高数下册积分总结

2022-07-01

无论是开展项目,还是记录工作过程,都需要通过总结的方式,回顾项目或工作的情况,从中寻找出利于成长的经验,为以后的项目与工作实施,提供相关方面的参考。因此,我们需要在某个时期结束后,写一份总结,下面是小编为大家整理的《高数下册积分总结》相关资料,欢迎阅读!

第一篇:高数下册积分总结

高数积分总结

第四章 一元函数的积分及其应用

第一节 不定积分

一、原函数与不定积分的概念

定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dFf(x)(x)f(x)dx,则称F(x)为f(x)的一个原函数

定义2.函数f(x)的全体原函数F(x)C叫做f(x)的不定积分,,记为:

f(x)dxF(x)C

f(x)叫做被积函数 f(x)dx叫做被积表达式 C叫做积分常数

“其中

”叫做积分号

二、不定积分的性质和基本积分公式

性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即

f(x)dxf(x);df(x)dxf(x)dx.

性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即

f(x)dxf(x)C,或df(x)f(x)C

性质3. 非零的常数因子可以由积分号内提出来,即

kf(x)dxkf(x)dx(k0). 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即

f(x)g(x)dxf(x)dxg(x)dx

基本积分公式 (1)kdxkxC (k为常数) (2)xdx11x1C(1) 1(3)dxlnxC x

(4)exdxexC (6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)11x11x2(5)axdxaxlnaC(7)sinxdxcosxC (9)csc2xdxcotxC

(11)cscxcotxdxcscxC

(13)cscxdxlncscxcotxC (15) 11x22dxarctanxC dxarcsinxC dxarcsinxC

三、换元积分法和分部积分法

定理1. 设(x)可导,并且f(u)duF(u)C. 则有

f[(x)](x)dxF(u)C凑微分f[(x)]d(x)令u(x)

f(u)du代回u(x)F((x))C该方法叫第一换元积分法(integration by substitution),也称凑微分法. 定理2.设x数F(t)是可微函数且(t)0,若f((t))(t)具有原函(t),则

xt换元fxdx fttdt积分FtCt1x回代1FxC.

该方法叫第二换元积分法

选取u及v(或dv)的原则:

1) v 容易求得 ; 2)uvdx比uvdx

解题技巧: 选取u及v的一般方法:

把被积函数视为两个函数之积 ,按 “ 反对幂指三” 的顺序,

第二节 定积分概念

一、原函数与不定积分的概念

二、定积分的定义和存在定理

三、定积分的几何意义与定积分的性质 1.定积分的几何意义 2. 定积分的性质

性质1.b[f(x)g(x)]dxbf(x)dxbg(x)dx

aaa性质2.

bakf(x)dxkaf(x)dx

(k是常数).

前者为u后者为v.

.b性质3. 性质4.af(x)dxaf(x)dxcf(x)dx. babcbf(x)dxadxba.

b f(x)dxaf(x)dxabb推论1. 如果在[a,b] 上,f(x)g(x),则bf(x)dxbg(x)dx (a

aa推论2. 性质5. baf(x)dx0

(ab). 性质6. 设M与m分别是函数

f(x)在[a,b]上的最大值及最小值,则

m(ba)abf(x)dxM(ba) (ab). 性质7 .(定积分中值定理) 如果函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]]上至少存在一点,使下式成立:

af(x)dxf()(ba) (abb)

可积的充分条件:

定理1.函数f(x)在[a,b]上连续,则f(x)在[a,b]可积.

定理2.函数f(x)在[a,b]上有界,且只有有限个间断点 ,则f(x)在[a,b]可积.

