证明极限不存在

2024-06-21

证明极限不存在(通用17篇)

篇1:证明极限不存在

证明极限不存在

二元函数的极限是高等数学中一个很重要的内容,因为其定义与一元函数极限的定义有所不同,需要定义域上的点趋于定点时必须以任意方式趋近,所以与之对应的证明极限不存在的方法有几种.其中有一种是找一种含参数的方式趋近,代入二元函数,使之变为一元函数求极限.若最后的极限值与参数有关,则说明二重极限不存在.但在证明这类型的题目时,除了选y=kx这种趋近方式外,许多学生不知该如何选择趋近方式.本文给出证明一类常见的有理分式函数极限不存在的一种简单方法.例1证明下列极限不存在:(1)lim(x,y)→(0,0)x4y2x6+y6;(2)lim(x,y)→(0,0)x2y2x2y2+(x-y)2.证明一般地,对于(1)选择当(x,y)沿直线y=kxy=kx趋近于(0,0)时,有lim(x,y)→(0,0)x4y2x6+y6=limx→0k2x6(1+k6)x6=k21+k6.显然它随着k值的不同而改变,故原极限不存在.对于(2)若仍然选择以上的趋近方式,则不能得到证明.实际上,若选择(x,y)沿抛物线y=kx2+x(k≠0)(x,y)→(0,0)趋近于(0,0),则有l..2是因为定义域D={(x,y)|x不等于y}吗,从哪儿入手呢,请高手指点

沿着两条直线y=2x

y=-2x趋于(0,0)时

极限分别为-3和-1/3不相等

极限存在的定义要求延任何过(0,0)直线求极限时极限都相等

所以极限不存在3lim(x和y)趋向于无穷大(x^2-5y^2)/(x^2+3y^2)

证明该极限不存在lim(x^2-5y^2)/(x^2+3y^2)

=lim(x^2+3y^2)/(x^2+3y^2)-8y^2/(x^2+3y^2)

=1-lim8/

因为不知道x、y的大校

所以lim(x和y)趋向于无穷大(x^2-5y^2)/(x^2+3y^2)

极限不存在4

如图用定义证明极限不存在~谢谢!

反证法

若存在实数L,使limsin(1/x)=L,取ε=1/2,在x=0点的任意小的邻域X内,总存在整数n,①记x1(n)=1/(2nπ+π/2)∈X,有sin=1,②记x2(n)=1/(2nπ-π/2)∈X,有sin=-1,使|sin-L|<1/3,和|sin-L|<1/3,同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

所以,使limsin(1/x)=L成立的实数L不存在。

篇2:证明极限不存在

如图用定义证明极限不存在~谢谢!!

反证法

若存在实数L,使limsin(1/x)=L,

取ε=1/2,

在x=0点的任意小的邻域X内,总存在整数n,

①记x1(n)=1/(2nπ+π/2)∈X,有sin[1/x1(n)]=1,

②记x2(n)=1/(2nπ-π/2)∈X,有sin[1/x2(n)]=-1,

使|sin[1/x1(n)]-L|<1/3,

和|sin[1/x2(n)]-L|<1/3,

同时成立。

即|1-L|<1/2,|-1-L|<1/2,同时成立。

这与|1-L|+|-1-L|≥|(1-L)-(-1-L)|=2发生矛盾。

篇3:证明极限不存在

二元函数极限的存在性是多元函数微积分教学中的重点内容,而证明二元函数极限的不存在则是学生学习过程中普遍存在的难点. 下面通过具体例题分析如何借助同阶无穷小量来证明二元函数的极限不存在,并给出这类题目的解题技巧.

2. 实 例

例1设,证明:不存在.

解极限的类型为型未定式,故可设即x + y与x2为当x→0时的同阶无穷小量) ,其中k为任意常数且不为零,由此得y = kx2- x.

因为与k值有关,故不存在.

例2设,证明不存在.

