同济高数下册总结

2022-07-17

总结是在项目、工作、时期后,对整个过程进行反思,以分析出有参考作用的报告,用于为以后工作的实施,提供明确的参考。所以,编写一份总结十分重要,以下是小编整理的关于《同济高数下册总结》,欢迎大家借鉴与参考,希望对大家有所帮助!

第一篇:同济高数下册总结

高数下册总结

篇一:高数下册总结

高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

非齐次方程y???py??qy?f(x)的特解y?

主要: 量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

二、多元函数微分学复习要点

1、显函数的偏导数的求法 在求

?z?x 量,对x求导,在求

?z?y 量,对y求导,所运

求导法则与求导公式. 2数的求法

u???x,y?,v???x,y?,则

?z?x ?z?u ?u?x ?z?v ?v?x ?z?y ?

的形式为:

一阶

1、可分离变、二阶常系数非齐次线性微分方程的特解

一、偏导数的求法 时,应将y看作常时,应将x看作常用的是一元函数的、复合函数的偏导设z?f?u,v?,, 3 ?z?u ? ?u?y ? ?z?v ? ?v?y 几种特殊情况:

1u???x?,v???x?,则2)z?f?x,v?,v???x,y?,则

?z?x dzdx???f?vdzdu???u?x ??z?v ?dvdx ?v?y ? ?f?x ?v?x ?z?y ? ?f?u ? 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?z?x ? dzdu ? ?u?x ?z?y ? dzdu ? ?u?y 设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则

?z?x fxfz ??

)z?f?u,v?,, )z?f?u?,u???x,y?, ?fz ?0?, ?z?y ?? fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出

2)方程组的情况 ?z?x (或 ?z?y ). ?f?x,y,u,v??0?z?z )即可. 由方程组?两边同时对x(或y)求导解出(或

?x?y??gx,y,u,v?0?

二、全微分的求法 方法1:利用公式du? ?u?x dx? ?u?y dy? ?u?z dz 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

??z du???u? dz?? ?z?dx??x?? ?z?v?z?y dv dy

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点 ?z???t??p0?x0,y0 ? ,z0?处的切线方向向量为t???t0?,? ?

?t0?,??t0??,切线方程为

x?x0 ??t0? ? y?y0 ? ?t0? ? z?z0 ? ?t0?

法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f? x,y,z??0,则在点p0?x0,y0,z0?处的法向量

?n? ?f x ,fy,fz ? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为 x?x0 fx?x0,y0,z0? ? y?y0 fy?x0,y0,z0? ? z?z0 fz?x0,y0,z0? 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0fx?x0,y0? ? y?y0fy?x0,y0? ?z?z0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0, fy ?x,y??0点? x0,y0 ? a?fxx ?x0 ,y0 ? b?fxy ?x0 ,y0 ? c?fyy ?x0,y0?. 2 c?b1 ?x ,y?取得极值,且当a?0时有极大值,当a?0 2则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b 2 ?0 ?x ,y?是否取得极值.

设函数z?f?x,y?,解出驻,记 , , )若a?0,则f 在点?x0,y0?处时有极小值.

) 若ac?b2?0,,不能判定f 在点?x0,y0?处 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组

篇二:高数下册总结(同济第六版) 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

? 非齐次方程y???py??qy?f(x)的特解y的形式为:

主要: 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 在求

?z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y 用的是一元函数的求导法则与求导公式.

2、复合函数的偏导数的求法

设z?f?u,v?,u???x,y?,v???x,y?,则

?z?z?u?z?v?z?z?u?z?v , ?x?u?x?v?x?y?u?y?v?y 几种特殊情况: 1)z?f?u,v?,u???x?,v???x?,则2)z?f dzdz?u?zdv dxdu?x?vdx?f?v ?x,v?则?x??x??v??x,

?z?f ?z?f?v?? ?y?u?y 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?zdz?u?zdz?u, ?xdu?x?ydu?y 方程f?x,y,z??0唯一确定的隐函数,则

f?z ??x ?xfz ?fz ?z ?0? ?y fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出 2由方程组? ?z?z( ?f?x,y,u,v??0?z?z 求导解出(或)即可. ?x?y?g?x,y,u,v??0 方法1:利用公式du? ?u?u?u