第三节 微积分基本公式

一、微积分基本公式 1. 变上限函数

定义1. 设函数f(x)在区间[a,b]上连续,则它在[a,b]任意一个子区间[a,x]上可积,则

(x)xf(t)dx

( axb)

a是上限变量的函数,称此函数为积分上限函数,也称为变上限函数. 2. 微积分基本公式

定理2.bf(x)dxF(b)F(a)xa

1.定积分的换元积分法

定理3.bf(x)dxf(t)(t)dt a

注:设f(x)在[a,a]上连续,证明

(1)若f(x)在[a,a]为偶函数,则 af(x)dx=2af(x)dx;

a0(2)若f(x)在[a,a]上为奇函数,则 af(x)dx=0.

a2.定积分的分部积分法

定理4.budv[uv]bbvdu aaa 第四节

定积分的应用(这点跟高中无异,于是乎就偷懒了=v=~)

一、定积分的微元法 其实质是找出A的微元dA的微分表达式.

b

二、定积分在几何中的应用 1. 平面图形的面积 Aaf(x)dx.

2. 旋转体的体积VbA(x)dx a

三、定积分在物理上的应用 1.变力做功WbF(x)dx

a2.液体静压Fbgxf(x)dx a

四、定积分在医学上的应用

第二篇:高数下册总结

篇一:高数下册总结

高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

非齐次方程y???py??qy?f(x)的特解y?

主要: 量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

二、多元函数微分学复习要点

1、显函数的偏导数的求法 在求

?z?x 量,对x求导,在求

?z?y 量,对y求导,所运

求导法则与求导公式. 2数的求法

u???x,y?,v???x,y?,则

?z?x ?z?u ?u?x ?z?v ?v?x ?z?y ?

的形式为:

一阶

1、可分离变、二阶常系数非齐次线性微分方程的特解

一、偏导数的求法 时,应将y看作常时,应将x看作常用的是一元函数的、复合函数的偏导设z?f?u,v?,, 3 ?z?u ? ?u?y ? ?z?v ? ?v?y 几种特殊情况:

1u???x?,v???x?,则2)z?f?x,v?,v???x,y?,则

?z?x dzdx???f?vdzdu???u?x ??z?v ?dvdx ?v?y ? ?f?x ?v?x ?z?y ? ?f?u ? 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?z?x ? dzdu ? ?u?x ?z?y ? dzdu ? ?u?y 设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则

?z?x fxfz ??

)z?f?u,v?,, )z?f?u?,u???x,y?, ?fz ?0?, ?z?y ?? fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出

2)方程组的情况 ?z?x (或 ?z?y ). ?f?x,y,u,v??0?z?z )即可. 由方程组?两边同时对x(或y)求导解出(或

?x?y??gx,y,u,v?0?

二、全微分的求法 方法1:利用公式du? ?u?x dx? ?u?y dy? ?u?z dz 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

??z du???u? dz?? ?z?dx??x?? ?z?v?z?y dv dy

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点 ?z???t??p0?x0,y0 ? ,z0?处的切线方向向量为t???t0?,? ?

?t0?,??t0??,切线方程为

x?x0 ??t0? ? y?y0 ? ?t0? ? z?z0 ? ?t0?

法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f? x,y,z??0,则在点p0?x0,y0,z0?处的法向量

?n? ?f x ,fy,fz ? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为 x?x0 fx?x0,y0,z0? ? y?y0 fy?x0,y0,z0? ? z?z0 fz?x0,y0,z0? 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0fx?x0,y0? ? y?y0fy?x0,y0? ?z?z0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0, fy ?x,y??0点? x0,y0 ? a?fxx ?x0 ,y0 ? b?fxy ?x0 ,y0 ? c?fyy ?x0,y0?. 2 c?b1 ?x ,y?取得极值,且当a?0时有极大值,当a?0 2则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b 2 ?0 ?x ,y?是否取得极值.

设函数z?f?x,y?,解出驻,记 , , )若a?0,则f 在点?x0,y0?处时有极小值.

) 若ac?b2?0,,不能判定f 在点?x0,y0?处 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组

篇二:高数下册总结(同济第六版) 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

? 非齐次方程y???py??qy?f(x)的特解y的形式为:

主要: 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 在求

?z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y 用的是一元函数的求导法则与求导公式.

