不等式证明的基本依据

2024-05-09

不等式证明的基本依据(精选8篇)

篇1:不等式证明的基本依据

不等式证明的基本依据·例题

例5-2-1 求证:

(1)若x≠1,则x4+6x2+1>4x(x2+1);(2)若a≠1,b≠1,则a2+b2+ab+3>3(a+b);(3)若a<b≤0,则a3-b3<ab2-a2b. 解(1)采用比差法:

(x4+6x2+1)-4x(x2+1)(作差)=x4-4x3+6x2-4x+1(变形)=(x-1)>0(判断正负)4所以 x4+6x2+1>4x(x2+1)(2)(a2+b2+ab+3)-3(a+b)

所以 a2+b2+ab+3>3(a+b)(3)(a3-b3)-(ab2-a2b)=(a3-ab2)+(a2b-b3)=a(a2-b2)+b(a2-b2)=(a+b)2(a-b)而a<b≤0,所以a-b<0,(a+b)2>0,所以

注 用比差法时,常把差变形为一个偶次方或几个偶次方的和的形式;有时把它变形为几个因式的积的形式,以便于判断其正负.

例5-2-2 若a>0,b>0,c>0,求证:

(2)因1<x<10,0<lgx<1。于是 logx2-(lgx)2=lgx(2-lgx)>0

又由0<lgx<1,知lg(lgx)<0,所以 lgx2>(lgx)2>lg(lgx)(3)因1<x<10,故0<lgx<1,从而log2(lgx)<0。又因为x+

又|ab|=|a|·|b|<1,故1+ab>0。于是,最后不等式成立,从而原不等式成立。

例5-2-5 证明:

(1)若a>0,m,n∈N,且m>n,则

(2)若a>0,b>0,n∈N,且n≠1,则

当且仅当a=b时取“=”;

(3)对于n∈N,若α>-1,则(1+α)n≥1+nα。解(1)原不等式可等价地变为

又当n=1时,原不等式成为等式,故对一切n∈N,都有(1+α)n≥1+nα

注(3)中的不等式一般是利用二项式定理或数学归纳法证明。这里引进一个简单不等式给出的简捷证法,别有风味。读者不妨仿此证明(2)中的不等式。

例5-2-6 已知a>0,b>0,求证:对任意r,s∈R+,若r>s,则 ar+br≥ar-sbs+asbr-s 当且仅当a=b时取等号。

解 因为a,b,r,s∈R+,且r-s>0,所以由幂函数的单调性可知,as-bs与ar-s-br-s当a>b时同为正数;当a<b时同为负数;当a=b时同为零。故总有(as-bs)(ar-s-br-s)≥0。于是

(ar+br)-(ar-sbs+asbr-s)=(ar-ar-sbs)-(asbr-s-br)=ar-s(as-bs)-br-s(as-bs)=(as-bs)(ar-s-br-s)≥0 所以 ar+br≥ar-sbs+asbr-s 当且仅当a=b时取等号。

注 本例给出的不等式概括了很多不等式,应用较为广泛。例如不

篇2:不等式证明的基本依据

教学目的

(1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式.

(2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.

教学过程

一、引入新课

师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么?

生:求差比较法,即

师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法.

如果a、b∈R,那么(a-b)2属于什么数集?为什么?

生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈

R+∪{0}.

师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.

二、推导公式

1.奠基

师:如果a、b∈R,那么有

(a-b)2≥0.

把①左边展开,得

a2-2ab+b2≥0,∴a2+b2≥2ab.

②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?

师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.

2.探索

师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有

a2+b2≥2ab; b2+c2≥2bc; c2+a2≥2ca.

把以上三式叠加,得

a2+b2+c2≥ab+bc+ca

(当且仅当a=b=c时取“=”号).

以此类推:如果ai∈R,i=1,2,„,n,那么有

(当且仅当a1=a2=„=an时取“=”号).

④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.