,v???x,y?,)z?f?u?,u???x,y?设z?z?x,y?是由, ?? )方程组的情况 或). ?x?y 两边同时对x(或y)

二、全微分的求法 dx?dy?dz ?x?y?z 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

?z??z du?dv??v??u dz?? ?z?z?dx?dy ?y???x

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点

?z???t?? ? p0?x0,y0,z0?处的切线方向向量为t???t0?,??t0?,??t0?,切线方程为

?? x?x0y?y0z?z0 ?? ?t0?t0?t0法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量

? n??fx,fy,fz? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0fyx0,y0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,

fy?x,y??0,解出驻点?x0,y0? ,记a?fxx?x0,y0?,b?fxy?x0,y0?,

c?fyy?x0,y0?. c?b1)若a 时有极小值. 2) 若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值. 2 2 ?0,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组 篇三:高数下册公式总结

第八章 向量与解析几何

第十章 重积分

第十一章曲线积分与曲面积分

篇四:高数下册积分方法总结

积分方法大盘点

现把我们学了的积分方法做个大总结。

1、二重积分

1.1 x型区域上二重积分(必须的基本方法)

(1)后x先y积分,d往x轴上的投影得区间[a,b]; (2)x [a,b],x=x截d得截线y1(x)#yy2(x)(小y边界y=y1(x) 大y边界y=y2(x));

(3)b y(x)蝌f(x,y)dxdy= 蝌dx 2f(x,y)dya yd 1(x) 1.2 y型区域上二重积分(必须的基本方法)

(1)后y先x积分,d往y轴上的投影得区间[c,d]; (2)y [c,d],y=y截d得截线x1(y)#xx2(y)(小x边界x=x1(y) 大x边界x=x2(y));

(3)d x蝌f(x,y)dxdy= 蝌dy 2(y)f(x,y)dxc x d 1(y) 1.2 极坐标二重积分(为简单的方法)

(1)总是后q先r积分; (2)b r蝌f(x,y)ds= 蝌dq 2(q)f(rcosq,rsinq)rdra r(q) d 1其中,在d上a是最小的q,b是最大的q;q [a,b],射线q=q截d得截线r1(q)#r r2(q)(小r边界r=r1(q)大r边界r=r2(q))。用坐标关系

x=rcosq,y=rsinq和面积元素ds=dxdy=rdqdr代入(多一个因子r)。

当积分区域d的边界有圆弧,或被积函数有x2+y2 时,用极坐标计算二重

积分特别简单。

离 散

数 学

2、三重积分 2.1 二套一方法(必须的基本方法) (1)几何准备

(i) 将积分区域w投影到xoy面,得投影区域dxy;

(ii) 以dxy的边界曲线为准线,作一个母线平行于z轴的柱面.柱面将闭区域w的边界曲面分割为上、下两片曲面s2:z=z2(x,y()大z边界);

s 1 :z=z1(x,y()小z边界)

((x,y) dxy,过(x,y)点平行于z轴的直线截w得截线z1(x,y)#z z2(x,y))

; (2)z蝌蝌 f(x,y,z)dxdydz=蝌

dxdy2(x,y)f(x,y,z)dzz。

w d1(x,y) xy 还有两种(w往xoz或yoz面投影)类似的二套一方法(举一反三)。 2.2 一套二方法(为简单的方法) (1)几何准备

(i)把w往z投影得轾犏臌 c,d; (ii)任意给定z?轾犏臌

c,d,用平面z=z截w得截面(与z有关)dz; (2)d蝌蝌

f(x,y,z)dxdydz=dz f(x,y,z)dxdy, c 蝌 w dz 还有两种(w往x或y轴投影)类似的一套二方法(举一反三)。 2.3 柱面坐标计算三重积分(为简单的方法)