2、复合函数的偏导数的求法

设z?f?u,v?,u???x,y?,v???x,y?,则

?z?z?u?z?v?z?z?u?z?v , ?x?u?x?v?x?y?u?y?v?y 几种特殊情况: 1)z?f?u,v?,u???x?,v???x?,则2)z?f dzdz?u?zdv dxdu?x?vdx?f?v ?x,v?则?x??x??v??x,

?z?f ?z?f?v?? ?y?u?y 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?zdz?u?zdz?u, ?xdu?x?ydu?y 方程f?x,y,z??0唯一确定的隐函数,则

f?z ??x ?xfz ?fz ?z ?0? ?y fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出 2由方程组? ?z?z( ?f?x,y,u,v??0?z?z 求导解出(或)即可. ?x?y?g?x,y,u,v??0 方法1:利用公式du? ?u?u?u

,v???x,y?,)z?f?u?,u???x,y?设z?z?x,y?是由, ?? )方程组的情况 或). ?x?y 两边同时对x(或y)

二、全微分的求法 dx?dy?dz ?x?y?z 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

?z??z du?dv??v??u dz?? ?z?z?dx?dy ?y???x

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点

?z???t?? ? p0?x0,y0,z0?处的切线方向向量为t???t0?,??t0?,??t0?,切线方程为

?? x?x0y?y0z?z0 ?? ?t0?t0?t0法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量

? n??fx,fy,fz? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0fyx0,y0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,

fy?x,y??0,解出驻点?x0,y0? ,记a?fxx?x0,y0?,b?fxy?x0,y0?,

c?fyy?x0,y0?. c?b1)若a 时有极小值. 2) 若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值. 2 2 ?0,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组 篇三:高数下册公式总结

第八章 向量与解析几何

第十章 重积分

第十一章曲线积分与曲面积分

篇四:高数下册积分方法总结

积分方法大盘点

现把我们学了的积分方法做个大总结。

1、二重积分

1.1 x型区域上二重积分(必须的基本方法)

(1)后x先y积分,d往x轴上的投影得区间[a,b]; (2)x [a,b],x=x截d得截线y1(x)#yy2(x)(小y边界y=y1(x) 大y边界y=y2(x));

(3)b y(x)蝌f(x,y)dxdy= 蝌dx 2f(x,y)dya yd 1(x) 1.2 y型区域上二重积分(必须的基本方法)

(1)后y先x积分,d往y轴上的投影得区间[c,d]; (2)y [c,d],y=y截d得截线x1(y)#xx2(y)(小x边界x=x1(y) 大x边界x=x2(y));

(3)d x蝌f(x,y)dxdy= 蝌dy 2(y)f(x,y)dxc x d 1(y) 1.2 极坐标二重积分(为简单的方法)

(1)总是后q先r积分; (2)b r蝌f(x,y)ds= 蝌dq 2(q)f(rcosq,rsinq)rdra r(q) d 1其中,在d上a是最小的q,b是最大的q;q [a,b],射线q=q截d得截线r1(q)#r r2(q)(小r边界r=r1(q)大r边界r=r2(q))。用坐标关系

x=rcosq,y=rsinq和面积元素ds=dxdy=rdqdr代入(多一个因子r)。

当积分区域d的边界有圆弧,或被积函数有x2+y2 时,用极坐标计算二重

积分特别简单。

离 散

数 学

2、三重积分 2.1 二套一方法(必须的基本方法) (1)几何准备

(i) 将积分区域w投影到xoy面,得投影区域dxy;

(ii) 以dxy的边界曲线为准线,作一个母线平行于z轴的柱面.柱面将闭区域w的边界曲面分割为上、下两片曲面s2:z=z2(x,y()大z边界);

s 1 :z=z1(x,y()小z边界)

((x,y) dxy,过(x,y)点平行于z轴的直线截w得截线z1(x,y)#z z2(x,y))

; (2)z蝌蝌 f(x,y,z)dxdydz=蝌

dxdy2(x,y)f(x,y,z)dzz。

w d1(x,y) xy 还有两种(w往xoz或yoz面投影)类似的二套一方法(举一反三)。 2.2 一套二方法(为简单的方法) (1)几何准备

(i)把w往z投影得轾犏臌 c,d; (ii)任意给定z?轾犏臌

c,d,用平面z=z截w得截面(与z有关)dz; (2)d蝌蝌

f(x,y,z)dxdydz=dz f(x,y,z)dxdy, c 蝌 w dz 还有两种(w往x或y轴投影)类似的一套二方法(举一反三)。 2.3 柱面坐标计算三重积分(为简单的方法)