3.再探索

师:考察两个以上实数的更高次幂的和,又能得到什么有趣的结果呢?先考查两个实数的立方和.由于

a3+b3=(a+b)(a2-ab+b2),启示我们把②式变成

a2-ab+b2≥ab,两边同乘以a+b,为了得到同向不等式,这里要求a、b∈R+,得到

a3+b3≥a2b+ab2.

考查三个正实数的立方和又具有什么性质呢?

生:由③式的推导方法,再增加一个正实数c,对b、c,c、a迭代⑤式,得到

b3+c3≥b2c+bc2,c3+a3≥c2a+ca2.

三式叠加,并应用公式②,得

2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2)

≥a·2bc+b·2ca+c·2ab=6abc.

∴a3+b3+c3≥3abc

(当且仅当a=b=c时取“=”号).

师:这是课本中的不等式定理2,即三个正实数的立方和不小于它们的积的3倍.同学们可能想到n个正实数的立方和会有什么结果,进一步还会想到4个正数的4次方的和会有什么结果,直至n个正数的n次方的和会有什么结果.这些问题留给同学们课外去研究.

4.推论

师:直接应用公式②和⑥可以得到两个重要的不等式.

(当且仅当a=b时取“=”号).

这就是课本中定理1的推论.

(当且仅当a=b=c时取“=”号).这就是课本中定理2的推论.

当ai∈R+(i=1,2,„,n)时,有下面的推广公式(在中学不讲它的证明)

(当且仅当a1=a2=„=an时取“=”号).

何平均数.⑨式表明:n个正数的算术平均数不小于它们的几何平均数.这是一个著名的平均数不等式定理.现在只要求同学掌握n=2、3时的两个公式,即⑦和⑧.

三、小结

(1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式②、⑥、⑦、⑧.它们之间的关系可图示如下:

(2)上述公式的证法不止综合法一种.比如公式②和⑥,在课本上是用比较法证明的.又如公式⑦也可以由①推出;用⑦还可以推出⑧;由⑦、⑧也可以推出②、⑥.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.

四个公式中,②、⑦是基础,最重要.它们还可以用几何法或三角法证明.

几何法:构造直角三角形ABC,使∠C=90°,BC=a,AC=b(a、b∈R),222则a+b=c表示以斜边c为边的正方形的面积.而

+

如上左图所示,显然有

(当且仅当a=b时取“=”号,这时Rt△ABC等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过.

三角法:在Rt△ABC中,令∠C=90°,AB=c,BC=a,AC=b,则

2ab=2·c sin A· c sin B=2c2sinAcos A=c2·sin2A≤c2

=a2+b2(∵sin2A≤1)

(当且仅当sinA=1,A=45°,即 a=b时取“=”号).

2三、应用公式练习

1.判断正误:下列问题的解法对吗?为什么?如果不对请予以改正.

a、b∈R+.若tgα、ctgα∈R+.解法就对了.这时需令α是第一、三象限的角.]

改条件使a、b∈R+;②改变证法.a2+ab+b2≥2ab+ab=3ab.]

师:解题时,要根据题目的条件选用公式,特别注意公式中字母应满足的条件.只有公式①、②对任何实数都成立,公式⑥、⑦、⑧都要求字母是正实数(事实上对非负实数也成立).

2.填空:

(1)当a________时,an+a-n≥________;

(3)当x________时,lg2x+1≥_________;

(5)tg2α+ctg2α≥________;

(6)sinxcosx≤________;

师:从上述解题中,我们可以看到:(1)对公式中的字母应作广义的理解,可以代表数,也可以代表式子.公式可以顺用,也可以逆用.总之要灵活运用公式.(2)上述题目中右边是常数的,说明左边的式子有最大或最小值.因此,在一定条件下应用重要不等式也可以求一些函数的最大(小)值.(3)重要不等式还可以用于数值估计.如

表明任何自然数的算术平方根不大于该数加1之半.

四、布置作业

略.

