的大小。力在边界及配合表面的分布必须要合理,其强度必须在构成表面的材料的工作极限内。例如,如果作用在套筒轴承上的力太大,将会把油膜挤出,并导致金属表面的胶合,过热和轴承过快失效,动力学的研究主要是确定李的大小、时间和位置。

下面将说明一下我们这方面的研究

力:我们最早的关于力的想法是源于我们对推、举和拉河中物体的需要。因此力是一个物体对另一个物体的作用。自觉对力的联系包括力作用的位置,方向和大小,这些称为力的特性。

物质:物质是一种材料或实物,如果它完全封闭则称为物体。

质量:牛顿吧质量定义为物体的数量,由体积和密度来衡量。这定义并不是很多人满意的,因为密度是单位体积的质量。通过猜想我们可以谅解牛顿,可能他并不认为那是个定义。然而,他已经认识到了一个事实,那就是所有的物体都具有不同于重量的内在性质。所以,尽管月球重量不同于地球重量,但一块月球上的岩石仍有特定不变的本质数量。这个恒定的本质数量或物质食粮就是岩石的质量。

国际单位制最大的有点事它对任何物体有且仅有一个单位。长度的单位为米,质量的单位为千克,力的单位为牛顿,时间的单位为秒等等。为了和这种特性保持一致,就要求一个给定的单位或词不能仅一个被认可的技术名称在二个物理量中使用。然而,习惯叫做“重量”的这个词已经在技术和非技术领域广泛使用,表示着物体所受的引力和其本身质量。

粒子:粒子就是指尺寸小到可以忽略的物体。

刚体:物体要么是弹性的,要么是塑性的,只要作用上力都会产生变形。当物体形变量很小时,通常将其假想为刚体,即没有变形的能力,作此假想以便简化分析。

可变形的物体,作为应力和应变是由将要分析的作用力所提供的,则刚体假说将不再适用。因此我们认为物体时可变形的。这种分析常称为弹性物体分析,兵并应用这附加的假说,即在力作用范围内,物体仍保持弹性。

牛顿定律,牛顿三大定律是:

牛顿第一定律:如果一对平衡力作用在一个质点上,那么这个质点仍将保持静止或匀速直线运动。

牛顿第二定律:如果作用在质点上的力不是平衡的,则该质点将经历一个加速度且加速度与合理大小成比例,沿合力方向。

牛顿第三定律:当一对质点相互作用,作用力与反作用力其大小相同,方向相反,作用在过二个质点的直线上。

2,力和力矩:

当一个物体从一个组成系统中聚集到一起,任意两物体间相互作用的力称为约束力。约束力使物体以特定的方式运动。作用在系统上的力称为作用力。

有的力在作用中并没有实际的物理接触。例如,电力磁力和引力。有许多,但不是大多数的力我们会涉及到。这些力是通过物理的或机械上的接触相互作用的。

力是个矢量,力的要素是:力的大小,方向和作用点。力的方向包括那条沿力的指向为方向的直线。因此力可能沿直线正向,也可能沿直线反向。二个大小相等,方向相反,作用不共线的合力。任意二个这种力作用在物体上将会形成一个力偶,力臂是作用线的垂直距离,作用和面是通过二个作用力的平面。

第三单元

简单机械

图3-1给出了直杠的三种布置情况,每个例子中F是支点;P是作用力,作用在b点上;W是载荷,作用在c点上,当杠杆处于平衡时,为P使杠杆绕f转动的趋势必须与载荷w使杠杆往反方向旋转的趋势相平衡。忽略在支点上的摩擦力,以上关系可用数学式表达为:P*BF=WX从上式可以看出,施加的作用力乘以支点到一作用点应等于另一侧的乘积,从这可以导出“机械效率”这个量,它等于载荷除以作用力:

机械效率=W/P=bf/cf

图3-1A中如果bf/cf=3,就意味着30磅的载荷能被10磅的为所平衡。如果力稍超过这个数值,杠杆将会随着为P的增大而绕点f旋转,为P比载荷W增加得更快更大,这也是机械效率,但应忽略摩擦力的作用,显然,f、c间的距离越短,杠杆的力放大八月入越大。

图3-1A的布置情况可在钳子和剪刀上找到,而图3-1B的情况可在手推车中找到,f相相当是车轮,W为载荷,力P由操作者施加在手柄上。图3-1C中,杠杆的作用于是作为一种运动放大装置,它用在脚踏板上来驱动一些小机械。脚踏板上b的小运动可在c产生大运动。

图3-1D中所示的差动滑轮就是基于杠杆原理。半径为R的轮A和半径为r的轮B固定在轴上,并可以转动。力P是由一条位于轮边缘一个槽中的绳子所提供的,载荷 W由绕在驱动轴上的绳子来提升。当驱动轴静止时,力P促使轴的转动趋势与W促使轴的转动趋势相等,且方向相反。忽略轴承摩擦力的话,力P和大轮半径R的乘积将等于载荷W与驱动轴半径的乘积:P*R=w*r 机械效率还是等于W/P,也等于轮R与驱动轴R的比值。