解极限的类型为型未定式,若将x与y视为相同的变量,则x与x + y具有相同的次幂,故可设y = kx,其中k为任意常数且不为零.

因为与k值有关,故不存在.

例3设,证明:不存在.

解极限的类型为型未定式,若将x与y视为相同的变量,则xy与x2+ y2具有相同的次幂,故可设y = kx,其中k为任意常数且不为零.

因为不存在.

例4设,证明:

解极限的类型为型未定式,若将x与y3视为相同的变量,则xy3与x2+ y6具有相同的次幂,故可设y3= kx,其中k为任意常数且不为零.

因为与k值有关,故(不存在.

3. 小 结

通过上述例题可以看出,人为选取特殊的路径,即设置y的表达式,使得f( x,y) 中的分子分母为同阶无穷小量,从而利用极限结果的不唯一性证明了这类多元函数极限的不存在性.

摘要:本文通过具体的例题分析同阶无穷小量在证明二元函数极限不存在中的应用,给出了这类题目的解题技巧.

篇4:最“不要命”的极限挑战

当地时间2011年9月10日,德国纽伦堡,极限小轮车高手在教堂前秀车技,高难度动作惊险刺激。

俄罗斯19岁学生玛拉特购买了一部相机,四处寻找美景拍照。他和好友偷偷爬上莫斯科各个高层建筑,在未采取保护措施的情况下,走到上百米高的建筑物边缘,仿佛云中漫步,居高临下拍摄了许多令人叫绝又使人眩晕的照片。

两名勇敢的男子Will Gadd和Tim Emmett是极限运动爱好者,他们来到加拿大的罕肯瀑布,花费两周时间精心计划攀爬这个因气候原因已经冰冻的瀑布,整个瀑布高达450英尺,瀑布周围已经结满了冰柱,温度在零下25摄氏度。他们勇者无惧的攀登精神实在令人佩服。

2011年红牛悬崖跳水墨西哥站比赛在尤卡坦半岛的原始丛林举行,哥伦比亚选手Orlando Duque从27米高的悬崖上跳下,动作十分优美。

摄影师Kim Eijdenberg在加拿大惠斯勒旅行的时候,发现了这群勇猛无惧的年轻人,他们在进行一项极具高难度的表演——滑雪越火圈。整个过程尤为惊险,他们需用滑雪板登上20英尺高的斜坡,然后来个干净利索的飞跃,穿过8英尺宽的熊熊燃烧的火圈,最后完美落地。这听上去就足以令人冒冷汗了!

40多岁的荷兰人Wim Hoff多次打破吉尼斯世界纪录,因为他能在致人死亡的低温下怡然自得。他光着脚,赤裸身体,在北极圈的冰雪上跑马拉松!他光着脚,赤裸着身体登上冰天雪地的山峰!他在北极的冰层下面来回潜泳!他赤裸身体,被冰块掩埋至脖子,1小时12分钟后,他皮肤微红,一切正常!右图为Wim Hoff在冰层上裸体练瑜伽。

最玩命的征服来自英国的两位勇士,Tom Randall和Pete Whittaker成功征服世界难度系数最大的裂缝,并成为首次征服该裂缝的人。这条裂缝位于美国犹他州Canyonlands国家公园,被称作“世纪大裂缝”,此前虽有不少攀岩者试图征服这条水平长达近40米的大裂缝,但从未有人成功。Tom Randall和Pete Whittaker为了完成此次挑战,足足准备了两年时间,在家乡用木头制造了一个裂缝模拟器进行日常训练,并最终挑战成功。

来自美国华盛顿的Bissell Hazen是一个热衷拍摄极限运动场面的摄影师,他喜欢到世界上最寒冷、最陡峭的危险地方去捕捉冒险者从陡峭岩壁上垂直飞速下滑或是从冰冷岩石上急速滑雪的照片。他经常去的拍摄地点是位于美国怀俄明州的大提顿国家公园,他所拍摄的照片生动地体现了极限运动的惊险刺激,让人看了心惊胆战。