教案说明

1.知识容量问题

这一节课安排的内容是比较多的,有些是补充内容.这是我教重点中学程度比较好的班级时的一份教案.实践证明是可行的,效果也比较好.对于普通班级则应另当别论.补充内容(一般式,几何、三角证法等)可以不讲,例题和练习也须压缩.但讲完两个定理及其推论,实现教学的基本要求仍是可以做到的.还应看到学生接受知识的能力也非一成不变的.同是一节课,讲课重点突出,深入浅出,富有启发性,学生就有可能举一反

三、触类旁通,获取更多的知识.知识容量增加了,并未增加学生的负担.从整个单元来看,由于压缩了讲课时间,相应的就增加了课堂练习的时间.反之,如果学生被动听讲,目标不清,不得要领,内容讲得再少,学生也是难以接受的.由此可见,知识容量的多少,既与学生的程度有关,与教学是否得法也很有关系.我们应当尽可能采用最优教法,扩大学生头脑中的信息容量,以求可能的最佳效果.

2.教学目的问题

近年来,随着教改的深入,教师在确定教学目的和要求时,开始追求传授知识和培养能力并举的课堂教学效果.在培养学生的能力方面,不仅要求学生能够运用知识,更重要的是通过自己的思考来获取知识.据此,本节课确定如下的教学目的:一是在知识内容上要求学生掌握四个公式;二是培养学生用综合法进行推理的能力.当然,学生能力的形成和发展,绝不是一节课所能“立竿见影”的.它比掌握知识来得慢,它是长期潜移默化的教学结果.考虑到中学数学的基本知识,大量的是公式和定理,如能在每一个公式、定理的教学中,都重视把传授知识与开拓思维、培养能力结合起来,天长日久,肯定会收到深远的效果.

3.教材组织与教法选用问题

实现上述教学目的,关键在于组织好教材,努力把传授知识与开拓思维、培养能力结合起来.教材中对定理1和定理2的安排,可能是为了与前面讲的比较法和配方法相呼应.但这容易使人感到这两个定理之间没有什么内在联系,又似乎在应用定理时才能用综合法.事实上,可以用比较法证明两个数的平方和或三个数的立方和的不等式,但当n>3,特别对n是奇数时,用比较法就困难了(因为这时难以配方与分解因式).因此不具有一般性.而对综合法,学生在初中证几何题时已多次用过了(只是课本上没有提到这个名称).现行课本中两个不等式定理及其推论,是著名的平均值不等式:

和它的等价形式当

n=2,3时的特殊情况(当n=2时,ai的取值有所变化).在中学不讲一般形式,只讲特殊情况是符合大纲要求的.由于普遍性总是寓于特殊性之中,因此,这两个特例应是一般式的基础.同时,这两个特例之间应有紧密的联系,在推导方法上也应该与一般式的证明有共性.这就是本教案的设计思想,因而改变了现行课本的证法.

这里,我们用由定理1先推出一个辅助不等式

a3+b3≥a2b+ab2,然后经迭代、叠加,推出不等式

a3+b3+c3≥3abc,这种方法具有一般性.事实上,引入一个一般的辅助不等式

an+bn≥an-1b+abn-1(n>1),由迭代、叠加,再应用数学归纳法就可以证出公式

正因为上述证法具有一般性,即揭示了证法的本质(共性),就必然有利于递推与探索.又由(a-b)2≥0非常容易推出a2+b2≥2ab,所以它是“天然”的奠基式.于

2ab,因此,凡能用配方法证明的问题,必能用基本不等式证明,反之亦真.可见配方法的重要作用.它的重要性应在上一节比较法中就予以强调.

篇3:“基本不等式的证明”教学案例

1. 问题情境, 导入新课

投影:有一个珠宝商人, 很多人到他那里买的东西回家一称发现分量都有问题, 于是向工商局投诉, 工商局派人去调查, 商人承认他用的天平左右的杆长有问题, 向人们提出一个调解方案, 放左边称变重对人们不公平, 放右边称变轻商人要亏本, 那么用两次称重的平均值作为物品的实际重量, 如果你是购买者, 你接受他的方案吗?

问题1:判别公平不公平的依据是什么?答找出实际重量

问题2:如何找出实际重量?你能不能把这个问题转化成一个数学问题?