这种情况和杠杆类似。然而杠杆只能移动载荷很短的距离。而差动滑轮能移动开荷 的距离,只限制于线强长度。

当轮A和绳由装辐条的轮代替时,差动涔轮就仅适于从井里提升一桶桶的水。然而更重要的是差动滑轮的原理在许多工具和机械中是很显而易见的。例如,螺刀,由手提供的力作用在大半径上就能在小半径上转化出很大的力作用在螺钉上。

滑轮是一种最基本的简单机械之一。它从根本上说是由一个轮子和一个支承组成,轮子的轮边带有槽,槽上绕着柔软的绳子,而支承有如固定的或可动的轴承组,一个往下的拉力会产生一个大小相同的向上的力。图3-1E中滑轮和可动组B结合时,如果饭略摩察力的话,绳中所有点的张力P是一样的,因此在绳松开的这边给定一个向下的拉力,将可以提起这个拉力两倍的重物W,而重物W的上升速度交为绳移动速度的一半。因此机械效率为2倍,若使用种种带有固定的和可动的轴承组的滑轮组合,那机械效率将比2倍还要大。例如熟知的轴承级和滑车组合就是一种基本的力放大装置。

现在来考虑一下图3-2中楔的运动。它由力P向左边击打。当角度Q越小,摩擦力F也越小时,以r表示的分力N将会越大。对于任一楔表面的粗糙度以及对奕的摩托车擦力,如果角Q大于一个给定值,即使力P撤掉后,楔仍会保持原位或像粘住了。

可楔紧的锥度在机床主轴中常用来夹抚持切削刀具,如钻头铰刀。其它应用楔原理的机械装置有木刨,子,刀,金属世削刀具和凸轮

丝杠可以认为是楔锥在一个圆柱体上。丝杠是由在实心圆柱上切削出连续不断的槽所形成的,这些被实心材料分开的,连续的,圆周的槽称为螺纹。螺纹和槽都是螺旋形的。

如果将图3-3右侧所示的图ACC`A`H上线段AB`和BD 在左侧直径为d的圆柱上,将会形成1。5图的螺旋。其对应的轴向距离l称为导程。导程角λ是用来度量螺旋的倾斜角。

一些早期的螺钉,其切削方法类似于用展开的如图3-3左边的螺旋一条柔软的金属薄板,以右螺角形式,缠绕在圆柱形毛坯上,以便右角的一臂能平行于轴线,斜边用在圆柱上形成螺旋,用作切削螺旋槽的导向。

如果滑动无件被约束为沿平行圆柱轴线运动,如图3-3中的F,沿着轴线00`运动,它就能被圆柱体的旋转、螺旋或是拉直螺旋的平移所驱动。另一种情况,楔的运动是很明显的。如果螺帽的一部分构件F,它限制了旋转运动但轴向运动是自由的,丝杆螺帽组合将会把螺旋运动转化成

第四单元

机构

基本类型

机构的目的是为了传递运动,而不管机构有没有变更。虽然机构有许多中组成形式,但总的来说只有三种分类,如图4-1所示

图中的每种机构,杆2和杆4都是通过O点和Q点联接到杆1的。这两种机构的运动传递方式如图4-1所示:(A)通过柔性的包裹联接器传递,如皮带,绳子,缆和链条等;(B)通过直接接触传递,如用凸轮,齿轮或是摩擦轮;(C)用刚性的联接杆或联轴器传递。在各种情况中杆2都是驱动件,它以每分钟n2转的转速转动,而杆4是从动件,以每分钟n4的转速转动,对于这三种情况,杆2和杆4的转速比是由Of的长度与Qf的长度比值所决定的。图4-1A中由于点f固定与OQ的中心,所以它的速率是一个常量,在图4-1B和4-1C中,由于点f将会随着物体的转动而移动,故其速率是变化的。直接接触的物体能设计成只会摆动,如图4-1B,或只会持续转动。在所有的情况中,点f都是位于有公法线和中心线的交点上。

直接接触机构

在大多数的情况中,直接接触的表面互相之间是滑动的,并仅仅只有滑动运动。这样表面情况是很容易恶化的。而在特定的条件下,表面磨损不厉害的纯滚动接触具有更高的效率。如果其他条件满足了,物体将会以匀速传递运动。这些特定的情况在齿轮联接和凸轮联接中是很有用的。纯滚动的条件是接触点位于中心线上。

共有三种纯滚动接触的情况,当两物体是圆柱体时,公法线和中心线是重合的,所能传递的载荷是由其表面摩擦所决定的,这就是所谓的基于摩擦的滚动。对于不依赖于摩擦的驱动,其公法线一定不能穿过驱动件或从动件的中心。忽略摩擦,且两相互接触物体间的力沿着法线作用时,当力的作用线没有穿过从动件的转动枢轴线时,从动件将被主动驱动。图4-1B中的物体,接触点在P,提供主动驱动。

任一直接接触物体,其速率比的公式中唯一的变量就是图4-1B中点f的位置。因此,保持匀速或恒定速率比的条件是公法线在一些固定点上通过中心线。尽管法线可能会转动,但只要它在相同点通过中心线,速率比将会保持恒定。