John Jackson, Travis Rice 和Mark Landvik,三个与死亡掷骰子的家伙,从阿拉斯加高3000英尺的Tordrillo山垂直速降,几秒钟内完成令人咋舌的惊人之举,并创造了奇迹,成为首批征服阿拉斯加垂直斜坡的勇士。他们冒着引发雪崩的危险,以80英里的时速和50度角向下俯冲。摄影师Scott Serfas则从安全区的直升机上对他们进行拍摄,“那真的是叹为观止,我知道我正在见证一项滑雪记录的诞生”。

篇5:证明二重极限不存在

若用沿曲线,(,y)一g(,y)=0趋近于(,y0)来讨论,一0g,Y。可能会出现错误,只有证明了(,)不是孤立点后才不会出错。o13A1673-3878(2008)0l__0l02__02如何判断二重极限(即二元函数极限)不存在。是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论。只是略谈一下在判断二重极限不存在时。一个值得注意的问题。由二重极限的定义知,要讨论limf(x,y)不存在,通常x—’10y—’y0的方法是:找几条通过(或趋于)定点(xo,Yo)的特殊曲线,如果动点(x,Y)沿这些曲线趋于(xo,Y。)时,f(x,Y)趋于不同的值,则可判定二重极限limf(x,Y)不存在,这一方I—’10r’Y0法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过(xo,Y。),并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如2的极限,在判卜’Iogx,Yy—·y0断其不存在时,不少人找的曲线是f(x,y)一g(x,y):0,这样做就很容易出错。

当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;

当沿直线y=x趋于(00)时,极限为limx^2/2x=0。故极限不存在。

x-y+x^2+y^2

f(x,y)=————————

x+y

它的累次极限存在:

x-y+x^2+y^2

limlim————————=-1

y->0x->0x+y

x-y+x^2+y^2

limlim————————=1

x->0y->0x+y

篇6:用极限定义证明极限

1、用数列极限定义证明:limn20 nn27

n2时n2(1)2n(2)2nn22(3)24(4)|20|222 nn7n7n7nnn1nn

2上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是2

n4,即n>2;不等号(4)成立的条件是n[],故取N=max{7, 2

44[]}。这样当n>N时,有n>7,n[]。因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为n[],所以不等号(3)成立的条件是1

|不等式(4)能成立,因此当n>N时,上述系列不等式均成立,亦即当n>N时,在这个例题中,大量使用了把一个数字放大为n或n20|。n27n的方法,因此,对于具体的数,.......

2可把它放大为(k为大于零的常数)的形式 ......kn...............

n40 nn2n

1n4n4n4时nn2n2(1)|20|22 nn1nn1nn1n2n

22不等号(1)成立的条件是n[],故取N=max{4, []},则当n>N时,上面的不等式都成例

2、用数列极限定义证明:lim

立。

注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分。如: ................................

n2n1n

2n2n1n

nnn22

n(n1)2n

1(1)n

3、已知an,证明数列an的极限是零。2(n1)

(1)n1(1)1(2)

证明:0(设01),欲使|an0|||成立 22(n1)(n1)n1

11解得:n1,由于上述式子中的等式和不等号(1)对于任意的正整n1

1数n都是成立的,因此取N[1],则当n>N时,不等号(2)成立,进而上述系列等式由不等式

和不等式均成立,所以当n>N时,|an0|。

在上面的证明中,设定01,而数列极限定义中的是任意的,为什么要这样设定?这样设定是否符合数列极限的定义?