珠宝放左边称砝码显示重量为a, 放右边称砝码显示重量为b, 假设天平的左杠杆长为l1, 右杠杆长l2, 那么这个珠宝的实际重量是多少? (会算吗?用什么原理来算?用物理的杠杆原理求解出实际重量 )

2. 学生活动

请两名同学上黑板 (巡视, 有不同的解法让他上黑板写一下, 这样可以收集不同的证明方法) .

先让学生谈一谈证的对不对, 他这个证明方法有什么特点?

3. 建构数学

问题:对于这个定理你怎么认识它? (结构有什么特点啊?成立的条件是什么?什么叫当且仅当?)

当a=b时, 取“=”, 并且只有当a=b时, 取“=”, 我们把这种等号成立的情况称之为当且仅当.

猜想:n个正数的算术平均数大于等于它们的几何平均数是否成立?如果成立条件是什么.

二、教学反思

篇4:不等式证明的基本方法

一、 比较法

例1 设a、b是非负实数,求证:a3+b3≥ab(a2+b2).

简解: a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)

=(a-b)[(a)5-(b)5]

当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;

当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]

<0

所以a3+b3≥ab(a2+b2).

二、 分析法

例2 已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.

简解:要证c-c2-ab<a<c+c2-ab,只需证,-c2-ab<a-c<c2-ab

只需证,|a-c|<c2-ab即证,(a-c)2<c2-ab

即证a2-2ac<-ab,∵ a>0,只需证,a-2c<-b

即证a+b<2c,这为已知.故原不等式成立.

点评:分析法是执果索因,其步骤为未知→需知→已知,在操作中“要证”,“只需证”,“即证”这些词语是不可缺少的.

三、 综合法

例3设函数f(x)=2x(1-ln2x),

求证:对任意a、b∈R+,均有f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.

简解:

f′(x)=-2ln2x,f′(a)+f′(b)2=-ln4ab,

f′a+b2=-ln(a+b)2≤-ln4ab,

f′2aba+b=-2ln2•2aba+b≥-2ln4ab2ab=-ln4ab,

∴ f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.

点评:综合法是由因导果,其步骤为:从已知条件出发,利用有关定理、公理、公式、概念等推导出结论不等式.

四、 基本不等式法

例4 已知a、b、c均为正数,证明:a2+b2+c2+1a+1b+1c2≥63,并确定a、b、c为何值时,等号成立.

简解:因为a、b、c均为正数,由基本不等式得:

a2+b2≥2ab

b2+2≥2bc

c2+a2≥2ac

所以a2+b2+c2≥ab+bc+ac①

同理1a2+1b2+1c2≥1ab+1bc+1ac②

故a2+b2+c2+1a+1b+1c2

≥ab+bc+ac+31ab+31bc+31ac③

≥63

所以原不等式成立.

当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立,

即当且仅当a=b=c=314时,原式等号成立.

点评:利用基本不等式必须注意:“一正,二定,三相等.”

五、 反证法

例5 已知p3+q3=2,求证:p+q≤2.

分析:本题由已知条件直接证明结论,佷难找到证明的方法,正难则反,可以利用反证法.

简解:假设p+q>2,则p>2-q,p3>(2-q)3,

∴ p3+q3>q3+(2-q)3=q3+8-12q+6q2-q3=6q2-12q+8=6(q-1)2+2≥2

∴ p3+q3>2与p3+q3=2矛盾,∴ p+q≤2.

点评:正难则反,使用反证法,从否定结论出发,经过逻辑推理,导出矛盾,证明结论的否定是错误的,从而肯定原结论是正确的.

六、 放缩法

例6 设数列{an}满足a1=0且11-an+1-11-an=1.

(1) 求{an}的通项公式;

(2)设bn=1-an+1n记Sn=∑nk=1bn,证明:Sn<1.

分析:要证Sn<1,先求出{bn}的通项公式,再求{bn}的前n项的和Sn,最后利用放缩法.

