极限证明

2024-06-17

极限证明(精选16篇)

篇1:极限证明

1、用数列极限定义证明:limn20 nn27

n2时n2(1)2n(2)2nn22(3)24(4)|20|222 nn7n7n7nnn1nn

2上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是2

n4,即n>2;不等号(4)成立的条件是n[],故取N=max{7, 2

44[]}。这样当n>N时,有n>7,n[]。因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为n[],所以不等号(3)成立的条件是1

|不等式(4)能成立,因此当n>N时,上述系列不等式均成立,亦即当n>N时,在这个例题中,大量使用了把一个数字放大为n或n20|。n27n的方法,因此,对于具体的数,.......

2可把它放大为(k为大于零的常数)的形式 ......kn...............

n40 nn2n

1n4n4n4时nn2n2(1)|20|22 nn1nn1nn1n2n

22不等号(1)成立的条件是n[],故取N=max{4, []},则当n>N时,上面的不等式都成例

2、用数列极限定义证明:lim

立。

注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分。如: ................................

n2n1n

2n2n1n

nnn22

n(n1)2n

1(1)n

3、已知an,证明数列an的极限是零。2(n1)

(1)n1(1)1(2)

证明:0(设01),欲使|an0|||成立 22(n1)(n1)n1

11解得:n1,由于上述式子中的等式和不等号(1)对于任意的正整n1

1数n都是成立的,因此取N[1],则当n>N时,不等号(2)成立,进而上述系列等式由不等式

和不等式均成立,所以当n>N时,|an0|。

在上面的证明中,设定01,而数列极限定义中的是任意的,为什么要这样设定?这样设定是否符合数列极限的定义?

在数列极限定义中,N是一个正整数,此题如若不设定01,则N[1]就有1

可能不是正整数,例如若=2,则此时N=-1,故为了符合数列极限的定义,先设定01,这样就能保证N是正整数了。

那么对于大于1的,是否能找到对应的N?能找到。按照上面已经证明的结论,当=0.5时,有对应的N1,当n>N1时,|an0|<0.5成立。因此,当n>N1时,对于任意的大于1的,下列式子成立:

|an0|<0.5<1<,亦即对于所有大于1的,我们都能找到与它相对应的N=N1。因此,在数列极限证明中,可限小。只要对于较小的能找到对应的N,则对于较大的...

就自然能找到对应的N。

篇2:极限证明

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=/2<0,单调递减

且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=/2.解得A=√a

同理可求x0<√a时,极限亦为√a

综上,数列极限存在,且为√

(一)时函数的极限:

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

篇3:用论证法来证明数列极限的研究

首先, 针对学生高中所接触的极限的通俗定义来切入。即当n无限增大时, xn趋向于A。这种通俗的定义方法只能定性而不能定量来描述数列的极限过程, 如何把这两句话转化为ε-N精确定义是关键, 也就是说如何刻画“无限增大”和“无限趋向”这两种定性语言。首先看“xn趋向于A”这句话, 也就是说xn和A很接近, 那么我们任意的给定一个很小的正数ε, 都有|xn-A|比我们给定的ε还要小, 这里用到了ε的任意性;再看“当n无限增大时”这句话, 并不是n从第一项或者第二项就满足|xn-A|<ε的, 也就是说不是一开始就能保证数列{xn}逼近A, 而是找到一项N, 从第N项之后的那些xn满足|xn-A|<ε, 所以这里的N是存在性, 只要能说明N存在即可。注意到N的选取是受到ε的制约的, ε越小, 则N越大, 从而把极限的通俗定义转化为定量的精确定义。

下面将数列极限的定义叙述出来:当n>N时, 有|xn-A|<ε。由上面定义可以看出证明极限存在的步骤: (1) 从|xn-A|<ε中反解出n成立的条件; (2) 取出N。所以如何寻找N是证明的一个重点。在多数证明极限存在的题中, |xnA|<ε并不是直接可以解出来的, 将|xn-A|<ε适当放大到合适的g (n) , 通过g (n) <ε寻找N, 这样放缩后解题更为简单。下面用例子来说明如何放缩成最为合适的g (n) 。

在上述证明过程中, 不等式放大的地方需要注意以下问题。

其次, 在极限定义式中, ε是任意的, 可以任意大也可以任意小, 但是, 定义中我们主要强调的ε是的任意小性。因此通常限定0<ε<1, 但不能限定ε>1。

总之, 对于数列极限, 特别是用ε-N定义来证明时, 在证明过程中用到缩放时, 要层层剖析, 由浅入深, 注意放缩的技巧, 把握ε-N定义证明的内涵。

参考文献

[1]罗守山.高等数学[M].国家行政学院出版社, 2008.