在数列极限定义中,N是一个正整数,此题如若不设定01,则N[1]就有1

可能不是正整数,例如若=2,则此时N=-1,故为了符合数列极限的定义,先设定01,这样就能保证N是正整数了。

那么对于大于1的,是否能找到对应的N?能找到。按照上面已经证明的结论,当=0.5时,有对应的N1,当n>N1时,|an0|<0.5成立。因此,当n>N1时,对于任意的大于1的,下列式子成立:

|an0|<0.5<1<,亦即对于所有大于1的,我们都能找到与它相对应的N=N1。因此,在数列极限证明中,可限小。只要对于较小的能找到对应的N,则对于较大的...

篇7:函数极限证明

下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。

不妨设f1(x)趋于a;作b>a>=0,M>1;

那么存在N1,当x>N1,有a/M<=f1(x)注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)同理,存在Ni,当x>Ni时,0<=fi(x)取N=max{N1,N2...Nm};

那么当x>N,有

篇8:证明极限不存在

关键词:数列,单调性,有界,极限

证法一

易证引理1.设0≤a

在 (1) 中取a=1, b=1+, 则有

即数列单调递增有上界, 从而第二重要极限存在.

证法二证法一仍然是沿用现行教材中对于第二重要极限的存在性的证明方法, 即以证明数列递增且有上界来完成的.现给出一种新的证明方法:

参考文献

[1]丁寿田译.数学分析原理.北京:人民教育出版社, 1960.

篇9:数列极限的证明

求极限我会

|Xn+1-A|<|Xn-A|/A

以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√-√(分子有理化)

=/【√+√】>0。

②证明{x(n)}有上界。

x(1)=1<4,设x(k)<4,则

x(k+1)=√<√(2+3*4)<4。

3当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>

1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

用数列极限的定义证明

3.根据数列极限的定义证明:

(1)lim=0

n→∞

(2)lim=3/2

n→∞

(3)lim=0

n→∞

(4)lim0.999…9=1

n→∞n个9

5几道数列极限的证明题,帮个忙。。Lim就省略不打了。。

n/(n^2+1)=0

√(n^2+4)/n=1

sin(1/n)=0

实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了

第一题,分子分母都除以n,把n等于无穷带进去就行

第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)

第三题,n趋于无穷时1/n=0,sin(1/n)=0

不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0

lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1

篇10:函数极限的证明

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

篇11:两个重要极限的证明

1.证明:lim

sinxx

x0

1

证明:如图(a)作单位圆。当0

12x

2

时,显然有ΔOAD面积<扇形OAD面积<ΔOAB面积。

xsinx

1cosx

tgx,sinx

2

或1

sinxx

cosx

2

x0

时也成立。

图(a)

故(1)式对一切满足不等式0|x|的x都成立。

sinxx

1。

由limcosx=1及函数极限的迫敛性定理立刻可得lim

x0

x0

函数f(x)=

sinxx的图象如图(b)所示。

2.证明:lim(1)n存在。

n

n

证明:先建立一个不等式,设b>a>0,于是对任一自然数n有

b

n1

图(b)

n1

a

n1

ba

(n1)b或b

n

n1

a

n1

(n1)b(ba),整理后得不等式a

n(1)b[(n1)anb]。

n

令a=1+故有(1

1n1)

n1,b=1+

1n)

1n

n,将它们代入(1)。由于(n1)anb(n1)(1

1n1)n(1

1n)1,n1

(1

12n,这就是说{(1)n}为递增数列。

n

12n)

再令a=1,b=1+代入(1)。由于(n1)anb(n1)n(1

12n)

2n,故有1(1

12n)

n

12,2(1

12n1n)

n。

不等式两端平方后有4(1,它对一切自然数n成立。联系数列的单调性,由此又推得数列{(1)n}

是有界的。于是由单调有界定理知道极限lim(1)n是存在的。

n

n

3.证明:lim(1)xe。

x

x

证明:所求证的极限等价于同时成立下述两个极限:

x

lim(1

1x)e

x

(1)

x

lim(1

1x)e

x

(2)

现在先应用2中数列极限lim(1)ne,证明(1)式成立。

n

n

设n≤x

1n1

1

1x

1

1n

及(1

1n1)

n

1n1)(1

n

1x)(1

x

1n)

n1,(3)