对于大多数给定的物体形状或轮廓,另一物体的,轮廓都能被构造出来,用于以匀速速率传递运动。这就是共轭轮廓。其本身就是存在能传递共轭运动的数学曲线;摆线和渐进线就是其中的两种;用于齿轮轮齿中。摆线就是跟踪空间中滚动轮边缘的一点所形成的轨迹。轮齿的轮廓是跟踪小圆边缘的一点在大圆内外侧滚动所形成的轨迹。渐开线就是处于大圆的内外侧,渐开线就是跟踪小圆边缘一点沿大圆内外侧滚动所形成的轨迹。渐开线也是跟踪从圆柱体上展开的线上的一点所形成的轨迹。通过研究一对渐开线的接触能很好地理解两渐开线轮齿表面的相互作用方式。图4-2中,由基圆1和基圆2产生的两条渐开线通过点m、f和n想联接,且应注意到由于基圆2比基圆1大,渐开线便有不同的形状。

第五单元

连杆机构

连杆机构也许可以定义为实体物体或连杆的载体,其中每根杆件通过销联接(铰链)或滑动接头至少和其他两个杆件相联接。为了满足这个定义,连杆机构必须形成一个无限的封闭的链或一系列封闭的链。很明显,由很多杆联接的链与只有一个杆相比,其性能是不同的。这在机械上就提出了一个非常重要的问题,那就是为传递运动而给定机构的适应性问题。其适应性取决于杆件和街头的数量。

自由度,三杆机构(包括三杆联接在一起的)很明显是一个刚性框架;连杆之间不可能有相对运动,为了表达四杆机构中连杆的相对位置,只需知道任意两杆间的夹角。(算上固定连杆OQ,图5-1C所示机构有4个连杆,因此是四杆机构。)这个连杆机构有一个自由度。要确定五杆机构中连杆的相对位置需要两个角度,也就是它有两个自由度。

带有一个自由度的连杆机构,其运动是有约束的。例如,连杆所有点在其它连杆上的轨迹是固定而又确定的。通过假定连杆上所求轨迹是固定的,并移动与约束相协调的连杆,轨迹是很容易得到的或很容易可视化观察到。

四杆机构。当所受约束的连杆机构中的一个构件固定时,这个连杆机构将变成一个在机械中能够完成有用的机械功能的机构,在销连接的连杆机构中,输入杆(主动杆)和输出杆(从动杆)通常是以枢轴的连接方式连接到固定杆上的;这个连接杆(连接件)通常既不是输入杆,也不是输出杆。由于任意连杆都能固定。如果四种机构中,连杆都不等长,并且都有不同的输入-输出关系,那么就能得到四杆机构。这四种机构也就是所谓的基本连杆机构的转换。

当图5-1左边中最短杆a固定时,杆b和杆d就能完成整圈的旋转运动。这就是双曲柄机构。若曲柄b以恒定的速度转动,则曲柄d将以变化的速度作同向转动。双曲柄机构本身,或者和别机构联接起来时,其曲柄都能提供有用的运动效果,图中,曲柄b是主动杆,它以匀速率逆时针旋转;曲柄d为从动件;三者都能同时完成整圈的旋转运动。但当b转过150°的角度是,从动杆d只能转动50°的角度。这就是意味着从B运动到B’时,曲柄d将比b转得慢,而从B’运动到B时,d比b转得快。如果将同样比例的曲柄d联接到包装机械的主轴上,例如联接运动较慢的轴上,那它将会暂停运动或者停顿。这在必须慢速的地方将派上用场。

通过将最短杆a作为主动杆能得到四杆机构的第二种转换。如图5-1右所示,在杆a做整圈旋转运动的同时;其相对的杆,可能在杆b,c,或杆d,却只能在φ角的范围内摆动。这称为曲柄摇杆机构。它是产生带有急回动作的摆动运动的有用装置。产生急回运动的原因是:当杆a逆时针旋转时,会带动杆 c从B摆动到B’,其摆过角度为θ1,而杆c从B’摆动到B时,其摆过的角度为θ2。由于曲柄a的转速是恒定的,且θ1大于θ2,因此摇杆从右摆动到左的时间将长于其它摆动途径。只有当活动杆件沿一个方向移动,急回装置快速将杆件送回初始位置时,机械才是做有用功。

图5-1右所示的极端位置,曲柄a与连接杆b共线,且假定摇杆c为主动杆时,就必须提供方法使从动杆a通过死点。在用脚踏式操作的磨刀机上,脚踏板连接着杆c,磨刀机主轴连接着杆a,就是靠着磨刀机的角动量使杆通过死点。

在四杆机构的第三种转换中,最短杆a为连接杆,其它的杆件只能摆动,这就是双摇杆机构。

连杆机构的综合,在连杆机构中,用图形法和分析法很容易测定出杆件的位移,速度和加速度。设计或综合连杆来满足特定要求就难得多了。还没有可用的方法来设计双曲柄机构以满足给定的输入-输出的关系谱。能做的就是调查一些选定的特定结构的性能特性。并挑选出其中最佳的