简解:(1)an=1-1n;

(2)bn=1-an+1n=n+1-nn+1•n=1n-1n+1,

Sn=∑nk=1bn=∑nk=11k-1k+1=1-1n+1<1.

点评:放缩法是利用不等式的传递性,按题意及目标,作适当的放大或缩小,常用的放缩技巧有:

(1) 舍掉(或加进)一些项;(2)在分式中放大或缩小分子(或分母);

七、 柯西不等式法

例7 若n是不小于2的正整数,求证:47<1-12+13-14+…+12n-1-12n<22.

分析:从所要证明的不等式结构可转化为柯西不等式来证.

简解:1-12+13-14+…+12n-1-12n=1+12+13+…+12n-212+14+…+12n=1n+1+1n+2+…+12n

所以求证式等价于47<1n+1+1n+2+…+12n<22

由柯西不等式有1n+1+1n+2+…+12n[(n+1)+(n+2)+…+2n]>n2于是:1n+1+1n+2+…+12n>n2(n+1)+(n+2)+…+2n=2n3n+1=23+1n≥47

又由柯西不等式有

1n+1+1n+2+…+12n<

(12+22+…+n2)1(n+1)2+1(n+2)2+…+1(2n)2<

n1n(n+1)+1(n+1)(n+2)+…+1(2n-1)(2n)=

n1n-12n=22

八、 构造法

例8 已知a、b∈R,求证:|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.

分析:本题若从绝对值不等式方面入手比较难,但观察不等式两边的结构,可看出是函数f(x)=x1+x(x≥0)自变量x分别取|a+b|、|a|、|b|的函数值,从而可构造函数求解.

简解:构造函数f(x)=x1+x(x≥0),首先判断其单调性,设0≤x1<x2,因为f(x1)-f(x2)=x11+1-x21+x2=x1-x2(1+x1)(1+x2)<0,所以f(x1)<f(x2),所以f(x)在[0,+∞]上是增函数,取x1=|a+b|,x2=|a|+|b|,显然满足0≤x1≤x2,所以f(|a+b|)≤f(|a|+|b|),

即|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|.

点评: 抓住不等式的结构和特点,转化为函数思想求解是解决此题的关键.

篇5:证明不等式的基本方法一

------比较法

教学目的:

以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要求学生能教熟练地运用教学重点:比较法的应用

教学难点:常见解题技巧

一、复习引入:

两实数的大小关系。

我们知道,实数与数轴上的点是一一对应的,在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大.例如,在图6一1中,点A表示实数a,点B表示实数b,点A在点B右边,那么ab. 我们再看图6一1,ab表示a减去b所得的差是一个大于0的数即正数.一般地:

若ab,则ab是正数;逆命题也正确.

类似地,若ab,则ab是负数;若ab,则ab0;它们的逆命题都正确.这就是说:

abab0; b a abab0; A B abab0. 图6—

1由此可见,要比较两个实数的大小,只要考察它们的差就可以了.二、讲解新课:

思考一:

3322已知a,b是正数,且ab,求证:ababab

尝试:作差比较,作差——变形——定符号

证明:∵(ab)(abab)=a2(ab)b2(ab)

=(ab)(ab)=(ab)(ab)

2∵a,b是正数,且ab,∴ab0,(ab)>0

3322∴(ab)(abab)>0,∴ababab 3322332222

2注:比较法是证明不等式的基本方法,也是最重要的方法

比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论

例2(P21例)如果用akg白糖制出bkg糖溶液,则糖的质量分数为

时糖的质量分数增加到a,若上述溶液中添加mkg白糖,此bam,将这个事实抽象为数学问题,并给出证明。bm

ama 此即:已知a, b, m都是正数,并且a < b,求证:bmb

分析:这是一道分式不等式的证明题,依比较法证题步骤先将其作差,然后通分,由分子、分母的值的符

证明:amab(am)a(bm)m(ba)bmbb(bm)b(bm)

∵a,b,m都是正数,并且a 0 ,b  a > 0 ∴amam(ba) 0即bmbb(bm)

思考:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断? 例3.在⊿ABC中a、b、c分别是A、B、C的对边,S是三角形的面积求证: c2a2b24ab43S