(1)把积分写成二套一zx,y)蝌蝌

f(x,y,z)dxdydz=蝌

dxdy2(f(x,y,z)dzz,y) w d1(xxy (2)用极坐标计算外层的二重积分

z蝌蝌f(x,y,z)dv= 蝌

dxdy2(x,y)f(x,y,z)dz zw d1(x,y) xyb r2(q)zrcosq,rsinq) = 蝌dqrdr f(rcosq,rsinq,z)dz a r 2(1(q) z 1 (rcosq,rsinq) (注意:里层的上下限也要用x=rcosq,y=rsinq代入)。(当用极坐标计算

外层二重积分简单时。)

还有两种(w往xoz或yoz面投影的二套一)类似的极坐标计算方法(举

第1章

集 合

离 散

数 学

2.3 三重积分(为简单的方法)

x=rcosqsinjy,=rsiqn sjinz=,r jc dv=dxdydz=r 2 sinjdrdqdj个因子r 2 sinj

f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdrdqdj w w 下限变成三次积分(总是先r后j最后q积分)

f(x,y,z)dvw b jr dq2(q)dj 2(q,j)

一反三)。

球面坐标计算(1)用坐标关系和o体积元素 (多一)代入

蝌蝌f(x,y,z)dv=; (2)三种情况定上蝌

=蝌f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdr a j 1(q) r 1 (q,j) 当w是课堂讲的三种情况或被积函数有x2+y2+z2时用球面坐标计算简单。 第1章

集 合

3曲线积分 3.1 平面情形

(1)准备 ?l:?x=x(t), ?y=y(t)(t?[a,b])ds=

;

?? ,f(x,y)ds= f(x(t),y(tt l a l:?l:y=y(x)(x [a,b])时用x作?í

x=x ?(x?[a,b])当??y=y(x)ì?l:x= x(y)( y [c,数l:?í

x=x(y) ??? y=y(y?[c,d])3.2 空间情形

、第一类对弧长的ì

í

,(2)代入b蝌。 ì

当参数;时用d]y作参。 ì??x=x(t)

(1)准备 l:? ? íy=y(t)(t [a,b? ]),ds=

;

z=z(t)蝌f(x,y,z)ds= f(x(t),y(t),z(tt l a y=y(x)??x=x ?(x?[a,b])作参数l:?x)x( ab[,;??z=z(x)í?y=y( ] ?? z=z(x) l:?? x=x(y) ?z=z(y(y?[c,d])时用y作参数

l:?? )? y=y(y [c,d]) z=z(y)ì?x=x(??x=x(z) l:? z) ?(z?[c,d])作参数l:??í?? y=y(z)? y=y(z)(z [c,d])。 z=z 间的特例。

篇五:高数下册复习知识点总结

下册复习知识点总结:

(2)代入b。ìì 当l:???í时用x当?? ìì??x=x(y) í í?? ;当 ìí 时用z平面是空高数 8空间解析几乎与向量代数

1. 给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。

2. 向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。 3. 了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。空间曲线在坐标平面上的投影方程。

4. 平面方程和直线方程及其求法。

5. 平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6. 点到直线以及点到平面的距离。

9 多元函数微分法及其应用

1. 有关偏导数和全微分的求解方法,偏导要求求到二阶。

2. 复合函数的链式法则,隐函数求导公式和方法。

3. 空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。 4. 利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。

10 重积分

1. 二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。

2. 选择合适的坐标系计算三重积分。

3. 利用二重积分计算曲面的面积;利用三重积分计算立体体积;

4. 利用质心和转动惯量公式求解问题。

11曲面积分与曲线积分

1. 两类曲线积分的计算与联系;

2. 两类曲面积分的计算与联系;

3. 格林公式和高斯公式的应用。

第二篇:大学高数下册试题及答案

《高等数学》(下册)测试题一

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设有直线

及平面,则直线(

A

)

A.平行于平面;

B.在平面上;

C.垂直于平面;

D.与平面斜交.

2.二元函数在点处(

C

)

A.连续、偏导数存在;

B.连续、偏导数不存在;

C.不连续、偏导数存在;

D.不连续、偏导数不存在.

3.设为连续函数,,则=(

B

)

A.;

B.;

C.

D..

4.设是平面由,,所确定的三角形区域,则曲面积分

=(

D

)

A.7;

B.;

C.;

D..