(1)把积分写成二套一zx,y)蝌蝌

f(x,y,z)dxdydz=蝌

dxdy2(f(x,y,z)dzz,y) w d1(xxy (2)用极坐标计算外层的二重积分

z蝌蝌f(x,y,z)dv= 蝌

dxdy2(x,y)f(x,y,z)dz zw d1(x,y) xyb r2(q)zrcosq,rsinq) = 蝌dqrdr f(rcosq,rsinq,z)dz a r 2(1(q) z 1 (rcosq,rsinq) (注意:里层的上下限也要用x=rcosq,y=rsinq代入)。(当用极坐标计算

外层二重积分简单时。)

还有两种(w往xoz或yoz面投影的二套一)类似的极坐标计算方法(举

第1章

集 合

离 散

数 学

2.3 三重积分(为简单的方法)

x=rcosqsinjy,=rsiqn sjinz=,r jc dv=dxdydz=r 2 sinjdrdqdj个因子r 2 sinj

f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdrdqdj w w 下限变成三次积分(总是先r后j最后q积分)

f(x,y,z)dvw b jr dq2(q)dj 2(q,j)

一反三)。

球面坐标计算(1)用坐标关系和o体积元素 (多一)代入

蝌蝌f(x,y,z)dv=; (2)三种情况定上蝌

=蝌f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdr a j 1(q) r 1 (q,j) 当w是课堂讲的三种情况或被积函数有x2+y2+z2时用球面坐标计算简单。 第1章

集 合

3曲线积分 3.1 平面情形

(1)准备 ?l:?x=x(t), ?y=y(t)(t?[a,b])ds=

;

?? ,f(x,y)ds= f(x(t),y(tt l a l:?l:y=y(x)(x [a,b])时用x作?í

x=x ?(x?[a,b])当??y=y(x)ì?l:x= x(y)( y [c,数l:?í

x=x(y) ??? y=y(y?[c,d])3.2 空间情形

、第一类对弧长的ì

í

,(2)代入b蝌。 ì

当参数;时用d]y作参。 ì??x=x(t)

(1)准备 l:? ? íy=y(t)(t [a,b? ]),ds=

;

z=z(t)蝌f(x,y,z)ds= f(x(t),y(t),z(tt l a y=y(x)??x=x ?(x?[a,b])作参数l:?x)x( ab[,;??z=z(x)í?y=y( ] ?? z=z(x) l:?? x=x(y) ?z=z(y(y?[c,d])时用y作参数

l:?? )? y=y(y [c,d]) z=z(y)ì?x=x(??x=x(z) l:? z) ?(z?[c,d])作参数l:??í?? y=y(z)? y=y(z)(z [c,d])。 z=z 间的特例。

篇五:高数下册复习知识点总结

下册复习知识点总结:

(2)代入b。ìì 当l:???í时用x当?? ìì??x=x(y) í í?? ;当 ìí 时用z平面是空高数 8空间解析几乎与向量代数

1. 给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。

2. 向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。 3. 了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。空间曲线在坐标平面上的投影方程。

4. 平面方程和直线方程及其求法。

5. 平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6. 点到直线以及点到平面的距离。

9 多元函数微分法及其应用

1. 有关偏导数和全微分的求解方法,偏导要求求到二阶。

2. 复合函数的链式法则,隐函数求导公式和方法。

3. 空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。 4. 利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。

10 重积分

1. 二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。

2. 选择合适的坐标系计算三重积分。

3. 利用二重积分计算曲面的面积;利用三重积分计算立体体积;

4. 利用质心和转动惯量公式求解问题。

11曲面积分与曲线积分

1. 两类曲线积分的计算与联系;

2. 两类曲面积分的计算与联系;

3. 格林公式和高斯公式的应用。

第三篇:高数下册总结(同济第六版)