作定义在[1,+)上的阶梯函数。f(x)(1,n≤x

n

由(3)有f(x)<(1)xg(x),x∈[1,)。由于limf(x)lim(1

x

x

n

11n1

(1)lim

n

n

n1

11

n)

n1

e

xlimg(x)lim(1n1n)n1lim(1n1n)(1n1

n)e,根据迫敛性定理便得(1)式。

y)y现在证明(2)式。为此作代换x=-y,则(1)x(1x(11

y1)(1y1

y1)y1(11

y1)

因为当x→-∞时,有y-1→+∞,故上式右端以e为极限,这就证得lim(1)xe。

x1x

以后还常常用到e的另一种极限形式lim(1a)ae a0

1x(4)1

篇12:用论证法来证明数列极限的研究

首先, 针对学生高中所接触的极限的通俗定义来切入。即当n无限增大时, xn趋向于A。这种通俗的定义方法只能定性而不能定量来描述数列的极限过程, 如何把这两句话转化为ε-N精确定义是关键, 也就是说如何刻画“无限增大”和“无限趋向”这两种定性语言。首先看“xn趋向于A”这句话, 也就是说xn和A很接近, 那么我们任意的给定一个很小的正数ε, 都有|xn-A|比我们给定的ε还要小, 这里用到了ε的任意性;再看“当n无限增大时”这句话, 并不是n从第一项或者第二项就满足|xn-A|<ε的, 也就是说不是一开始就能保证数列{xn}逼近A, 而是找到一项N, 从第N项之后的那些xn满足|xn-A|<ε, 所以这里的N是存在性, 只要能说明N存在即可。注意到N的选取是受到ε的制约的, ε越小, 则N越大, 从而把极限的通俗定义转化为定量的精确定义。

下面将数列极限的定义叙述出来:当n>N时, 有|xn-A|<ε。由上面定义可以看出证明极限存在的步骤: (1) 从|xn-A|<ε中反解出n成立的条件; (2) 取出N。所以如何寻找N是证明的一个重点。在多数证明极限存在的题中, |xnA|<ε并不是直接可以解出来的, 将|xn-A|<ε适当放大到合适的g (n) , 通过g (n) <ε寻找N, 这样放缩后解题更为简单。下面用例子来说明如何放缩成最为合适的g (n) 。

在上述证明过程中, 不等式放大的地方需要注意以下问题。

其次, 在极限定义式中, ε是任意的, 可以任意大也可以任意小, 但是, 定义中我们主要强调的ε是的任意小性。因此通常限定0<ε<1, 但不能限定ε>1。

总之, 对于数列极限, 特别是用ε-N定义来证明时, 在证明过程中用到缩放时, 要层层剖析, 由浅入深, 注意放缩的技巧, 把握ε-N定义证明的内涵。

参考文献

[1]罗守山.高等数学[M].国家行政学院出版社, 2008.

[2]同济大学应用数学系.高等数学 (第六版) [M].北京:高等教育出版社, 2007.

[3]华东师范大学数学系.数学分析 (第三版) [M].北京:高等教育出版社, 2001.

篇13:用定义证明函数极限方法总结

用定义证明函数极限方法总结:

用定义来证明函数极限式limf(x)c,方法与用定义证明数列极限式类似,只是细节xa

不同。

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xah(),从而得h()。

方法2:将f(x)c放大成xa,解xa,得xah(),从而得

h()。

部分放大法:当f(x)c不易放大时,限定0xa1,得f(x)cxa,解xa,得:xah(),取min1,h()。

用定义来证明函数极限式limf(x)c,方法: x

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xh(),从而得Ah()。

方法2:将f(x)c放大成xa,解xa,得xh(),从而得

Ah()。

部分放大法:当f(x)c不易放大时,限定xA1,得f(x)cxa,解xa,得:xh(),取AmaxA1,h()。

平行地,可以写出证明其它四种形式的极限的方法。

例1 证明:lim(2x3)7。x2

证明:0,要使:

(2x3)72x2,只要 2x2,即0x2

取2,

2,即可。

x212。例2 证明:lim2x12xx13

x1x212x12分析:因为,放大时,只有限制22xx132x1332x1

0x1,即0x2,才容易放大。

证明:0,限制0x1,即0x2,要使;

x1x1x1x1x212x12

,只要

32x2x132x1332x132x13

即0x3,取min(1,3),即可。

例3

证明:(a1)。

xa

证明:0,限制0xa

1a1a

1,要使:,所以x

22

,只要

1a,,即可。,取min,即0xa

22



x3,x1

例4 设f(x),证明:limf(x)1。

x1

2,x1

证明:当x1时,f(x)1x1x1xx1

限制0x1,则xx112,xx17。0,要使:

f(x)1x1x2x17x1,只要7x,即x1

7,取



min,当0x1时,有:

7

f(x),limf(x)1

x1

说明:这里限制自变量x的变化范围0x1,必须按自变量x的变化趋势来设计,xa时,只能限制x在a点的某邻域内,不能随便限制!

错解:设x1,则xx13,要使:

f(x)1x1x2x13x1,只要0x1

,取min1,,3

当0x1时,有:f(x)1。limf(x)1。

x1

例5 证明:lim

1。

x12x1

2x11

证明:考察,2x12x1112x1 1

2x12x1

限制0x1

111,则2x112x11。0,要使: 422

2x1

4x1,只要4x,即x1,42x12x1

1

44

1,2x1

取min,,当0x时,有:lim

x1

1。

2x1

1,则4

说明:在以上放大f(x)A(即缩小2x1)的过程中,先限制0x1得:2x1

11。其实任取一个小于的正数1,先限制0x11,则22

0x1或0x1,则不2x1x1112m(如果是限制0

例6 证明:lim

能达到以上目的)。

x

2。

x24x7

证明:考察

7x271x,仅在x的邻域内无界,所以,限制2

44x74x74x7

171

0x2(此邻域不包含x点),则4x74x2114x2。

842

0,要使:

7x27x2x

只要14x2,即x2,214x2,144x74x714x2

取min,x1,当时,有:2,0x2

4x7814

x

2。

x24x7

x0

lim

x

例7 用定义证明极限式:lima1,(a1)

证明:0(不妨1),要使:

ax11ax1loga1xloga1(由对数函数

。于是,取minloga1, loga10,f(x)logax是单调增函数)

xx

当0x0时,有:a1。故lima1。证毕

x0

例8 设f(x)0,limf(x)

A,证明:lim

xx0

xx0

n2为正整数。

证明:(用定义证明)因为,f(x)0,由极限保不等式性知,A0;当A0时,0,由limf(x)A,知:0,当0xx0时,有:f(x)A

xx0



f(x)A

n1



n2

n2

n1

f(x)A

n1

n1,故:lim

xx0

im(f)x0当A0时:0,由l

xx,知:

0,当0xx0时,有:

f(x)

 0lim

xx0

篇14:数列极限四则运算法则的证明

设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)

首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于∀ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1:limC=C.(即常数列的极限等于其本身)

法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.② 设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A.(若C=0的话更好证)

法则2的证明: lim(An-Bn)=limAn+lim(-Bn)(法则1)=limAn+(-1)limBn(引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④ 设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε =ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A)(法则1)=A-A(引理2)=0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB(法则1)=0+B·liman+A·limbn+limAB(引理

3、引理2)=B×0+A×0+AB(引理1)=AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε

引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可

法则4的证明: 由引理4,当B≠0时(这是必要条件),∃正整数N1和正实数ε0,使得对∀正整数n>N1,有|Bn|≥ε0.由引理5,又∃正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对∀ε>0,∃正整数N2和N3,使得: 当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1); 当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1); 现在,当n>max(N1,N2,N3)时,有 |An/Bn-A/B| =|An*B-Bn*A|/|B*Bn| =|An(B-Bn)+Bn(An-A)|/|B*Bn| ≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε

篇15:证明极限不存在

证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即 2+4+6+…+2k=k(k+1). 当n=k+1时,2+4+6+…+2k+(k+1)

所以n=k+1时,等式也成立.