在曲柄摇杆机构中,设计者能控制摇杆的摆动角度,并在一定的程度上控制急回。而曲柄和要干的位移,速度和加速度却无法关联起来。

若四杆机构中的连杆总是以相同或相反的方向转动,并且他们的转动范围远小于180°,那么就有可能将曲柄转动在3点,4点,5点或者甚至更多的位置关联起来。图形法和分析法都能建立这种关联。

第九单元 材料的选择与机械零件的强度

1材料的选择

这些年来,工程材料的选择已经显得非常重要。此外,选择过程应该是一个对材料的连续不断的重新评价过程。新材料不断出现,而一些原有的材料的可以被利用的数量可能会减少。环境污染,材料的回收利用.工人的健康及安全等方面的关心经常会对材料选择附加新的限制条件。为了减轻重量或者节约能源,可能会要求使用不同的材料,来自国内和国际的竞争.对产品维修方便性要求的提高和顾客的反馈等方面的压力。此外,材料与材料加工之间的相互依赖关系已经被人们认识得更清楚,新的加工方法的出现通常会促使人们对被加工材料进行重新评价。因此,为了能在合理的成本和确保质量的前提下获得满意的结果,设计工程师和制造工程师都必须认真仔细地选择,确定和使用材料。

制造任何产品的第一步工作都是设计,设计通常可以分为几个明确的阶段,(a)总体设计b)功能设计c)生产设计。在总体设计阶段,设计者着重考虑产品应该具有的功能。通常要设想和考虑几个方案,然后决定这种想法是否可行;如果可行,则应该对其中一个或几个方案作进一步的改进,在此阶段,关于材料选择唯一要考虑的问题是:是否有性能符合要求的材料可供选用,如果没有的话,是否有较大的把握在成本和时间都允许的限度内研制出一种新材料。

在功能设计或工程设计阶段,要做出一个切实可行的设计,在这个阶段要绘制出和相当完整的图纸,选择并确定各种零件的材料,通常要制造出样机或者实物模型,并对其进行试验,评价产品的功能,可靠性,外观和适用性等,虽然这种试验可能会表明,在产品进入到生产阶段之间,应该更换某些材料,但是,绝对不能将这一点作为不认真选择材料的借口,应该结合产品的功能,认真仔细地考虑产品外观,成本和可靠性。一个很有成就的公司在制造所有样机时,所选用的材料应该和其在生产中使用的材料相同,并尽可能使用同样的制造技术,这样做对公司是很有的。功能完备的样机如果不能根据预期的销售量经济地制造出来,或者是样机与正式生产的装置在质量和可靠性方面有很大不同,则这种样机就没有多大的价值。设计工程师最好能在这一阶段全部完成材料的分析,选择和和确定工作,而不是将其留到生产设计阶段去做。因为,在生产设计阶段材料的更换是由其他人进行的,这些人对产品的所有功能的了解可能不如设计工程师。

在生产设计阶段中,与材料有关的主要问题是应该把材料完全确定下来,使它与现有的设备相一对一,能够利用现有设备经济地进行加工,材料的数量能够比较容易地保证供应。

在制造过程中,不可避免地会出现对使用中的材料作一些更改的情况,经验表明,可以采用某些理家材料作为替代品。然而,在大多数情况下,在进行生产以后改换材料要比在开始生产前改换材料所花费的代价要高在生产设计阶段做好材料选择工作,可以避免大多数的这种材料更换情况,在生产制造开始后出现了可供使用的新材料的。当然,这些新核燃料可能降低成本,改进产品性能。但是,必须对新材料进行认真的平价,以倚其所有性能都被人们所了解。应当时刻牢记,新材料的性能和可靠性很少能像现有材料那样为人们所了解大部分的产品失效和产品责任事故案件是由于在选用新材料作为替代材料之前,没有真正了解它们的长期使用性能而引起的。

产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序,在材料选择过程中,五个最觉的问题为:(A)不了解或者未能利用关于材料应用方面的最新和最好的信息资料(B)未能和考虑产品可以的合理用途,如有可能,设计人员还应进一步和考虑由于产品使用方法不当造成的后果。在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的控告生产大家,并且赢得判决(C)所使用材料的数据不全或者有些数据不确定,尤其是当具长期性能数据是如此的时候(D)质量控制方法不适当和经验证明由一些完全 不称职的人员选择材料。

通过对上违一个问题的分析,可以得出这些问题是没有充分理由存在的结论,对这些问题的分析和研究以给避免这些问题的指明方向。以往采用最好的材料选择办法也不能避免发生产品责任诉讼,设计人员工业界按照适当的程序进行最佳选择,可以大减少诉讼的数量。

因为所生产的压痕尺寸的函数,这表明由于硬度是非破坏性试验,而且不需要专门的,因而硬度是一个容易测量的性能,通常可以直接在实际的机械零件上进行硬度试验。

第十单元

车床及其他机床

车床

1.车床用于旋转工件,并朝着生成所需要加工的表面方向进给切削刀具。

2.最常见的车床形式是图10-1a中以图解方式显示的六角车床,它由一个支撑着床头箱,拖板和六角刀架的水平床身组成,工件夹在卡盘和夹头中,或者安装在机床主轴端部的花盘上。3.工件的旋转由一台电机通过一个齿轮系驱动主轴提供。4.切削刀具安装在横向滑板及六角刀架上,在横向滑板上的刀具在平行于工件旋转轴线方向或在工件旋转轴线的法线方向驱动或给进。六角刀架可以通过分度头将各种刀具定位并可以沿车床的床身方向驱动或给进。