5.微分方程的一个特解应具有形式(

B

)

A.;

B.;

C.;

D..

二、填空题(每小题3分,本大题共15分)

1.设一平面经过原点及点,且与平面垂直,则此平面方程为;

2.设,则=;

3.设为正向一周,则

0

;

4.设圆柱面,与曲面在点相交,且它们的交角为,则正数

;

5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有

1

.

三、(本题7分)设由方程组确定了,是,的函数,求及与.

解:方程两边取全微分,则

解出

从而

四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.

解:

从而

五、(本题8分)计算累次积分

).

解:依据上下限知,即分区域为

作图可知,该区域也可以表示为

从而

六、(本题8分)计算,其中是由柱面及平面围成的区域.

解:先二后一比较方便,

七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.

解:由对称性

从而

八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,取

九、(本题8分)计算,其中为半球面上侧.

解:补取下侧,则构成封闭曲面的外侧

十、(本题8分)设二阶连续可导函数,适合,求.

解:

由已知

十一、(本题4分)求方程的通解.

解:解:对应齐次方程特征方程为

非齐次项,与标准式

比较得,对比特征根,推得,从而特解形式可设为

代入方程得

十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.

解:设点的坐标为,则问题即在求最小值。

令,则由

推出,的坐标为

附加题:(供学习无穷级数的学生作为测试)

1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?

解:由于,该级数不会绝对收敛,

显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛

2.求幂级数的收敛区间及和函数.

解:

从而收敛区间为,

3.将展成以为周期的傅立叶级数.

解:已知该函数为奇函数,周期延拓后可展开为正弦级数。

《高等数学》(下册)测试题二

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设,且可导,则为(

D

)

A.;;

B.;

C.;

D..

2.从点到一个平面引垂线,垂足为点,则这个平面的方

程是(

B

)

A.;

B.;

C.;

D..

3.微分方程的通解是(

D

)

A.;

B.;

C.;

D..

4.设平面曲线为下半圆周,则曲线积分等于(

A

)

A.;

B.;

C.;

D..

5.累次积分=(

A

)

A.;

B.;

C.;

D..

二.填空题(每小题5分,本大题共15分)

1.曲面在点处的切平面方程是;.

2.微分方程的待定特解形式是;

3.设是球面的外测,则曲面积分

=.

三、一条直线在平面:上,且与另两条直线L1:及L2:(即L2:)都相交,求该直线方程.(本题7分)

解:先求两已知直线与平面的交点,由

由两点式方程得该直线:

四、求函数在点处的梯度及沿梯度方向上函数的方向导数.(本题7分)

解:

沿梯度方向上函数的方向导数

五、做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?(本题8分)

解:设底圆半径为,高为,则由题意,要求的是在条件下的最小值。

由实际问题知,底圆半径和高分别为才能使用料最省

六、设积分域D为所围成,试计算二重积分.(本题8分)

解:观察得知该用极坐标,

七、计算三重积分,式中为由所确定的固定的圆台体.(本题8分)

解:解:观察得知该用先二后一的方法

八、设在上有连续的一阶导数,求曲线积分,其中曲线L是从点到点的直线段.(本题8分)

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,

取折线

九、计算曲面积分,其中,为上半球面:.(本题8分)

解:由于,故

为上半球面,则

原式

十、求微分方程

的解.(本题8分)

解:

由,得

十一、试证在点处不连续,但存在有一阶偏导数.(本题4分)

解:沿着直线,

依赖而变化,从而二重极限不存在,函数在点处不连续。

十二、设二阶常系数线性微分方程的一个特解为,试确定常数,并求该方程的通解.(本题4分)

解:由解的结构定理可知,该微分方程对应齐次方程的特征根应为,否则不能有这样的特解。从而特征方程为

因此

为非齐次方程的另一个特解,

故,,通解为

附加题:(供学习无穷级数的学生作为测试)

1.求无穷级数的收敛域及在收敛域上的和函数.

解:

由于在时发散,在时条件收敛,故收敛域为

看,

从而

2.求函数在处的幂级数展开式.

解:

3.将函数展开成傅立叶级数,并指明展开式成立的范围.