222证明:在⊿ABC中cab2abcosC,S1absinC

2c2a2b24ab4S2abcosC4ab23absinC所以134ab(1cosCsinC)4ab[1C)]226

由于a,b∈(0,+∞)又sin(C)1 6

222则4ab[1sin(C)]0即cab4ab43S 6

abab2思考二: 例4.设a, b  R+,求证:ab(ab)

方法2:作商法abba

a1b 理论根据: aab,b01bab0

操作方法:“作商——变形——判断商式大于1或小于1”

证明:(作商)aabb

(ab)ab

2aab2bba2a()bab2

a当a = b时,()bab2

1aba0,()2bab2a当a > b > 0时,1,b1

ab

2a当b > a > 0时,01,b

∴ab(ab)abab2aba0,()2b1(其余部分略)

注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论

2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论

三、练习

1.求证:x2 + 3 > 3x

证明:∵(x2 + 3) 3x = x3x()()3(x)

∴x2 + 3 > 3x

2. 已知a, b都是正数,并且a  b,求证:a5 + b5 > a2b3 + a3b2 232232232230

4证明:(a5 + b5)(a2b3 + a3b2)=(a5  a3b2)+(b5  a2b3)

= a3(a2  b2) b3(a2  b2)=(a2  b2)(a3  b3)

=(a + b)(a  b)2(a2 + ab + b2)

∵a, b都是正数,∴a + b, a2 + ab + b2 > 0

又∵a  b,∴(a  b)2 > 0∴(a + b)(a  b)2(a2 + ab + b2)> 0

即a5 + b5 > a2b3 + a3b

23.例4后半题

四、小结 :我们一起学习了证明不等式的最基本、最重要的方法:比较法,1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论

2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论

五、作业

篇6:3.4.1 基本不等式的证明

3.4.1 基本不等式的证明(1)

江苏省靖江高级中学杨喜霞

教学目标:

一、知识与技能

1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;

2.会用基本不等式解决简单的最大(小)值问题;

3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握 定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几 何解释.

二、过程与方法

1.通过实例探究抽象基本不等式;

2.本节学习是学生对不等式认知的一次飞跃.要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点.变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础.两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质.

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;

2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力.

教学重点:

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程. 教学难点:

理解基本不等式 等号成立条件及 “当且仅当时取等号”的数学内涵.

教学方法:

先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式;从生活中实际问题还原出数学本质,可积极调动学生的学习热情;定理的证明要留给学

生充分的思考空间,让他们自主探究,通过类比得到答案.

教学过程:

一、问题情景

a

b

2ab2.的几何背景: 21.提问:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).

二、学生活动

问题1 我们把“风车”造型抽象成上图.在正方形ABCD中有4个全等的直角三角形.设直角三角形的长为a、b,那么正方形的边长为多少?面积为多少呢?

a2b2.问题2 那4个直角三角形的面积和呢?

生答 2ab.问题3 好,根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,a2b22ab.什么时候这两部分面积相等呢?

生答:当直角三角形变成等腰直角三角形,即xy时,正方形EFGH变成一个点,这时有a2b22ab.三、建构数学

1.重要不等式:一般地,对于任意实数 a、b,我们有a2b22ab,当且仅当ab时,等号成立.

问题4:你能给出它的证明吗?(学生尝试证明后口答,老师板书)

证明:a2b22ab(ab)2,当ab时,(ab)20,当ab时,(ab)20,所以a2b22ab

注意强调:当且仅当ab时, a2b22ab

注意:(1)等号成立的条件,“当且仅当”指充要条件;

(2)公式中的字母和既可以是具体的数字,也可以是比较复杂的变量式,因此应用范围比较广泛.

问题5:将a降次为a,b降次为b,则由这个不等式可以得出什么结论?

2.基本不等式:对任意正数a、b,有

立.(学生讨论回答证明方法)

证法1:a

b11

222

0当且仅当222ab当且仅当ab时等号成2. ab时,取“”

a

b,只要证a

b,只要证0ab,ab只要证0

2成立,当且

2证法2

ab时,取“=”号.

