2022高考专题----数列与不等式放缩法

2024-06-23

2022高考专题----数列与不等式放缩法(精选6篇)

篇1:2022高考专题----数列与不等式放缩法

高考专题——放缩法

一、基本方法

1.“添舍”放缩

通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2.已知a、b、c不全为零,求证:。aabb2bcc2c2aca2>3(abc)

2[变式训练]已知an2n1(nN*).求证:an1a1a2...n(nN*).23a2a3an

12.分式放缩

一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。例3.已知a、b、c为三角形的三边,求证:1<

3.裂项放缩

若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1a+b+c<2。acab

121

„1

n<2n。

n(n1)(n1)

2例5.已知nN且an223n(n1),求证:an22对所有正整数n都成立。*

4.公式放缩

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

n2x1*例6.已知函数f(x)x,证明:对于nN且n3都有f(n)。n121

例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。

5.换元放缩

对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。

例8.已知abc,求证

0。abbcca

例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证:

anbncn。

6.单调函数放缩

根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。

例10.已知a,b∈R,求证7.放大或缩小“因式”;

ab1ab

a1a

b1b。

n

4、已知数列{an}满足an1a,0a1,求证:(akak1)ak2.232k

1n

8.固定一部分项,放缩另外的项; 例

6、求证:

11117 122232n2

49.利用基本不等式放缩

7、已知an5n

41对任何正整数m,n都成立.10.先适当组合, 排序, 再逐项比较或放缩

8、.已知i,m、n是正整数,且1<i≤m<n.(1)证明:nAim<mAin;(2)证明:(1+m)

i

i

n

>(1+n)

m

二、放缩法综合问题

(一)、先求和后放缩

例1.正数数列an的前n项的和Sn,满足2Snan1,试求:(1)数列an的通项公式;(2)设bn

1,数列bn的前n项的和为Bn,求证:Bn。

2anan1

(二)、先放缩再求和(或先求和再放缩)例、函数f(x)=

4x14x,求证:f(1)+f(2)+„+f(n)>n+

12n

1(nN*).21.放缩后成等差数列,再求和

例2.已知各项均为正数的数列{an}的前n项和为Sn,且anan2Sn.an2an12(1)求证:Sn;

(2)

2.放缩后成等比数列,再求和

例3.(1)设a,n∈N*,a≥2,证明:a2n(a)n(a1)an;

(2)等比数列{an}中,a1,前n项的和为An,且A7,A9,A8成等差数列.设

a1bnn,数列{bn}前n项的和为Bn,证明:Bn<.

31an

3.放缩后为差比数列,再求和

例4.已知数列{an}满足:a11,an1(1

n)an(n1,2,3).求证: n2

an1an3

n1

2n1

n

4.放缩后为裂项相消,再求和

5、已知an=n,求证:∑

k=1ak

k

<3.

篇2:2022高考专题----数列与不等式放缩法

教学目标:学会利用放缩法证明数列相关的不等式问题 教学重点:数列的构造及求和 教学难点:放缩法的应用

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 例1求

k1n

24k

2

1的值例2.求证:1

2



1(2n1)

12(2n1)

(n2)

例3求证:1

4116

136



14n

14n

例4求证:1

4



1n

n

例5已知an4n2n,Tn

a1a2an,求证:T1T2T3Tn

.直接放缩

1、放大或缩小“因式”:

例1.设数列an的前n项和为Sn,对任意的正整数n,都有an5Sn1成立,记bn(I)求数列bn的通项公式;

(II)记cnb2nb2n1(nN*),设数列cn的前n项和为Tn,求证:对任意正整数n都有Tn

例2.已知数列an满足a11,an12an1nN(Ⅰ)求数列an的通项公式;(Ⅲ)证明:

例3.设数列{an}满足a12,an1an

4an1an

*

(nN)。

32;

1a2

1a3



1an

1

nN3

1an

(n1,2,).证明an

2n1对一切正整数n成立

例4.已知数列an满足a1

4,an

an1

(1)an12

n

(n2,nN)。

(Ⅰ)求数列an的通项公式;(Ⅲ)设cnansin

anN. 例5.数列xn由下列条件确定:x1a0,xn11xn,

2

xn

(2n1),数列cn的前n项和Tn,求证:对nN,Tn

47。

(I)证明:对n2总有xn

圆锥曲线:

a

;(II)证明:对n2总有xnxn1

1.已知将圆xy8上的每一点的纵坐标压缩到原来的22

12,对应的横坐标不变,得到曲线C;设M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.(1)求曲线C的方程;(2)求m的取值范围.2.设椭圆C1:

xa

2

yb

1(ab0),抛物线C2:xbyb.(1)若C2经过C1的两个焦点,求C1的离心率;(2)