5.现代六角车床由计算机控制所有工件和刀具运动,这些车床称为计算机数字控制(CNC)车床,而且刀具或横向滑板可以在水平面上的任一方向进给以使工件上产生所需的廓形。6.图10-1b说明的是通过工件旋转以及托板沿车床床身运动所产生的柱面,这一工序称为外圆车削。

7.车床设定的进给运动也就是工件每转一圈刀具移动的距离,机床的进给量f的定义是:刀具或工件每一行程或每转一圈,刀具相对于工件在进给运动的方向的位移,这样,为了车削长度为Lw的柱面,工件的转数是Lw/f,则加工时间Tm由下式给出的Tm=Lw/(fnw),式中nw是工件的旋转速度。

8.在此应当强调t,是刀具沿工件走一次(一次切削)的时间,但是,这一次通过并不意味着加工工序的完成,如果首次切削用于以高进给来去除大量材料(粗切),在操作过程中产生的力将有可能引起机床结构的明显挠曲,引起的精度损失可能需要以小进给量进一步加工(精切),使工件直径在规定的界限内并提供光滑的加工表面。由于这些原因,在粗切时常被加工成稍大一点的尺寸,留下少量材料在随后的精加工中去除。立式镗床

9.水平主轴的车床不适于车削沉重的大直径工件,否则机床主轴的轴线将不得不升高到机床操作工够不到固定刀具或固定工件的装置的高度,此外,在垂直的花盘上安装零件或在顶尖之间支撑零件会有困难,因此使用了一种与车窗相同的工作原理,但具有垂直轴线的机床并称为立式镗床(图10-2),这种机床像车床那样旋转工作并向刀具施加连续的,线性的进给运动。

10.(立式镗床)使用单刃刀具,而且进行的作业一般限于车削,端面车削和镗削。

11.便于定位大型工件的水平工件台由一个带有径向T型槽的,起夹持作用的旋转工作台构成

卧式镗床

12,这里介绍的另一种实用单刃刀具并具有旋转主运动的机床是卧式镗床(图10-3),这种机床主要用于沉重的圆柱形工件,在这种工件内有一个待加工的内圆柱形表面,一般讲,在描述机床时,使用卧式或立式来讲。两个词指的是提供主运动的机床轴(主轴)的姿态,可见,在卧式镗床中,主轴是水平的。

13,此类机床的主要特征是,工件在加工过程中保持静止,所有造型运动都施加在刀具上。最常见的加工工序是镗削,如图所示,镗削是通过旋转刀具来实现的,刀具安装在与主轴相连接的镗杆上,然后沿旋转线进给主轴,镗杆和刀具的进给是用于移动工件的机床运动只是用来给工件定位,在进行加工时一般不使用,端面车削工序可以通过使用专门刀具架(图10-4),在其旋转时径向进给刀具来实现。

此外先前推导的镗削和端车加工时间和金属切削率的公式仍将适用。刨床

14,刨床适用于在非常大的部件上加工平面,在这种机床(图10-5)上,线性运动作用在工件上,二刀具则垂直于该运动的方向进给,主运动通常利用变速马达通过齿条与齿轮传动来实现,而且进给运动是断续的工序用提供的T型槽固定在机床的工作台上,加工时间tm和金属切削率zw可以按下面公式估算:tm=bw/(fnr),式中bw是待加工面得宽度。Nr是切削行程的频率,f是进给量,金属切削率zw由下式给出zw=fapv,式中v是切削速度,ap是切口深度(去除材料层的深度)

第十一单元基本的加工工序——切削、镗削、和磨削

基本的加工工序

机床是从早期的埃及人的脚踏动力车床和约翰。威尔金森的镗床发展而来,它们用于为工件和刀具两者提供坚固的支撑并且可以精确控制它们的相对位置和相对速度。基本上讲,在金属切削中一个磨尖的楔形工具以紧凑变形的切削形式从有韧性的工件表面去除一条很窄的金属。切削是一种废弃的产品,与其他工件相比它相当短但是比未切削的部分厚度有相对的增加。机器表面的几何形状取决于刀具的形状和加工操作过程中刀具的路径。

大多数加工工序产出不同几何形状的部件。如果一个粗糙的圆柱形工件绕中心轴旋转而且刀具穿破工件表面并与旋转中心平行的方向前几,就会产生一个旋转面,这道工序叫做车削。如果以类似的方式加工一根空心管的内部,则这道工序叫镗削。制造一个直径均匀变化的锥形外表面叫做锥体车削。短的锥面或柱面也可以仿形车削。如果刀具尖端以一条半径可变的路径前进,就可以制造出像保龄球杆那种仿形表面。如果工件足够短(约1英寸)而且支撑具有足够的刚性,仿形表面可以通过进给一个垂直于旋转轴的仿形刀具来制造。