[2]同济大学应用数学系.高等数学 (第六版) [M].北京:高等教育出版社, 2007.

[3]华东师范大学数学系.数学分析 (第三版) [M].北京:高等教育出版社, 2001.

篇4:从事物的极限到函数的极限

每年秋季刚考进大学的非文科一年级新生们都要学习高等数学这门课程的。而高等数学里第一个概念就是数学极限的定义,这对于学生是非常难学的,老师也感到难教,这是一个历史现象。

目前高中阶段在学习变化率导数时,也是有意地绕过极限定义的。可见极限定义困难的程度。

极限的定义为什么这样难教难学,就是因为我们对于它挖掘认识的不够。

我经过很长一段时间对极限琢磨与研究着,而今我有个重大发现,我窥视到了函数y=f(x)的极限就是函数y=f(x)在某种条件下的极大值ak 极小值。因为极大值、极小值是此前中学阶段里很普通而又很熟练的知识,在这个很熟练的基础上,学习极限就一帆风顺了。下面是我的设计:

一、事物的极限

极限并不陌生和抽象,在生产生活中,我们身边存在和充满着许多通俗易懂极限的问题。

比如我们行走在一座桥的前面看见路旁有个交通警示牌,牌上写着20t,这是什么意思呢?这是告诉人们经过桥梁的车辆及其载物不能超过20吨重,超过了20吨,桥梁就有可能断裂或倒塌,酿成危险性事故。这是桥梁负荷的极大限制值。

用火箭发射人造卫星,火箭的发射速度不能小于7.9km/s,小于这个发射速度,卫星就上不了天,这是卫星上天时火箭发射速度的极小限制值。

严寒的冬天,千里冰封,万里雪飘……必须要到晴天气温才能不断升高,达到0℃以上的时候,冰雪才能融化。这个0℃是标准大气压之下冰雪融化温度的极小限制值。

上面的极大限制值、极小限制值。取极大值、极小值的“极”字,取限制的“限”字。简称为极限。反过来,以后看到“极限”一词也可顾名思义地联想起极限里的“极”字就是极大值或极小值。“限”字就是限制。

这样一来,我们得到了含有变量的事物的极限定义。

定义:含有变量的事物在某种条件下变化着,它的极大限制值或极小限制值,就叫做这事物在该条件下的极限。

于是,上面桥梁的负荷极限是20t,火箭发射人造卫星能上天速度的极限是7.9km/s,冰雪在其温度不断升高时,保持固体形状的极限温度是0℃。

化合物H2O在其温度下降时,保持液体状态的极限温度是0℃,在其温度不断上升时,保持液体状态的极限温度是100℃。

篇5:定义证明二重极限

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0<户几卜8的一切点p,有不等式V(p)一周<。成立,则称A为函数人p)当p~p。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点p(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点p入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点p。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点p都适合/(p)一A卜

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=/2<0,单调递减

且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=/2.解得A=√a

同理可求x0<√a时,极限亦为√a

综上,数列极限存在,且为√

(一)时函数的极限:

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

篇6:极限 定义证明

x趋近于负1/2,2x加1分之1减4x的平方等于

2这两个用函数极限定义怎么证明?

x趋近于正无穷,根号x分之sinx等于0

证明:对于任意给定的ξ>0,要使不等式

|sinx/√x-0|=|sinx/√x|<ξ成立,只需要

|sinx/√x|^2<ξ^2,即sinx^2/x<ξ^2(∵x→+∞),则x>sinx^2/ξ^2,∵|sinx|≤1∴只需不等式x>1/ξ^2成立,所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|<ξ成立,同函数极限的定义可得x→+∞时,sinx/√x极限为0.x趋近于负1/2,2x加1分之1减4x的平方等于2