高数同济版下 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶

微分方程的解法小结:

高数同济版下 二阶微分方程的解法小结:

非齐次方程的特解的形式为:

高数同济版下 主要 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运 用的是一元函数的求导法则与求导公式

2、复合函数的偏导数的求法 设,,,则 , 几种特殊情况: 1),,,则2) ,,则 3),则

3、隐函数求偏导数的求法 1)一个方程的情况 , 设是由方程唯一确定的隐函数,则 ,

高数同济版下 或者视,由方程两边同时对 2)方程组的情况 由方程组 . 两边同时对求导解出即可

二、全微分的求法 方法1:利用公式 方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:

三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为 ,则当时,在曲线上对应 处的切线方向向量为,切线方程为 法平面方程为 2)若曲面的方程为,则在点处的法向 ,切平面方程为 法线方程为 高数同济版下 若曲面的方程为,则在点处的法向 ,切平面方程为 法线方程为

四、多元函数极值(最值)的求法 1 无条件极值的求法 设函数在点的某邻域内具有二阶连续偏导数,由 ,解出驻点 ,记, 1)若 时有极小值 2) 若,则在点处无极值 3) 若,不能判定在点处是否取得极值 ,则在点处取得极值,且当时有极大值,当 2 条件极值的求法 函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法 作辅助函数,其中为参数,解方程组 高数同济版下 求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法 若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要

1、偏导数的求法与全微分的求法;

2、空间曲线的切线及空间曲面的法平面的求法

3、最大值与最小值的求法

三、多元函数积分学复习要点 七种积分的概念、计算方法及应用如下表所示:

高数同济版下 高数同济版下 *定积分的几何应用 定积分应用的常用公式: (1)面积 (2)体积 (型区域的面积) (横截面面积已知的立体体积) (所围图形绕 的立体体积) (所围图形绕 体体积) (所围图形绕轴 的立体体积)

第四篇:大学高数下册试题及答案

《高等数学》(下册)测试题一

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设有直线

及平面,则直线(

A

)

A.平行于平面;

B.在平面上;

C.垂直于平面;

D.与平面斜交.

2.二元函数在点处(

C

)

A.连续、偏导数存在;

B.连续、偏导数不存在;

C.不连续、偏导数存在;

D.不连续、偏导数不存在.

3.设为连续函数,,则=(

B

)

A.;

B.;

C.

D..

4.设是平面由,,所确定的三角形区域,则曲面积分

=(

D

)

A.7;

B.;

C.;

D..

5.微分方程的一个特解应具有形式(

B

)

A.;

B.;

C.;

D..

二、填空题(每小题3分,本大题共15分)

1.设一平面经过原点及点,且与平面垂直,则此平面方程为;

2.设,则=;

3.设为正向一周,则

0

;

4.设圆柱面,与曲面在点相交,且它们的交角为,则正数

;

5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有

1

.

三、(本题7分)设由方程组确定了,是,的函数,求及与.

解:方程两边取全微分,则

解出

从而

四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.

解:

从而

五、(本题8分)计算累次积分

).

解:依据上下限知,即分区域为

作图可知,该区域也可以表示为

从而

六、(本题8分)计算,其中是由柱面及平面围成的区域.

解:先二后一比较方便,

七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.

解:由对称性

从而

八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,取

九、(本题8分)计算,其中为半球面上侧.

解:补取下侧,则构成封闭曲面的外侧

十、(本题8分)设二阶连续可导函数,适合,求.

解:

由已知

十一、(本题4分)求方程的通解.

解:解:对应齐次方程特征方程为

非齐次项,与标准式

比较得,对比特征根,推得,从而特解形式可设为

代入方程得

十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.

解:设点的坐标为,则问题即在求最小值。

令,则由

推出,的坐标为

附加题:(供学习无穷级数的学生作为测试)

1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?

解:由于,该级数不会绝对收敛,

显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛

2.求幂级数的收敛区间及和函数.

解:

从而收敛区间为,

3.将展成以为周期的傅立叶级数.