根据(1)(2)可知,对于任意自然数n,原等式都能成立. 生甲:证明过程正确.

生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.

师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.

(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)

(二)讲授新课

师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 师:首先验证n=2时的情况.

(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.

篇16:关于一个重要极限的两种证明方法

关键词:极限,证明,单调有界定理

0引言

1预备知识

引理1[5]设实数x>-1, n为正整数, 则有

引理2[6]对于任意正实数α1, α2, …, αn;β1, β2, …, βn有

2两种证明方法

证法2在引理2中, 当n=2时可得

令 (2) 中α1=2, α2=α3=…=αn=1.β1=β2=…=βn=1, 则

参考文献

[1]同济大学数学系, 编.高等数学[M].6版.北京:高等教育出版社, 2007:52-53.

[2]华东师范大学数学系, 编.数学分析[M].4版.北京:高等教育出版社, 2006:56-57.

[3]崔德旺, 何万生, 夏鸿鸣, 等.关于极限lim n→∞n1+1nn=e存在的三种新的证明n[J].天水师范学院学报, 2009, 29 (2) :9-10.

[4]杨华.一个重要极限lim n1+hn=e的新解[J].重庆工学院学报:自然科学版, n→02008, 22 (6) :157-158.

[5]吴新仁, 陆秀丽.数学分析原理[M].北京:人民教育出版社, 1979:36-40.

篇17:大学生创业——挑战不可能的极限

一介书生,梦想成为知识经济时代的“数字英雄”

有人说是比尔·盖茨、张朝阳的传奇经历影响了他们,但他们却说自己只有一股——

学子创业风云起

一个MBA+一项技术+一个团队+一笔风险投资=一个高科技企业。

这个公式倒退几年,您可能认为是荒谬的,而现在,这是现实。

在清华大学东门外的清华科技园内,有两座大厦,一座是赫赫有名的清华同方大厦,另一座是清华学研大厦。从去年开始,学研大厦也逐渐吸引了众多人的视线。因为8月29日,这个大厦里出了一个“清华创业园”,吸纳了一批由在校生或刚毕业的大学生创办的公司。这些公司,有的在这之前就已注册成立,大多数则是在进园后成立的。创业园的负责人形容这里是专门为创业公司提供服务的“孵化器”,主要面向高校师生为主体的创业企业。

在这之后的半年,清华创业园和这些学生公司一起开始同步前行。社会开始关注、各种媒体开始大量报道。

半年之后,就在几天前,又有12家公司成为入驻清华创业园的第二批成员。同样,还是学生创办的公司。

据说,这第二次申请进驻的共有30多家企业,有的是初创的学生公司,更多的则是一些过去怕被学校知道而在别处栖身的学生公司。他们都迫切想浮出水面来到创业园。而最终只有不到一半的公司得以入园。对此,创业园主任罗建北说:“选择这12家相对较好的公司入园之前,我们从团队精神、技术支持、经营理念以及财务状况等方面对30多家企业都进行了专业的评价,相对突出的才得以入园。考虑到场地所限以及创业园自身的发展,我们再不能有求必应了。”

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【证明极限不存在】相关文章:

数列极限存在的证明05-20

极限证明06-17

用极限定义证明04-15

高数极限证明范文05-26

用定义证明函数极限05-01

ln2极限的证明05-22

不存在合同关系证明04-10

极限学习05-09

极限求解05-07

极限05-17

上一篇:二年级语文书上册教案下一篇:猎头公司工作规则手册