证明:对于任意给定的ξ>0,要使不等式

|1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|<ξ成立,只

需要0<|x+1/2|<ξ/2成立.所以取δ=ξ/2,则当0<|x+1/2|<δ时,必有

|1-4x^2/2x+1-2|=|2x+1|<ξ,由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2.注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0.记g(x)=lim^(1/n),n趋于正无穷;

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)

注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)

同理,存在Ni,当x>Ni时,0<=fi(x)

取N=max{N1,N2...Nm};

那么当x>N,有

(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n

所以a/M<=^(1/n)

对n取极限,所以a/M<=g(x)N时成立;

令x趋于正无穷,a/M<=下极限g(x)<=上极限g(x)<=b;

注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。

令M趋于正无穷,b趋于a;

有a<=下极限g(x)<=上极限g(x)<=a;

这表明limg(x)=a;

证毕;

证明有点古怪是为了把a=0的情况也包含进去。

还有个看起来简单些的方法

记g(x)=lim^(1/n),n趋于正无穷;

g(x)=max{f1(x),....fm(x)};

然后求极限就能得到limg(x)=max{a1,...am}。

其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。

有种简单点的方法,就是

max{a,b}=|a+b|/2+|a-b|/2从而为简单代数式。

多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式,故极限可以放进去。

2一)时函数的极限:

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

篇7:证明极限不存在

如图用定义证明极限不存在~谢谢!!

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,

使|sin[1/x1(n)]-L|<1/3,

和|sin[1/x2(n)]-L|<1/3,

同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

篇8:关于一个重要极限的两种证明方法

关键词:极限,证明,单调有界定理

0引言

1预备知识

引理1[5]设实数x>-1, n为正整数, 则有

引理2[6]对于任意正实数α1, α2, …, αn;β1, β2, …, βn有

2两种证明方法

证法2在引理2中, 当n=2时可得

令 (2) 中α1=2, α2=α3=…=αn=1.β1=β2=…=βn=1, 则

参考文献

[1]同济大学数学系, 编.高等数学[M].6版.北京:高等教育出版社, 2007:52-53.

[2]华东师范大学数学系, 编.数学分析[M].4版.北京:高等教育出版社, 2006:56-57.

[3]崔德旺, 何万生, 夏鸿鸣, 等.关于极限lim n→∞n1+1nn=e存在的三种新的证明n[J].天水师范学院学报, 2009, 29 (2) :9-10.

[4]杨华.一个重要极限lim n1+hn=e的新解[J].重庆工学院学报:自然科学版, n→02008, 22 (6) :157-158.

[5]吴新仁, 陆秀丽.数学分析原理[M].北京:人民教育出版社, 1979:36-40.

篇9:如何证明极限不存在

若存在实数L,使limsin(1/x)=L,取ε=1/2,在x=0点的任意小的邻域X内,总存在整数n,①记x1(n)=1/(2nπ+π/2)∈X,有sin=1,②记x2(n)=1/(2nπ-π/2)∈X,有sin=-1,使|sin-L|<1/3,和|sin-L|<1/3,同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L成立的实数L不存在。

反证法:

一个数列{an}极限存在,另一个数列{bn}极限不存在假设两数列之和{cn}的极限存在,那么bn=cn-an极限也存在(两个数列和的极限等于两个数列极限的和)

矛盾

所以原命题成立

令y=x,lim(x,y)趋于(0,0)xy/x+y

=lim(x趋于0)x^2/(2x)=0

令y=x^2-x,lim(x,y)趋于(0,0)xy/x+y

=lim(x趋于0)x^3-x^2/x^2=-1

两种情况极限值不同,故原极限不存在2答案:首先需要二项式定理:

(a+b)^n=∑C(i=0–i=n)nia^(n-i)*b^i(式一)