解:作周期延拓,

从而

《高等数学》(下册)测试题三

一、填空题

1.若函数在点处取得极值,则常数.

2.设,则.

3.设S是立方体的边界外侧,则曲面积分

3

.

4.设幂级数的收敛半径为,则幂级数的收敛区间为.

5.微分方程用待定系数法确定的特解(系数值不求)的形式为.

二、选择题

1.函数在点处(

D

).

(A)无定义;

(B)无极限;

(C)有极限但不连续;

(D)连续.

2.设,则(

B

).

(A);

(B);

(C);

(D).

3.两个圆柱体,公共部分的体积为(

B

).

(A);

(B);

(C);

(D).

4.若,,则数列有界是级数收敛的(

A

).

(A)充分必要条件;

(B)充分条件,但非必要条件;

(C)必要条件,但非充分条件;

(D)既非充分条件,又非必要条件.

5.函数(为任意常数)是微分方程的(

C

).

(A)通解;

(B)特解;

(C)是解,但既非通解也非特解;

(D)不是解.

三、求曲面上点处的切平面和法线方程.

解:

切平面为

法线为

四、求通过直线

的两个互相垂直的平面,其中一个平面平行于直线.

解:设过直线的平面束为

第一个平面平行于直线,

即有

从而第一个平面为

第二个平面要与第一个平面垂直,

也即

从而第二个平面为

五、求微分方程的解,使得该解所表示的曲线在点处与直线相切.

解:直线为,从而有定解条件,

特征方程为

方程通解为,由定解的初值条件

,由定解的初值条件

从而,特解为

六、设函数有二阶连续导数,而函数满足方程

试求出函数.

解:因为

特征方程为

七、计算曲面积分

其中是球体与锥体的公共部分的表面,,,是其外法线方向的方向余弦.

解:两表面的交线为

原式,投影域为,

用柱坐标

原式

另解:用球坐标

原式

八、试将函数展成的幂级数(要求写出该幂级数的一般项并指出其收敛区间).

解:

九、判断级数的敛散性.

解:

当,级数收敛;当,级数发散;

当时级数收敛;当时级数发散

十、计算曲线积分,其中为在第一象限内逆时针方向的半圆弧.

解:再取,围成半圆的正向边界

原式

十一、求曲面:到平面:的最短距离.

解:问题即求在约束下的最小值

可先求在约束下的最小值点

时,

这也说明了是不可能的,因为平面与曲面最小距离为。

第三篇:大一高数总结

---姓名:孙功武 学号:1506011012 转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。

有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。

首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。

其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

然后,要把握课堂。课堂上老师讲的每一句话都是有可能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。

最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。

下面是我对这学期的学习重点的一些总结:

一、函数

1.判断两个函数是否相同

一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。 2.判断函数奇偶性

判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和还是奇(偶)函数;两个奇函数积是偶函数;两个偶函数之积仍是偶函数;一积一偶之积是奇函数。

3.求极限的方法 利用极限的四则运算法则、性质以及已知的极限求极限。 ①

lim f(x)(1)limf(x)g(x)lim g(x)AB;(2)lim f(x)g(x)lim f(x)lim g(x)AB;(3)当B0时,limf(x)lim f(x)A;g(x)lim g(x)B(4)lim kf(x)klim f(x)kA;(k为常数)

lim f(x)An;(k为常数)(5)limf(x)nn(6)limnf(x)nlim f(x)nA;(f(x)0)(n为正整数)。②

sinx1;x0x 1n(2)lim(1)e。x0n(1)lim4.判断函数的连续性

函数股连续的定义:设函数y=f(x)在点x0的某个临域内有意义,如果当自变量的增量xx-x0趋于0时,对应的函数的

f(x0x)0。那么就称增量yf(x0x)f(x0)也趋向0,即limx0函数y=f(x)在点x0出连续。

二、导数 1.求显函数导数; 2.求隐函数导数; 3.“取对数求导法”;

4.求由参数方程所表达的函数的导数; 5.求函数微分;