设A(0,b),Q

54又M、N为C1与C2不在y轴上的两个交点,若AMN的垂心为B(0,b),3

4且Qb),MN的重心在C2上,求椭圆C1和抛物线C2的方程

3.已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线y

(1)求椭圆C的方程;

x

2

(2)设A、B为椭圆上的两个动点,OAOB0,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.

4.设双曲线C:

21(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,2ab

△FPQ为等边三角形.

(1)求双曲线C的离心率e的值;

x

y

(2)若双曲线C被直线y=ax+b截得的弦长为

bea

2求双曲线c的方程.

课后作业: 1.求证:

2.已知数列{a}的前n项和S满足Sn2an(1),n1.n

n

1

3

1n

4n

(Ⅰ)写出数列{a}的前3项a1,a2,a3(Ⅱ)求数列{an}的通项公式

n

3.已知a为正实数,n为自然数,抛物线yx线在y轴上的截距,用a和n表示f(n);

圆锥曲线作业: 1.已知椭圆

C1:

xa

a

n

与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切

yb

1(a>b>0)

与双曲线

C1:x

y

1

有公共的焦点,C1的一条渐近线与以

C1的长轴为直径的圆相

交于A,B两点,若

A.

a

C1

恰好将线段AB三等分,则()

B.a13

132

C.

b

D.b2

=4:3:2,则曲线r的离心率等

2.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足于()

1或3

PF1:F1F2:PF2

A.22B.3或2C.2

2D.3

3.若点O和点F(2,0)分别是双曲线的取值范围为()

xa



y1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则OPFP

A.)

B.[3)C.[-

74,)D.[

74,)

4.已知双曲线E的中心为原点,过F的直线l与E相交于A,B两点,且AB的中点为N(12,15),F(3,0)是E的焦点,则E的方程式为()(A)

x

y

61(B)

x

y

1(C)

x

y

1(D)

x

y

1

5.点A(x0,y0)在双曲线

x

y

1的右支上,若点A到右焦点的距离等于2x0,则x0

6.已知点A、B的坐标分别是(1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之积为-2.(Ⅰ)求动点M的轨迹方程;

篇3:2022高考专题----数列与不等式放缩法

高中数列与不等式通常是指包含有an,sn或者是带有n前缀的式子,数列不等式的命题在高考知识点中发挥着关键作用,也必定是热点考察知识的重要体现. 但是,数列与不等式是一项综合性的知识链接,应用的范围和要求基础较高,也具有相当灵活的变换特点,因此就具备了一定的学习难度. 在数列与不等式的学习过程中,利用放缩法去解决应用问题既是便捷途径,却也是困难途径,诸多学生在实际的学习处理过程中感到吃力,对解题思路和放缩法的理解不到位.

一、对放缩法的应用把握

对放缩法的应用把握就是指对放缩力度的大小,以及放缩精细的程度,以达到预定的标准. 通过对题目类型的把握,迅速的找到解题突破口,逐渐培养学生严谨的思考能力和学习兴趣,发现数学中数列不等式的内在魅力,认识到放缩法在解决此类问题中的有效性.

1. 分组的放缩形式

在实际计算中可以通过分组的放缩形式来达到预期结果,例如在使用放缩法处理多项式的过程中,就可以采用分组的放缩形式来进行结果运算.

2. 部分的放缩形式

为了避免在放缩过程中出现超出预期效果的大小范围,就采用了一部分不动,另一部分进行相应变化的部分放缩形式.

3. 逐步放缩的形式

假如面临的是多个不同样式的放缩结果,并且出现了结果之间的互异性,最简便的办法就是对计算逐步进行,这种放缩方式可以最大限度的提升放缩的精度大小.

4. 宏观的放缩形式

宏观放缩主要就是说如果运算过程中存在可以推导得出的等式,或是已经存在的等式,就可以对存在组合性质的元素进行等式重构,并对残留的部分执行放缩过程. 宏观上的放缩形式最大的优势就是对精度的提升,方便解题的准确性和便捷性.