用数学归纳法证此定理:

n=1(a+b)^1a^(1-0)*b^0+a^(1-1)*b^1

a+b

故此,n=1时,式一成立。

设n1为任一自然数,假设n=n1时,(式一)成立,即:

(a+b)^n1=∑C(i=0–i=n1)n1ia^(n1-i)*b^i(式二)

则,当n=n1+1时:

式二两端同乘(a+b)

*(a+b)=*(a+b)

=(a+b)^(n1+1)=∑C(i=0–i=(n1+1))(n1+1)ia^((n1+1)-i)*b^i(据乘法分配律)

因此二项式定理(即式一成立)

下面用二项式定理计算这一极限:

(1+1/n)^n(式一)

用二项式展开得:

(1+1/n)^n=1^n+(n/1)(1/n)+*(1/n)^2+*(1/n)^3+…+*(1/n)^(n-2)+*(1/n)^(n-1)+*(1/n)^n

由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n-+∞,得0。因此总的结果是当n-+∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:

(1+1/n)^n=1+1+1/2!+1/3!+1/4!+1/5!+1/6!+…+1/n!(式二)

篇10:两个重要极限的证明

1.证明:lim

sinxx

x0

1

证明:如图(a)作单位圆。当0

12x

2

时,显然有ΔOAD面积<扇形OAD面积<ΔOAB面积。

xsinx

1cosx

tgx,sinx

2

或1

sinxx

cosx

2

x0

时也成立。

图(a)

故(1)式对一切满足不等式0|x|的x都成立。

sinxx

1。

由limcosx=1及函数极限的迫敛性定理立刻可得lim

x0

x0

函数f(x)=

sinxx的图象如图(b)所示。

2.证明:lim(1)n存在。

n

n

证明:先建立一个不等式,设b>a>0,于是对任一自然数n有

b

n1

图(b)

n1

a

n1

ba

(n1)b或b

n

n1

a

n1

(n1)b(ba),整理后得不等式a

n(1)b[(n1)anb]。

n

令a=1+故有(1

1n1)

n1,b=1+

1n)

1n

n,将它们代入(1)。由于(n1)anb(n1)(1

1n1)n(1

1n)1,n1

(1

12n,这就是说{(1)n}为递增数列。

n

12n)

再令a=1,b=1+代入(1)。由于(n1)anb(n1)n(1

12n)

2n,故有1(1

12n)

n

12,2(1

12n1n)

n。

不等式两端平方后有4(1,它对一切自然数n成立。联系数列的单调性,由此又推得数列{(1)n}

是有界的。于是由单调有界定理知道极限lim(1)n是存在的。

n

n

3.证明:lim(1)xe。

x

x

证明:所求证的极限等价于同时成立下述两个极限:

x

lim(1

1x)e

x

(1)

x

lim(1

1x)e

x

(2)

现在先应用2中数列极限lim(1)ne,证明(1)式成立。

n

n

设n≤x

1n1

1

1x

1

1n

及(1

1n1)

n

1n1)(1

n

1x)(1

x

1n)

n1,(3)

作定义在[1,+)上的阶梯函数。f(x)(1,n≤x

n

由(3)有f(x)<(1)xg(x),x∈[1,)。由于limf(x)lim(1

x

x

n

11n1

(1)lim

n

n

n1

11

n)

n1

e

xlimg(x)lim(1n1n)n1lim(1n1n)(1n1

n)e,根据迫敛性定理便得(1)式。

y)y现在证明(2)式。为此作代换x=-y,则(1)x(1x(11

y1)(1y1

y1)y1(11

y1)

因为当x→-∞时,有y-1→+∞,故上式右端以e为极限,这就证得lim(1)xe。

x1x

以后还常常用到e的另一种极限形式lim(1a)ae a0

1x(4)1

篇11:用定义证明函数极限方法总结

用定义证明函数极限方法总结:

用定义来证明函数极限式limf(x)c,方法与用定义证明数列极限式类似,只是细节xa

不同。

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xah(),从而得h()。

方法2:将f(x)c放大成xa,解xa,得xah(),从而得

h()。

部分放大法:当f(x)c不易放大时,限定0xa1,得f(x)cxa,解xa,得:xah(),取min1,h()。

用定义来证明函数极限式limf(x)c,方法: x

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xh(),从而得Ah()。

方法2:将f(x)c放大成xa,解xa,得xh(),从而得

Ah()。

部分放大法:当f(x)c不易放大时,限定xA1,得f(x)cxa,解xa,得:xh(),取AmaxA1,h()。

平行地,可以写出证明其它四种形式的极限的方法。

例1 证明:lim(2x3)7。x2

证明:0,要使:

(2x3)72x2,只要 2x2,即0x2

取2,

2,即可。

x212。例2 证明:lim2x12xx13

x1x212x12分析:因为,放大时,只有限制22xx132x1332x1

0x1,即0x2,才容易放大。

证明:0,限制0x1,即0x2,要使;

x1x1x1x1x212x12

,只要

32x2x132x1332x132x13

即0x3,取min(1,3),即可。

例3

证明:(a1)。

xa

证明:0,限制0xa

1a1a

1,要使:,所以x

22

,只要

1a,,即可。,取min,即0xa

22



x3,x1

例4 设f(x),证明:limf(x)1。

x1

2,x1

证明:当x1时,f(x)1x1x1xx1

限制0x1,则xx112,xx17。0,要使:

f(x)1x1x2x17x1,只要7x,即x1

7,取



min,当0x1时,有:

7

f(x),limf(x)1

x1

说明:这里限制自变量x的变化范围0x1,必须按自变量x的变化趋势来设计,xa时,只能限制x在a点的某邻域内,不能随便限制!

错解:设x1,则xx13,要使:

f(x)1x1x2x13x1,只要0x1

,取min1,,3

当0x1时,有:f(x)1。limf(x)1。

x1

例5 证明:lim

1。

x12x1

2x11

证明:考察,2x12x1112x1 1

2x12x1

限制0x1

111,则2x112x11。0,要使: 422

2x1

4x1,只要4x,即x1,42x12x1

1

44

1,2x1

取min,,当0x时,有:lim

x1

1。

2x1

1,则4

说明:在以上放大f(x)A(即缩小2x1)的过程中,先限制0x1得:2x1

11。其实任取一个小于的正数1,先限制0x11,则22

0x1或0x1,则不2x1x1112m(如果是限制0

例6 证明:lim

能达到以上目的)。

x

2。

x24x7

证明:考察

7x271x,仅在x的邻域内无界,所以,限制2

44x74x74x7

171

0x2(此邻域不包含x点),则4x74x2114x2。

842

0,要使:

7x27x2x

只要14x2,即x2,214x2,144x74x714x2

取min,x1,当时,有:2,0x2

4x7814

x

2。

x24x7

x0

lim

x

例7 用定义证明极限式:lima1,(a1)

证明:0(不妨1),要使:

ax11ax1loga1xloga1(由对数函数

。于是,取minloga1, loga10,f(x)logax是单调增函数)

xx

当0x0时,有:a1。故lima1。证毕

x0

例8 设f(x)0,limf(x)

A,证明:lim

xx0

xx0

n2为正整数。

证明:(用定义证明)因为,f(x)0,由极限保不等式性知,A0;当A0时,0,由limf(x)A,知:0,当0xx0时,有:f(x)A

xx0



f(x)A

n1



n2

n2

n1

f(x)A

n1

n1,故:lim

xx0

im(f)x0当A0时:0,由l

xx,知:

0,当0xx0时,有:

f(x)

 0lim

xx0

篇12:极限证明

关键词:数列,单调性,有界,极限

证法一

易证引理1.设0≤a

在 (1) 中取a=1, b=1+, 则有

即数列单调递增有上界, 从而第二重要极限存在.

证法二证法一仍然是沿用现行教材中对于第二重要极限的存在性的证明方法, 即以证明数列递增且有上界来完成的.现给出一种新的证明方法:

参考文献

[1]丁寿田译.数学分析原理.北京:人民教育出版社, 1960.