证法3:对于正数a,b

有20,ab

0ab

说明: 把ab2a

ba,b的算术平均数和几何平均数,上述2

不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.

注意:(1)基本不等式成立的条件是:a0,b0;

(2)不等式证明的三种方法:比较法(证法1)、分析法(证法2)、综合法(证法3);

(3)abab的几何解释:(如图1)以ab为直径作圆,在直径AB上

2取一点C,过C作弦DDAB,则CD2CACBab,从而CDab,而半abCDab

径2

abB 几何意义是:“半径不小于半弦”;

(图1)

(4)当且仅当ab时,取“”的含义:一方面是当ab时取等号,即 ab

ababab; ;另一方面是仅当a

b时取等号,即22

(5)如果a,bR,那么a2b22ab(当且仅当ab时取“”);

(6)如果把ab看作是正数a、b的等差中项,ab看作是正数a、b的2等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.

四、数学运用

1.例题.

ba1例1设a,b为正数,证明下列不等式成立:(1)2;(2)a2.aba

baba证明(1)∵a,b为正数,∴,也为正数,由基本不等式得2abab∴原不等式成立.

(2)∵a,立.

例2已知a,b,c为两两不相等的实数,求证:a2b2c2abbcca.证明 ∵a,b,c为两两不相等的实数,∴a2b22ab,b2c22bc,c2a22ca,11均为正数,由基本不等式得a2,∴原不等式成a

a以上三式相加:2(a2b2c2)2ab2bc2ca,所以,a2b2c2abbcca.

例3已知a,b,c,d都是正数,求证(abcd)(acbd)4abcd.证明 由a,b,c,d都是正数,得:

∴abcdacbd

0,0,22(abcd)(acbd)abcd,即(abcd)(acbd)4abcd.42.练习.

(1)已知x,y都是正数,求证:(xy)(x2y2)(x3y3)8x3y3;

(2)已知a,b,c都是正数,求证:(ab)(bc)(ca)8abc;

(3)思考题:若x0,求x

五、要点归纳与方法小结

本节课学习了以下内容: 1的最大值.x

1.算术平均数与几何平均数的概念;

2.基本不等式及其应用条件;

3.不等式证明的三种常用方法.

小结 正数的算术平均数不小于它们的几何平均数.

六、课外作业

篇7:证明不等式的基本方法—比较法

【学习目标】

能熟练运用比较法来证明不等式。

【新知探究】

1.比较法证明不等式的一般步骤:作差(商)—变形—判断—结论.2.作差法:a-b>0a>b,a-b<0a<b.作差法证明不等式是不等式证明的最基本的方法.作差后需要判断差的符号,作差变形的方向常常是因式分解(分式通分、无理式有理化等)后,把差写成积的形式或配成完全平方式.3.作商法:a>0,b>0,a>1a>b.b

a>1不能推出a>b.这里要注意a、b两数的符号.b比商法要注意使用条件,若

【自我检测】

1中最大的一个是 1x

A.aB.bC.cD.不能确定

2.已知x、y∈R,M=x2+y2+1,N=x+y+xy,则M与N的大小关系是

A.M≥NB.M≤NC.M=ND.不能确定 1.设0<x<1,则a=2x,b=1+x,c=

3.若11<<0,则下列结论不正确的是 ...ab

B.ab<b2 A.a2<b

2C.ba+>2D.|a|+|b|>|a+b| ab

4.已知|a+b|<-c(a、b、c∈R),给出下列不等式:

①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;⑤|a|<-|b|-c.其中一定成立的是____________.(把成立的不等式的序号都填上)

5.若a、b∈R,有下列不等式:①a2+3>2a;②a2+b2≥2(a-b-1);③a5+b5>a3b2+a2b3;④a+1≥2.其中一定成立的是__________.(把成立的不等式的序号都填上)a

【典型例题】

3322例

1、已知a,b都是正数,并且ab,求证:ababab.-1 –“学海无涯苦作舟,书山有路勤为径”

变式训练:当m>n时,求证:m3-m2n-3mn2>2m2n-6mn2+n3.