常常需要的是平坦的或平的表面。它们可以通过径向车削或端面车削来完成,期中刀具尖端沿垂直于旋转轴的方向运动。在其他情况下,更方便的是固定工件不动;以一系列直线式切削的方式使刀具横过工件作往复运动,在每次切削行程前具有一定横向进给量。这一工序叫做刨削,是在牛头刨床上进行的。对于大一些的工件,很容易保持刀具固定不动,而像龙门刨削那样在其厦门拉动工件。仿形面可以通过使用仿形刀具来制造。在每次往复时进给刀具。也可以使用多刃刀具。钻削使用两刃刀具,孔深可达钻头直径的5~10倍。不管是钻头转动还是工件旋转,切削刃与工件间的相对运动是一个重要的因素。在铣削操作中,有许多切削刃的旋转铣刀与工件相接合,这种工件相对铣刀运动缓慢。根据铣刀的几何形状和进给的方式,可以加工出平面和仿形面。可以使用水平或垂直旋转轴,工件可以沿三个坐标方向中的任意一个进给。

基本的机床

机床用于以切削的形式从韧性材料上去除金属来加工特殊几何形状和精密尺寸的部件。切屑是废品,其变化形状从像钢这样的韧性材料的长的连续带状到铸铁形成的易于处理、彻底断掉的切屑,就处理的观点来讲,不想要长的连续带状屑。机床完成5种基本的金属切削工艺:车削,刨削,钻削,铣削和磨削。其他所有金属切削工艺都是这5种基本工艺的变形。因此,仅有4种使用专用可控几何形状的刀具的基本机床:

1、车床

2、刨床

3、钻床

4、磨床。例如:镗削是内部车削:铰削、攻丝和平底锪孔是修改已钻好的孔,与钻削有关;滚齿与切齿基本上是铣削作业;弓锯削和拉削是刨削和研磨的一种形式;而研磨、超精加工、抛光和磨光则是磨削和研磨切削加工作业的各种变化形式。磨削工艺形成碎屑,但是磨粒的几何形状不可控制。

不同加工工艺切削材料的量和速度可能很大,如在大型车削作业或极小,如研磨或超精加工作业,只有表面高出的点被去除。

机床完成3种主要功能:

1、刚性支撑工件或工件的夹具以及切削刀具;

2、提供工件与切削工具间的相对 运动;

3、提供了一定范围的进给和速度,通常每种情况有4~32种选择。

加工中的速度和进给

切削速度、进给和深度是经济加工的3个主要变量,其他变量还有工件和刀具材料,冷却剂以及切削刀具的几何形状,金属切削的速率和加工所需的功率就取决于这些变量。

切削深度,进给和切削速率是在任何金属切削作业中都必须建立的机器设置,它们都会影响切削力,功率和对金属切削的速率。切削的深度是唱针进入唱片的量或者是槽的深度。切削速度由任意时刻唱片表面和对于拾音器臂内的唱针的速度来表示进给由唱针每圈径向向内的前进量或者把两个相邻槽的位置间来表示可以通过把它们与留声机的唱针和唱片相比较给出其定义。

第十五单元

柔性制造、一、柔性制造的定义

制造的演变用图表示为一个连续统一体,如图15-1所示。如此图显示的那样,制造的过程和系统处在把手工操作到最后实现全盟的集成制造的过度状态。计算机集成制造的前一步叫做柔性制造。

柔性在现代制造环境中是一个重要的特征。它意味着一个制造系统是用途多且适应性强,同时又能进行产量相对较大的制造。柔性制造系统是多用途的,这是因为它能制造多种多样的部件。它适应性强,因为它能很快地加以改变来制造完全不同的另一种部件。这种柔性在竞争激烈的国际市场上可能成败有别。

这是一个平衡的问题。独立的计算机数字控制(nc)机床有着高度的柔性,但是只能处理批量相对较小的制造。正相反,系列连锁生产线能进行批量较大的制造,但都不很灵活。柔性制造试图运用工业技术在灵活的与制造运行间达到最佳的平衡。这些工业技术包括自动化的材料、处理,成组技术及计算机和分布数字控制。柔性制造系统(FMS)是一个独立的机床或一组机床服务于一个自动材料处理系统。它是由计算机控制的而且有对刀具处理的能力。由于他有刀具处理能力并受计算机控制,这样的系统可以不断的重新配置来制造更加多样的部件,这就是它被称作柔性制造系统的原因。

一个制造系统要成为柔性制造系统必须具备的要素有:

1、计算机控制

2、自动处理材料能力

3、刀具处理能力

柔性制造向全面集成化制造的目标迈进了重要的一部。它实现了自动制造过程的集成化。在柔性制造中,自动化的制造机器(如车床、铣床、钻床)和自动化材料处理系统之间,通过计算机网络进行即时的沟通。这是小规模的集成,图15-2是柔性制造系统的一个样例。

二、柔性制造的概况

通过综合几个自动化的制造概念,柔性制造系统向全面集成化的目标迈出了重要的一步,这些观念是:

1、独立机床的计算机数字控制

2、制造系统的分布式数字控制

3、自动化的材料处理系统

4、成组技术,零件族

当这些自动化工艺,机器和观念合成到一个集成的系统时,就产生柔性制造系统。在柔性制造系统中,和计算机起了重要作用,当然大的劳动量比手工操作的制造系统要小得很多。然而,人仍然在柔性制造系统的操作中起了至关重要的作用,人的任务包括几个方面:

1、设备故检、维护和修理

2、刀具的变换和设置

3、安装和拆卸系统

4、数据输入

5、部件程序的变换

6、程序的开发

柔性制造系统设备像所有制造设备一样,必须有人监管以免出现失常、机器程序错误,以及故障。当发现问题时检修人员必须确定问题的根源,然后给出正确的措施,人还要采取指定的措施来修理运行不正常的机器。甚至当所有系统正常运转时,定期的维护也是必要的。

操作人员还要根据需要设置机床,换刀具,以及重新配置系统。柔性制造系统的刀具处理能力消弱了,但并没有消除,在刀具变换和设置上仍需要人力。在装卸柔性制造系统时也是这样,一旦原材料被送到自动化材料处理系统上,它就会以规定的方式,在系统中移动。然而,初装到材料处理系统仍然是由人员完成的,成品的拆卸也是同样。

与计算机的交流仍需要人力完成,人开发零件程序,通过计算机控制柔性制造系统。当重新配置FMS制造另一种类型零件时,他们还在必要的时候变换程序。人在柔性制造系统中劳动力密集型的成分越来越少,但仍然是很重要的。

柔性制造系统中的各层控制都是由计算机来完成的。在柔性制造系统中独立的机床是由CNC来控制点。整个的系统是由DNC来控制的。自动化的材料处理系统是计算机来控制的,其他的功能如数据收集、系统监控、刀具控制、运输控制也是计算机控制的,人机交互是柔性制造系统中的关键。

二、柔性制造的历史发展

柔性制造产生于20世纪60年代中期,当时英国莫林斯有限公司开发了24号系统。24号系统是一个真正的FMS。然而,它从一开始就注定是失败的,因为自动化、集成化和计算机控制技术还没有发展到能够恰好支持这一系统的程度。第一个FMS是超前的开发。因此,最终因不能工作而被放弃。在20世纪60年代和70年代的其余时间里,柔性制造仍然是一个学术观念。然而,随着复杂计算机控制技术在20世纪70年代末和80年代初的出现,柔性制造便成为可能。在美国最初的主要用户是汽车、卡车和拖拉机制造商。

四、柔性制造的理由 在制造中,生产率和柔性之间经常存在协调一致的问题。在该领域的一端是具有高生产率却低柔性的连续生产线,在该领域的另一端是能提供最大柔性的独立的计算机数字控制的机床,但它只能进行低生产率的制造。柔性制造处在此连续统一体的中间。在制造中总是需要一个系统,这个系统比单个机床能制造更大批量且用于更多制作过程,但仍保持其柔性。

连续生产线能以高生产率制造大量的零件。这条生产线需要大量的准备工作,但却能制造出大量的相同的零件。它的主要缺点是即使一个部件在设计上有小的改变都能造成整个生产线的停产和建构改变。这是一个致命的弱点,因为这意味着没有高成本,耗时停工和变化连锁生产线结构是不能制造出不同的零件的,即使是来自同一个零件族。

传统上计算机数字控制机床是用来制造少量在设计上稍有不同的零件。这种机床很适合这一用途。因为它们能迅速地改变程序来适应设计上小的或者更大的改变。然而,作为独立的机床它们不能大量地或高生产率地制造零件。

柔性制造系统比独立的计算机数控机床具有更大的生产能力和更高的生产率。它们在柔性方面比不上计算机数字控制机床,但它们却相差不多。柔性制造的中间性能的特殊意义在于大多数制造要求中等量的生产率来制造中等及的产品。同时有足够的柔性以快速改变结构来制造另一个零件或产品。柔性制造填补了制造中长期存在的空白。

柔性制造以其基本能力给制造者提供了许多有点:

1、在一个零件族内具有柔性

2、随意进给零件

篇6:机械工程专业英语_翻译

analog-to-digital converter 模数转换器 armature 电枢

Artificial intelligence 人工智能 artificial neural networks 神经网络 as a general rule of thumb 按惯例 assumption 假设

asynchronous AC motors 异步交流电动机asynchronous 不同时的,异步的 bargains 讨价还价 bear on 生成 binomial 二项的 Brake system 制动系统

brushed/brushless motors 有刷/无刷电机 built into 内建

By the same token 出于同样的原因 capacitor Start 电容器启动(电动机)catastrophically 毁灭性地 charging circuit 充电电路 Charging system 供电系统 chassis 车身底盘

compression-ignition engine 压然式发动机 coil high-tension cables 线圈高压电缆 compartment 间隔间,车厢 Compound wound 复励 concerned with 与有关 concise 简洁