三、基本初等函数求导公式 0 x1(1)(C) (2)(x)axlna ex(3)(ax) (4) (ex)11  (5)(logax) (6) (lnx) xlnaxcosx sinx(7)(sinx) (8)(cosx)sec2x csc2x(9)(tanx) (10)(cotx)tan xseccot xcsc(11)(secx) x (12)(cscx) x

(13)(arcsinx)1(1-x2) (15)(arctanx)11x2

四、基本积分公式

(1)0dxC;z x1(3)xdx1C; (5)11x2dxarctanxC; (7)cosxdxsinxC; (9)dxcos2xsec2xdxtanxC;((11)sec xtan xdxsecxC; (13)exdxexC; (15)shxdxchxC;

五、常用积分公式

(14)(arccosx)1(1-x2) ( 16)(arccotx)11x2 2)kdxkxC(k为常数);(4)dxxln|x|C;(6)11x2dxarcsinxC;(8)cosxdxsinxC;

10)dxsin2xcsc2xdxcotxC;12)cscxcotxdxcscxC;xdxax14)alnaC;(16)chxdxshxC。( (( (1)tanxdxln|cosx|C;(2)cotxdxln|sinx|C;(3)secxdxln|secxtanx|C;(4)cscxdxln|cscxcotx|C;11xdxarctanC;a2x2aa11xa(6)2dxln||C;xa22axa1x(7)dxarcsinC;aa2x2(5)(8)(9)1a2x21x2a2dxln(xx2a2)C;dxln|xx2a2|C.

五、常微分方程

第四篇:高数下公式总结

高等数学下册公式总结

1、N维空间中两点之间的距离公式:p(x1,x2,...,xn),Q(y1,y2,...,yn)的距离

PQ(x1y1)2(x2y2)2...(xnyn)2

2、多元函数zf(x,y)求偏导时,对谁求偏导,就意味着其它的变量都暂时

看作常量。比如,就可以了。 z表示对x求偏导,计算时把y 当作常量,只对x求导 x2z2z

3、二阶混合偏导数在偏导数连续的条件下与求导次序无关,即。 xyyx

4、多元函数zf(x,y)的全微分公式: dzzzdxdy。 xy

5、复合函数zf(u,v),u(t),v(t),其导数公式:

dzzduzdv。 dtudtvdtFXdy,Fy分别表示对x,y

6、隐函数F(x,y)=0的求导公式: ,其中FxdXFy求偏导数。

方程组的情形:{F(x,y,u,v)0的各个偏导数是: G(x,y,u,v)0FFxvGGuvxv,xxFFuvGGuvFFuxGGuux,yFFuvGGuvFFyvGGyvFFuvGGuv,

v。 yFFuvGGuvFFyuGGuy

7、曲线的参数方程是:x(t),y(t),z(t),则该曲线过点

M(x0,y0,z0)的法平面方程是:

(t0)(xx0)(t0)(yy0)(t0)(zz0)0

切线方程是:(xx0)(yy0)(zz0)。 (t0)(t0)(t0)

8、曲面方程F(x,y,z)=0在点M(x0,y0,z0)处的 法线方程是: (xx0)(yy0)(zz0), FxFyFz(xx0)Fy(yy0)Fz(zz0)0。 切平面方程是:Fx

9、求多元函数z=f(x , y)极值步骤:

第一步:求出函数对x , y 的偏导数,并求出各个偏导数为零时的对应的x,y的值 第二步:求出fxx(x0,y0)A,fxy(x0,y0)B,fyy(x0,y0)C

第三步:判断AC-B2的符号,若AC-B2大于零,则存在极值,且当A小于零是极大值,当A大于零是极小值;若AC-B2小于零则无极值;若AC-B2等于零则无法判断

10、二重积分的性质: (1)(2)(3) kf(x,y)dkf(x,y)d

DD[f(x,y)g(x,y)]df(x,y)dg(x,y)d

DDDDD1D2f(x,y)df(x,y)df(x,y)d

(4)若f(x,y)g(x,y),则(5)

f(x,y)dg(x,y)d

DDds,其中s为积分区域D的面积

D(6)mf(x,y)M,则ms(7)积分中值定理:

f(x,y)dMs

Df(x,y)dsf(,),其中(,)是区域D中的点

DdP2(y)