篇13:数列极限四则运算法则的证明

设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)

首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于∀ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1:limC=C.(即常数列的极限等于其本身)

法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.② 设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A.(若C=0的话更好证)

法则2的证明: lim(An-Bn)=limAn+lim(-Bn)(法则1)=limAn+(-1)limBn(引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④ 设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε =ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A)(法则1)=A-A(引理2)=0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB(法则1)=0+B·liman+A·limbn+limAB(引理

3、引理2)=B×0+A×0+AB(引理1)=AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε

引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可

法则4的证明: 由引理4,当B≠0时(这是必要条件),∃正整数N1和正实数ε0,使得对∀正整数n>N1,有|Bn|≥ε0.由引理5,又∃正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对∀ε>0,∃正整数N2和N3,使得: 当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1); 当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1); 现在,当n>max(N1,N2,N3)时,有 |An/Bn-A/B| =|An*B-Bn*A|/|B*Bn| =|An(B-Bn)+Bn(An-A)|/|B*Bn| ≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε

篇14:极限证明

证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即 2+4+6+…+2k=k(k+1). 当n=k+1时,2+4+6+…+2k+(k+1)

所以n=k+1时,等式也成立.

根据(1)(2)可知,对于任意自然数n,原等式都能成立. 生甲:证明过程正确.

生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.

师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.

(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)

(二)讲授新课

师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 师:首先验证n=2时的情况.

(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.

篇15:极限证明

两个重要极限

分布图示

★ 夹逼准则

★ 例1 ★ 例4 ★ 例7 ★ 例10 ★ 例12 ★ 例15 ★ 例18 1★ lim1e

xnx★ 单调有界准则

sinx★ lim1

x0x

★ 例2 ★ 例5 ★ 例8 ★ 例11 ★ 例13 ★ 例16

★ 例3 ★ 例6 ★ 例9 ★ 例14 ★ 例17

★ 例19 ★ 例20

★ 例21 ★ 例24

★ 例22 ★ 例23 ★ 例25 ★ 柯西极限存在准则 ★ 连续复利(例26)★ 内容小结

★ 课堂练习★习题 1-8

内容要点

一、准则I(夹逼准则):如果数列xn,yn及zn满足下列条件:(1)ynxnzn(n1,2,3,);

(2)limyna,limzna,nn那末数列xn的极限存在, 且limxna.n注:利用夹逼准则求极限,关键是构造出yn与zn, 并且yn与zn的极限相同且容易求.二、准则II(单调有界准则):单调有界数列必有极限.三、两个重要极限:

sinx11.lim1;

2.lim1e.xx0xx

四、连续复利

设初始本金为p(元), 年利率为r, 按复利付息, 若一年分m次付息, 则第n年末的本利和为

rsnp1mmnx

如果利息按连续复利计算, 即计算复利的次数m趋于无穷大时, t年末的本利和可按如下公式计算

rsplim1mmmtpert 若要t年末的本利和为s, 则初始本金psert.例题选讲

夹逼准则的应用

111.例1(E01)求 lim222nn2nnn1解

nnn21n121nn2nn12

又limnnnn2limn111n1,limnnn12limn1112n1,由夹逼定理得

1111.lim2nn22n2nn1

nn1/n例2 求 lim(123).n解 1nnn由(123)2131,易见对任意自然数n,有 3321113,33nnn1nn1故31n1213133n.33n1nn1而lim31nn3,1lim33nn3,所以

1nnn23)nlim(121lim313.n33n1nn

例3 求 lim解

设xn111.22nn2(n1)(nn)111.显然,n2(n1)2(nn)2n1111111n1x2 n22222224n(2n)(2n)(2n)nnnn又limn1n10,lim0,由夹逼准则知limxn0,n4n2nn2n1110.即lim22nn2(n1)(nn)

an(a0).例4 求 limnn!aaaaanaaaacac解 ,([a]2)([a]3)nn!123([a]1)([a]2)nnaaaancaanca,因此0,而lim0.其中c0,所以limnn!nn123([a]1)n!n

n!.nnnn!123n12nnnn!222解 由n2,易见0n2.又lim20.nnnnnnnnnnnnnnn!所以 lim20.nn 例5(E02)求 lim例6(E03)求极限limcosx.x0xx2x2解 因为01cosx2sin,故由准则I,得 22222lim(1cosx)0, 即 limcosx1

x0x0

例7 求 limnn.n解

令nn1rn(rn0),则

n(1rn)n1nrn2n(n1)2n(n1)2.rnrnnrn(n1),因此 , 0rnn12!2!由于limn20,所以limrn0.故limnnlim(1rn)1limrn1.nnnnn1