解:已知该函数为奇函数,周期延拓后可展开为正弦级数。

《高等数学》(下册)测试题二

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设,且可导,则为(

D

)

A.;;

B.;

C.;

D..

2.从点到一个平面引垂线,垂足为点,则这个平面的方

程是(

B

)

A.;

B.;

C.;

D..

3.微分方程的通解是(

D

)

A.;

B.;

C.;

D..

4.设平面曲线为下半圆周,则曲线积分等于(

A

)

A.;

B.;

C.;

D..

5.累次积分=(

A

)

A.;

B.;

C.;

D..

二.填空题(每小题5分,本大题共15分)

1.曲面在点处的切平面方程是;.

2.微分方程的待定特解形式是;

3.设是球面的外测,则曲面积分

=.

三、一条直线在平面:上,且与另两条直线L1:及L2:(即L2:)都相交,求该直线方程.(本题7分)

解:先求两已知直线与平面的交点,由

由两点式方程得该直线:

四、求函数在点处的梯度及沿梯度方向上函数的方向导数.(本题7分)

解:

沿梯度方向上函数的方向导数

五、做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?(本题8分)

解:设底圆半径为,高为,则由题意,要求的是在条件下的最小值。

由实际问题知,底圆半径和高分别为才能使用料最省

六、设积分域D为所围成,试计算二重积分.(本题8分)

解:观察得知该用极坐标,

七、计算三重积分,式中为由所确定的固定的圆台体.(本题8分)

解:解:观察得知该用先二后一的方法

八、设在上有连续的一阶导数,求曲线积分,其中曲线L是从点到点的直线段.(本题8分)

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,

取折线

九、计算曲面积分,其中,为上半球面:.(本题8分)

解:由于,故

为上半球面,则

原式

十、求微分方程

的解.(本题8分)

解:

由,得

十一、试证在点处不连续,但存在有一阶偏导数.(本题4分)

解:沿着直线,

依赖而变化,从而二重极限不存在,函数在点处不连续。

十二、设二阶常系数线性微分方程的一个特解为,试确定常数,并求该方程的通解.(本题4分)

解:由解的结构定理可知,该微分方程对应齐次方程的特征根应为,否则不能有这样的特解。从而特征方程为

因此

为非齐次方程的另一个特解,

故,,通解为

附加题:(供学习无穷级数的学生作为测试)

1.求无穷级数的收敛域及在收敛域上的和函数.

解:

由于在时发散,在时条件收敛,故收敛域为

看,

从而

2.求函数在处的幂级数展开式.

解:

3.将函数展开成傅立叶级数,并指明展开式成立的范围.

解:作周期延拓,

从而

《高等数学》(下册)测试题三

一、填空题

1.若函数在点处取得极值,则常数.

2.设,则.

3.设S是立方体的边界外侧,则曲面积分

3

.

4.设幂级数的收敛半径为,则幂级数的收敛区间为.

5.微分方程用待定系数法确定的特解(系数值不求)的形式为.

二、选择题

1.函数在点处(

D

).

(A)无定义;

(B)无极限;

(C)有极限但不连续;

(D)连续.

2.设,则(

B

).

(A);

(B);

(C);

(D).

3.两个圆柱体,公共部分的体积为(

B

).

(A);

(B);

(C);

(D).

4.若,,则数列有界是级数收敛的(

A

).

(A)充分必要条件;

(B)充分条件,但非必要条件;

(C)必要条件,但非充分条件;

(D)既非充分条件,又非必要条件.

5.函数(为任意常数)是微分方程的(

C

).

(A)通解;

(B)特解;

(C)是解,但既非通解也非特解;

(D)不是解.

三、求曲面上点处的切平面和法线方程.

解:

切平面为

法线为

四、求通过直线

的两个互相垂直的平面,其中一个平面平行于直线.

解:设过直线的平面束为

第一个平面平行于直线,

即有

从而第一个平面为

第二个平面要与第一个平面垂直,

也即

从而第二个平面为

五、求微分方程的解,使得该解所表示的曲线在点处与直线相切.