2、已知a,b都是正数,求证:aabbabba, 当且仅当ab时,等号成立。

3、b克糖水中有a克糖(ba0),若再添上m克糖,则糖水就变甜了,试根据这个 事实提炼一个不等式:;并且加以证明。

变式训练:5.船在流水中在甲地和乙地间来回行驶一次的平均速度v1和在静水中的速度v2的大小关系为____________.并且加以证明。

【典型例题】课后练习课本P23习题2.11,2,3,4

篇8:两个不等式证明的纠正

苏教版《普通高中课程标准实验教科书·数学》选修4-5 (不等式选讲) 的教师教学参考用书中, 对两个不等式的证明有明显的错误, 现纠正如下:

问题1 (选修4-5 P34习题5.4, 第10题)

用排序不等式证明:设a, b, c, d为正数, 则

ab+c+bc+d+cd+a+da+b2

原证明如下 (选修4-5 教参P16)

证明:不妨设a>b>c>d, 则1a+b<1b+c, d<a, 由同序和不小于乱序和得da+b+ab+cdb+c+aa+b, 同理可得bc+d+cd+abd+a+cc+d, 两式相加da+b+ab+c+bc+d+cd+adb+c+aa+b+bd+a+cc+ddc+d+aa+b+ba+b+cc+d=2

db+cdc+dba+bba+d

所以最后一步不成立

现纠正如下:

证明:不妨设a≤b≤c≤d, 则1b+c1a+b

由排序不等式:

ab+c+da+baa+b+db+c

同理:bc+d+ca+dba+d+cc+d

da+b+bc+dba+b+dc+d

另外:ca+d+ab+c=ca+d+ab+c

①+②+③+④, 得

2 (ab+c+bc+d+cd+a+da+b) a+ba+b+c+dc+d+b+ca+d+a+db+c1+1+2.

两边同除以2, 得ab+c+bc+d+cd+a+da+b2, 原式得证

问题2 (P44复习题第16题) 设a1, a2, a3, …, an都是正数, 且a1a2a3…an=1, 试用数学归纳法证明:a1+a2+a3+…+an≥n

原证明如下: (教参P21)

证明:①当n=1时, a1=1, 结论显然成立.②假设当n=k时, 结论成立, 即a1a2a3…ak=1时, a1+a2+a3+…ak≥k成立, 当n=k+1时, a1+a2+a3+…+ak+ak+1≥k+ak+1而a1a2a3…akak+1=1, 所以ak+1=1, 从而a1+a2+a3+…+ak+ak+1≥k+1. 这就是说, 当n=k+1时, 结论仍成立.综上可知, 对任意n∈N, n≥1结论成立.

错误分析:依上推论则有ai=1 (i∈N*) 与题意明显不符.

纠正如下:

证明:①当n=1时, a1=1, 结论显然成立;②假设当n=k时, 结论成立, 即a1a2a3…ak=1时, a1+a2+a3+…+akk成立.

现要证:当b1, b2, b3, …, bk, bk+1都是正数, 且b1b2b3…bkbk+1=1时, b1+b2+b3+…+bk+bk+1≥k+1成立.由条件可知, b1, b2, b3, …, bk, bk+1中至少有一个不大于1, 有一个不小于1, 不妨设bk≥1, 0<bk+1≤1, 由归纳假设知

b1+b2+b3+…+bkbk+1≥k.

下证: (b1+b2+b3+…+bk+bk+1) - (b1+b2+b3+…+bkbk+1) ≥1.

即证:bk+bk+1-bkbk+1≥1

也即证: (bk-1) (bk+1-1) ≤0

因为bk≥1, 0<bk+1≤1

所以 (bk-1) (bk+1-1) ≤0成立.

n=k+1时, 结论仍成立.综上可知, 对任意n∈N, n≥1结论成立.

江苏省丹阳高级中学

上一篇:日常思想汇报下一篇:煤矿运输管理亮点