11、双重积分总可以化简为二次积分(先对y,后对x的积分或先对x,后对y的积分形式)bP2(x)f(x,y)ddxDaP1(x)f(x,y)dydycP1(y)f(x,y)dx,有的积分可以随意选择积分次序,但是做题的复杂性会出现不同,这时选择积分次序就比较重要,主要依据通过积分区域和被积函数来确定

12、双重积分转化为二次积分进行运算时,对谁积分,就把另外的变量都看成常量,可以按照求一元函数定积分的方法进行求解,包括凑微分、换元、分步等方法

13、曲线、曲面积分:

(1)对弧长的曲线积分的计算方法:设函数f(x,y)在曲线弧L上有定义且连续,L的参数方程为x(t)y(t),(t),则

Lf(x,y)dsf[(t),(t)]2(t)2(t)dt

(2)格林公式:(DQP)dxdyPdxQdy xyLL

14、向量的加法与数乘运算:a(x1,y1,z1),b(x2,y2,z2),则有ka(kx1,ky1,kz1), xyzab(x1x2,y1y2,z1z2),若ab,则111

x2y2z2

15、向量的模、数量积、向量积:若a(x1,y1,z1),b(x2,y2,z2),则向量a的模长222ax1y1z1;数量积(向量之间可以交换顺序,其结果是一个数值)ab=

bax1x2y1y2z1z2=baabcosa,b,其中a,b表示向量b,a的夹角,且若ab,则有ab=0;向量积(向量之间不可以交换顺序,其结果仍是一个向量)ijkabx1y1z1(y1z2y2z1)i(x2z1x1z2)j(x1y2x2y1)k,其中i,j,k是x轴、x2y2z2y轴、z轴的方向向量

16、常数项无穷级数unu1u2u3...un...,令snu1u2u3...un称为无n1穷级数的部分和,若limsns,则称改级数收敛,否则称其为发散的。其中关于无穷级数x的一个必要非充分地定理是:若un收敛,则必有limun0

n1x

17、三种特殊的无穷级数: (1)调和级数1是发散的,无须证明就可以直接引用 n1nn(2)几何级数aq,当q1时收敛,当q1时发散

n1(3)p级数1,当p1时收敛,当p1时发散 pn1nn1

18、正项级数un的判敛方法:

(1)比较判敛法:若存在两个正项级数un,vn,且有vnun,若un收敛,则vn收

n1n1敛;若vn发散,则un发散

(2)比较判敛法的极限形式:若limunl,(l0),则un和vn具有相同的敛散性

xvnun1l,若l1,则原级数收敛,若l1,则原级

xun(3)比值判敛法:对于un, limn1数发散

19、交错级数(1)n1n1un的判敛方法:同时满足unun1及limun0,则级数收敛,否

x则原级数发散

20、绝对收敛和条件收敛:对于un,若un收敛,则称其绝对收敛;若un发散,

n1n

1n1



但是un收敛,则称其条件收敛

n1

21、函数项无穷级数形如:un(x)u1(x)u2(x)u3(x)...un(x)...,通常讨论的是

n1幂级数形如:anxa0a1xa2xa3x...anx...,

n0n23n(1)收敛半径及收敛区间:liman11,则收敛半径R,收敛区间则为(R,R),但

xan是要注意的是,收敛区间的端点是否收敛需要用常数项级数判敛方法验证

(2n1)xnn-1x(2)几种常见函数的幂级数展开式:e,sinx,(-1)n0n!n1(2n1)!x11x2nnx,(1)nxn ,cosx(1)n01xn0(2n)!1xn0n

22、常微分方程的类型及解题方法:

(1)可分离变量的微分方程:yf(x,y),总是可以分离变量化简为式,然后等式两边同时积分,即可求出所需的解

(2)齐次方程:yf(x,y),不同的是,等式右端的式子总是可以化简为f()的形式,令

dydx的形f(y)f(x)yxyu,则原方程化简为可分离变量方程形式uxuf(u)来求解 x(3)一阶线性微分方程:形如yp(x)yf(x)的方程,求解时首先求出该方程对应的齐次方程yp(x)y0的解ycQ(x),然后使用常熟变易法,令cu(x),把原方程的解yu(x)Q(x)带入原方程,求出u(x),再带入yu(x)Q(x)中,即求出所需的解