例8 求证limna1(a0).解

(1)n当a1时, n11,故limnalim11.nn(2)

当a1时,设xnna,显然xn1.当na时,xnnann.由例3知limnn1,所以

nnlimna1(a1).(3)

当0a1时,总存在一个正数b(b1),使得a1/b,由(2)知limnb1,所以

nnlimnalimnn1111, blimnb1n综合上述证明可知

limna1(a0).n

例9 求极限 limx.x0x1111解

当x0时, 1,因此,当x0时, 1xx1

xxxx11x0x1,1xx由夹逼定理可得lim当时,有x1 x0x11x1,limx由夹逼定理可得lim从而1.x0x0xx

例10(E04)设有数列x113,x23x1,,xn3xn1,,求

limx.nn证

显然xn1xn,{xn}是单调递增的.下面利用数学归纳法证明{xn}有界.因为x133,假定xk3,则xk13xk333.所以{xn}是有界的.从而limxnA存在.n222由递推关系xn13xn,得xn13xn,故limxn1lim(3xn),即A3A,nn解得A113113113,A.(舍去).所以limxnn222

例11 设 a0为常数, 数列xn由下列定义:

xn1ax(n1,2,)n12xn1其中x0为大于零的常数, 求limxn.n解

先证明数列xn的极限的存在性.1a22222xnxn1xn由xn即x(xx)xaxa.a,n1nn1nn12xn1由a0,x00,知xn0,因此xna,即xn有下界.又xn11a11a1,故数列xn单调递减,由极限存在准则知limxn存在.122nxn2xn22xn

1a1aAA不妨设limxnA,对式子xn两边取极限得:x.n1n2A2xn1解之得Aa,即limxna.n

tanx.x0xtanxsinx1sinx11.解 limlimlimlimx0xx0xx0x0cosxxcosx 例12(E05)求 lim例13 求 limtan3x.x0sin5xsin3x31tan3xsin3x1133解 limlim3xlim1.5x5co3x0sin5xx0sinsx155xco3sxx0sin55x

例14(E06)求 lim1cosx.2x0x2xxxsin2sinsin221121.21lim21lim解

原式limx02x0x2x0x222x2222

例15

下列运算过程是否正确:

limtanxtanxxtanxxlim.limlim1.xxsinxxxxsinxxxxxxsinxtanxx1,1,本题x,所以不能应用上述xsinx解

这种运算是错误的.当x0时,方法进行计算.正确的作法如下:

令xt,则xt;当x时, t0,于是

tanxtan(t)tanttanttlimlimlimlim1.xsinxt0sin(t)t0sintt0tsint

例16

计算 lim解 lim cosxcos3x.2x0xcosxcos3x2sin2xsinx4sin2xsinx4.limlim22x0x0x02xxxxx2例17 计算 lim.x01xsinxcosxx2(1xsinxcosx)1xsinxcosx)lim解 lim limx0x01xsin1cosxxsinxx01xsinxcosxxcosx2xx2x2114.1132

xsin2x.x0xsin2xsin2xsin2x112xsin2xxlim2x121.解 limlimx0xsin2xx0sin2xx0sin2x123112x2x 例18(E07)计算 lim1例19(E08)

求 lim1nnn3.11nn1解 lim1nnn3lim1n1n311lim11e1e.nnnn3

1/x例20(E09)

求 lim(12x).x0解 1lim(12x)xx01lim(12x)2xx02e2.k例21(E10)求lim1.xxxxkkkkkk解 lim1lim1lim1e.xxxxxxxkkx1特别地,当k1时,有lim1e1.xx