conductivity 传导率constant load 定常负载 contracts 合同 Converter 转换器

corporate activities 公司的行为 credited letters 对账单 cylinder 汽缸

data acquisition 数据拾取defectives 缺陷产品 derived from 起源于

destructive inspection 有损检测 Detect 检测

diesel/compression-ignition engine 柴油机 Differential 差速器

dimensions of parts 零件的尺寸 dissipate 耗尽,用完 distribution 分发 distributor 分电器

downgrade to a lower quality level 信用等级下调 dynamic braking 动态制动

Electricalsystem 电气系统electrical equipment 电气装置 electrical schematics 电气原理图 electrical system 供电系统

electromechanical system 机电系统electromechanical 机电的 eliminate 排除 emphasis on 强调 equivalent 相等的 Essential 基本的 establish 建立

expert system 专家系统

fiber-optic sensor 光纤传感器fiber-optic sensors 光纤传感器 Fiber-optic 光纤 field service 现场服务 flaws 有缺点的 flux 通量 flywheel 飞轮

fractional horsepower(rating)小功率电动机 fractional 部分的,分数的 functional 功能的gasoline/spark-ignition engine 汽油机 Gas-turbine engine汽轮机 generate 产生 geographic 地理的Gross domestic product 总产值heat engines 热机 high-tension 高压的 hood(发动机)罩 humidity 湿度 hyperbolic 双曲线的hysteresis motors磁滞式电动机 hysteresis 滞后作用,磁滞式 hysteresis:磁滞现象ignition coil 点火线圈Ignition system点火系统 imbalance 不平衡,不均衡 imperfect 不合格的 impetus 推动,激励 in terms of 根据

increase or decrease the slip speed of the rotor 增减转子的滑动速率

induction motor 感应式电机 induction 电磁感应

information technologies 信息技术 inherent 固有的initial impetus 最初的发展 Inorganic materials 无机材料 inspect 检查

Instrument servo motor 仪表伺服电机 internal combustion engine 内燃机

internal combustion 内燃机 invoices 发票

irreversible 不可逆转的leading power factor 超前功率因数 load torque负载扭矩Logicf unction 逻辑功能 logistic support 后勤保障 log-normal 对数正态的 low-tension 低压的 Magnetic slip 电磁转差率 maintained 保留 makes up for 弥补 manipulate 操纵 marginal cost 边际成本 medium 中间,媒介

mercury thermometer 水银温度计 Missile flight tracking导弹飞性追踪 moment of inertia 转动惯量 monitoring 监视

motor winding电机绕组:

national codes and standards 国标 negotiate 谈判

nondestructive inspection 无损检测 nondestructive 无损检测

Nonmentallicmaterials非金属材料 operating practice 实际操作 permanent magnet 永磁

permanent split capacitor 固定分相的电容器 permeability 渗透性 places the order 下订单 Poisson distributions 泊松分布 Polar inertia极惯性矩poly-phase AC motors 多相交流电动机 polyphase 多相的 Power factor功率因数

Price-performance ratio 性价比 Principal component 主要部件 proximity sensor 接近传感器 purchase order 订单 quality assurance 质量保证 quality in conformance 产品移植性 raw materials 原材料 Rear wheel drive后轮驱动

regenerative braking 再生制动,反馈制动 regenerative 再生的,反馈的reluctance 磁阻repulsion induction 推斥式感应repulsion start 推斥式启动 reversible 可逆的 Rotational speed转速

rotor magnetic field rotate 转子磁场运动 sampling 采样 scheme 安排

schemes 方案 scrapped 抛弃

semi-finished parts 半成品 sensor fusion 传感器融合Series wound串励shaded pole 屏蔽极式 Sheet metal shell金属板壳 Shunt wound并励 Shut-off关断

signs the agreement 签合同 single phase 单相的 smart sensor 智能传感器 somewhat 稍微,有点

sophistication 复杂性,完善化,采用先进技术spark plug cables 火花塞电缆 spark plug 火花塞 specifications 指标

speed transducer 速度传感器 split phase 分相式 squirrel cage 鼠笼式

Starting system 启动系统statistical 统计的 统计学 统计学的 steering systems 方向系统 steering 转向器 stepper motors 步进电机 strain 应变 sufficient 足够的surface treatment 表面处理surroundings 环境

Suspension system悬挂系统 suspension 悬架

switch 开关,转换器synchronous AC motors 同步交流电动机 synchronous 同时的Tactile sensing 触觉传感技术 technique-based decision 技术决策 tends to 倾向于 tenet 原则

tensile tests 拉伸实验 tensile 可拉长的 tensile 张力,拉力

the induction motor operates near the ferquency of the input source:感应式电动机在接近输入电源频率下运行。The internal combustion engine 内燃机 Tolerance levels公差等级 Torque 扭矩

torque-speed curves 转矩-速度曲线 traceability 可描绘

traditional business 传统商务 transmission systems 传动系统 transmission 变速器 trunk deck 行李箱盖

two-value capacitor start 两价电容器启动

ubiquitous 普遍存在的 ultrasonic 超声的,超声波 universal motor 交直流两用电动机 utilize 利用

variability 可变的 可变性 vehicle 车辆

Visual sensing视觉传感技术 voltage regulator 电压调整器 Weight distribution 质量分配 Winding current绕住电流

上一篇:中专生军训心得体会500字下一篇:沙滩排球赛作文