(4)全微分方程:形如p(x,y)dxQ(x,y)dy0的方程,只要满足

xyp(x,y)Q(x,y),yx则称其为全微分方程,其解为u0p(x,y)dxQ(x,y)dy

0(5)二阶微分方程的可降阶的三种微分方程:

第一种:yf(x)的形式,只需对方程连续两次积分就可以求出方程的解

第二种:yf(x,y)的形式,首先令yz,则原方程降阶为可分离变量的一阶微分方程zf(x,z)的形式,继续求解即可

第三种:yf(y,y)的形式,同样令yz,由于yzdzdzdydzy,所以dxdydxdy原方程转化为一阶微分方程

dzzf(y,z)的形式,继续求解即可 dy(6)二阶常系数齐次微分方程:ypyqy0,求解时首先求出该方程对应的特征方

r1x程r2prq0的解r1,r2,若实根rc2er2x;若实根r1r2,则解1r2,则解为yc1e为y(c1c2x)e1;若为虚根abi,则解为yeax(c1cosbxc2sinbx)

rx(8)二阶常系数非齐次微分方程:ypyqyPm(x)e,求解时先按(7)的方法求其rx对应的齐次微分方程的通解y1,然后设出原方程的特解y=xQm(x)erx,其中Qm(x)是和P含有相应的未知系数,而k根据特征方程的解r1,r2与r的关系取值,m(x)同次的多项式,若r与特征根不相等,则k取0;若r和一个特征根相等,则k取1;若r和特征根都相等,则k取2,将特解代入原方程求出相应的未知系数,最终原方程的解即通解加上特解,即

kyy1y

第五篇:大一高数学习总结

——姓名:刘禹尧

学号:13145222

转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是自己真的用心了。

有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。所以,我们要有信心去学好它时,就走好了第一步。

其次,课前预习很重要。每个人的学习习惯可能不同,有些人习惯预习,有些人觉得预习不适合自己。每次上新课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的先自己理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

然后,要把握课堂。课堂上老师讲的每一句话都有可能是很有用的,如果错过了就可能会使自己以后做某些题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。 此外,要以教材为中心。虽然说“尽信书不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点是便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。

最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题就能解决很多同类型的题了。

下面是我对这学期学习重点的一些总结:

1、判断两个函数是否相同

一个函数的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断函数表达式是否统一即可。

2、判断函数奇偶性

判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和仍是奇(偶)函数;两个奇函数之积是偶函数;两个偶函数之积仍是偶函数;一奇一偶之积是奇函数。

3、数列极限的求法

利用数列极限的四则运算法则、性质以及已知极限求极限。 (1) 若数列分子分母同时含n,则同除n的最高次项。

(2) 若通项中含有根式,一般采用先分子或分母有理化,再求极限的方法。 (3) 所求数列是无穷项和,通常先用等差或等比数列前n项求和公式求出,再求极限。

1 (4) 利用两边夹逼定理求数列极限,方法是将极限式中的每一项放大或缩小,并使放大、缩小后的数列具有相同的极限。通式为形如1的无穷次方的不定式,一般采用两个重要极限中等于e的那个式子求解。

4、函数极限的求法 (1)用数列求极限方法,

(2)在一点处连续,则在此处极限等于此处函数值,

(3)分段函数,在某点极限存在,则此处左右极限都存在且相等。

(4)利用无穷小量的特性以及无穷小量与无穷大量的关系求极限。即无穷小量与有界变量之积仍是无穷小量;有限个无穷小量之积仍是无穷小量;有限个无穷小量之代数和仍为无穷小量等。无穷小量与无穷大量的关系是互为倒数。

5、判断函数连续性

利用函数连续性的等价定义,对于分段函数在分界点的连续性,可用函数在某点连续的充要条件以及初等函数在其定义域内是连续函数的结论等来讨论函数的连续性。 两个重要函数

上一篇:铁路运输行业分析下一篇:团结诚信创新奋进