解:直线为,从而有定解条件,

特征方程为

方程通解为,由定解的初值条件

,由定解的初值条件

从而,特解为

六、设函数有二阶连续导数,而函数满足方程

试求出函数.

解:因为

特征方程为

七、计算曲面积分

其中是球体与锥体的公共部分的表面,,,是其外法线方向的方向余弦.

解:两表面的交线为

原式,投影域为,

用柱坐标

原式

另解:用球坐标

原式

八、试将函数展成的幂级数(要求写出该幂级数的一般项并指出其收敛区间).

解:

九、判断级数的敛散性.

解:

当,级数收敛;当,级数发散;

当时级数收敛;当时级数发散

十、计算曲线积分,其中为在第一象限内逆时针方向的半圆弧.

解:再取,围成半圆的正向边界

原式

十一、求曲面:到平面:的最短距离.

解:问题即求在约束下的最小值

可先求在约束下的最小值点

时,

这也说明了是不可能的,因为平面与曲面最小距离为。

第五篇:大一高数总结

---姓名:孙功武 学号:1506011012 转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。

有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。

首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。

其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

然后,要把握课堂。课堂上老师讲的每一句话都是有可能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。

最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。

下面是我对这学期的学习重点的一些总结:

一、函数

1.判断两个函数是否相同

一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。 2.判断函数奇偶性

判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和还是奇(偶)函数;两个奇函数积是偶函数;两个偶函数之积仍是偶函数;一积一偶之积是奇函数。

3.求极限的方法 利用极限的四则运算法则、性质以及已知的极限求极限。 ①

lim f(x)(1)limf(x)g(x)lim g(x)AB;(2)lim f(x)g(x)lim f(x)lim g(x)AB;(3)当B0时,limf(x)lim f(x)A;g(x)lim g(x)B(4)lim kf(x)klim f(x)kA;(k为常数)

lim f(x)An;(k为常数)(5)limf(x)nn(6)limnf(x)nlim f(x)nA;(f(x)0)(n为正整数)。②

sinx1;x0x 1n(2)lim(1)e。x0n(1)lim4.判断函数的连续性

函数股连续的定义:设函数y=f(x)在点x0的某个临域内有意义,如果当自变量的增量xx-x0趋于0时,对应的函数的

f(x0x)0。那么就称增量yf(x0x)f(x0)也趋向0,即limx0函数y=f(x)在点x0出连续。

二、导数 1.求显函数导数; 2.求隐函数导数; 3.“取对数求导法”;

4.求由参数方程所表达的函数的导数; 5.求函数微分;

三、基本初等函数求导公式 0 x1(1)(C) (2)(x)axlna ex(3)(ax) (4) (ex)11  (5)(logax) (6) (lnx) xlnaxcosx sinx(7)(sinx) (8)(cosx)sec2x csc2x(9)(tanx) (10)(cotx)tan xseccot xcsc(11)(secx) x (12)(cscx) x

(13)(arcsinx)1(1-x2) (15)(arctanx)11x2

四、基本积分公式

(1)0dxC;z x1(3)xdx1C; (5)11x2dxarctanxC; (7)cosxdxsinxC; (9)dxcos2xsec2xdxtanxC;((11)sec xtan xdxsecxC; (13)exdxexC; (15)shxdxchxC;

五、常用积分公式

(14)(arccosx)1(1-x2) ( 16)(arccotx)11x2 2)kdxkxC(k为常数);(4)dxxln|x|C;(6)11x2dxarcsinxC;(8)cosxdxsinxC;

10)dxsin2xcsc2xdxcotxC;12)cscxcotxdxcscxC;xdxax14)alnaC;(16)chxdxshxC。( (( (1)tanxdxln|cosx|C;(2)cotxdxln|sinx|C;(3)secxdxln|secxtanx|C;(4)cscxdxln|cscxcotx|C;11xdxarctanC;a2x2aa11xa(6)2dxln||C;xa22axa1x(7)dxarcsinC;aa2x2(5)(8)(9)1a2x21x2a2dxln(xx2a2)C;dxln|xx2a2|C.

五、常微分方程

上一篇:公司月工作计划表下一篇:公司信息通报制度