3x例22(E11)求 lim.x2x3x解 limx2x2xxx2211lim1 lim1xxx2x2x24112lim11e.xx2x2222x2x x2.例23 求 limxx21xxx211lim解 lim12lim12xx21xxx1x1xxx21x12e01.x1/x例24 计算 lim(ex).x01(ex解 limx01x)x1lim(ex)x1x0exxxelim1xx0exe1xxex2eee.

tan2x.例25 求极限 lim(tanx)x/4解

令ttanx1,则tanxt1,当x4时,t0,又

tan2x2(t1)2tanx12(t1) 22tt21tanx1(t1)12(t1)lim(1t)tt2t012(t1)lim[(1t)t]t2t0故lim(tanx)tan2xx1[lim(1t)t]t0limt02(t1)t2e1.连续复利

例26(E12)

小孩出生之后,父母拿出P元作为初始投资,希望到孩子20岁生日时增长到100000元,如果投资按8%连续复利,计算初始投资应该是多少?

解 利用公式SPe,求P.现有方程

rt100000Pe0.0820

由此得到

e

P1000001.620189.65

于是,父母现在必须存储20189.65元,到孩子20岁生日时才能增长到100000元.计算现值可以理解成从未来值返回到现值的指数衰退.一般地,t年后金额S的现值P, 可以通过解下列关于P的方程得到

SPekt,P

PktPe.ekt课堂练习

1.求极限 limtanxsinx.x0x2sinx2.求极限lim

篇16:极限证明

一、必要的引理

引理1 (Cr不等式) 假设r>0, 则

其中

Cr不等式在测度空间中的积分形式为

引理2 Minkovski不等式在侧度空间中的积分形式为

其中p≥1.

二、关于可测函数序列的极限等式

我们首先给出了关于测度空间中可测函数序列的一个重要定理, 它是一个关于非负可测函数序列的等式, 其次我们使用不同的方法加以去证明, 其一我们可以根据测度空间中常见的不等式证明, 其二也可以利用测度空间中的积分理论来证明。

定理若{an}是非负实数序列, 当n无限趋于无穷大时, an无限趋于0, {fn (x) }是可测空间 (S, ΒS, μ) 上的非负可测函数序列, 并且μ) S (<∞, 则

证明方法一:

当0

当p>1时, 因an≥0, 当n无限趋于无穷大时, an无限趋于0, 根据Minkovski不等式在测度空间中的积分形式得

结合 (2) 式、 (3) 式得 (1) 式.

证明方法二:

对于任意实常数p, 令c>0由上述定理的条件可以得到

因an≥0, 有

因为

可以得到

令c单调递减无限趋于0, 则可以得到

定理证毕.

结束语:

关于可测函数序列的这一极限等式, 我们是利用不同的方法来证明得到的, 在我们研究的测度空间中测度空间中可测函数序列极限性质的过程中, 有很多方面需要我们发挥自己的创造力, 对于同一问题加以推敲, 从不同的方向来研究和讨论问题, 这就需要我们不断的努力、不断地创新, 去寻找好的方法和好的证明技巧来完善理论知识, 让其得到更加广泛的应用。

摘要:在测度空间中关于可测函数序列的极限等式有多, 证明方法也不尽相同。本文给出一个重要的关于可测函数序列的极限等式, 并从不同的方法给出了证明过程。

关键词:可测函数序列,极限等式,Cr不等式,Minkovski不等式

参考文献

[1]匡继昌:《常用不等式》, 山东科学技术出版社, 2004.1。

[2]Xie Yuquan.A bilateral inequality on the Borel-Cantelli Lemma[J].Statistics and Probability Letters, 2008, 78:2052-2057

[3]洛易甫:《概率论》, 科学出版社, 1966。

[4]郑维行、王声望:《实变函数与泛函分析概要》, 高等教育出版社, 2005。

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【极限证明】相关文章:

用极限定义证明04-15

证明极限不存在06-21

高数极限证明范文05-26

用定义证明函数极限05-01

数列极限存在的证明05-20

ln2极限的证明05-22

极限学习05-09

极限求解05-07

极限05-17

函数极限05-17

上一篇:竞选大队辅导员演讲稿下一篇:六年级关于妈妈的作文800字:当妈妈不在的时候