二、单调的函数放缩法形式

参照具体的题目类型和所提供的信息,对等式架构进行重构,得到新的单调函数,并对其进行下一步放缩,从而得到结果. 比如说: 在某例题中为求任何正整数对于等式都成立的问题,就可以对其进行单调函数放缩,因为直接做差,难以找到切入点. 而得到该函数的单调性能却是比较容易的,定义域的范围为正整数范围,排除导数的可能性,通过计算可以找到解题思绪,但是依然困难重重,很难下手.但是,数列有着特殊的函数性质,它呈现的是一种单调状态,就会得到函数存在的单调特点.

三、放缩形式存在的效果

防缩变形在根本上区别于恒等变形,放缩变形无论是在形式上,还是空间上都给人们提供了更多的可能性,可以自由的创造更大空间和添加更多计算的局部内容. 使得放缩后的计算形式达到简化效果,结构明了,具体一定的规律性,从而很好的解决问题,实现放缩形式作用的最大化. 本文以下题为例讲述: { bn} 在符合b1大于等于1,bn + 1= bn的平方减去n - 2的值乘以bn加三,Tn + 3 + 1比b1的值加上3加1比b2的值,一直加到1比3加bn的值,问题是求证tn小于二分之一. 因为bn加三等于bn乘以bn减去n的值,再加上2乘以bn加三的值,又因为bn大于等于n的值,所以得出bn + 1加3大于等于2乘以bn + 3的值,n属于正整数,运用跌乘计算得出bn加三的大于等于2n - 1乘以b1+ 3大于等于2n + 1. 所以1比bn + 3的值小于等于1比2n + 1. n属于正整数,因此得出结论: Tn小于等于1比2的二次的值加上1比二的三次的值,再加上1比2的四次的值,一直加到1比2的N次值之比等于二分之一减去1比2的n + 1次的值,值数小于二分之一. 由此看出,把握题目特征对其进行变形,接着删掉其中一个正项,这种计算手法是放缩在不等式中最常用的技法,假如此题在放缩计算后进行分裂项,进行数学归纳等是无法实现的,这也说明了放缩形式中的很多问题.

四、采用放缩形式的注意事项和计算方法

首先要对放缩的大小方向做到心中有数,无论是放大缩小都必须针对结论而言,针对的大小数值呈现反向动作,也就是计算结果大于标准项则进行缩小,小于标准项则进行扩大. 除此之外,针对放缩的项数可以从第一二三项分别开始,也大可不必是对所有的存在项进行统一放缩. 在放缩法的一般形式与常用技巧中,其一是对于根式的放缩形式,其二是对于分式分子分母的大小缩放,适用的规律一般为真分数分子分母一块减掉同样的正数,呈现变大趋势,假分数的分子分母一块减掉某个正数,呈现的是递减趋势. 其三是在传统不等式的基础上进行放缩操作,其四是对于二项式的定理收缩形式,其五是针对特殊情况采用舍弃添加某些项数.

五、结 语

篇4:放缩法解数列与不等式综合题

例1 已知数列[an]满足[a1]=[12,]且[an+1=an-an2]([n∈N*]).

(1)证明:1[≤anan+1≤2(n∈N*)];

(2)设数列[an2]的前[n]项和为[Sn],

证明:[12(n+2)≤Snn≤12(n+1)(n∈N*)].

分析 (1)首先根据递推公式可得,[an≤12],再由递推公式变形可知,[anan+1=anan-an2=11-an∈[1,2]],从而得证.(2)由[1an+1-1an=anan+1]和[1≤anan+1≤2]得,[1≤1an+1-1an≤2,]由此可得[12(n+1)≤an+1≤1n+2(n∈N*),]从而得证.

解 (1)由题意得,[an+1-an=-an2≤0],即[an+1≤an],[an≤12].

由[an=(1-an-1)an-1]得,

[an=(1-an-1)(1-an-2)…(1-a1)][a1>0.]

由[0<an≤12]得,[anan+1=anan-an2=11-an∈[1,2],]即[1≤anan+1≤2.]

(2)由题意得,[an2=an-an+1],

∴[Sn=a1-an+1]①.

由[1an+1-1an=anan+1]和[1≤anan+1≤2]得,

[1≤1an+1-1an≤2.]

∴[n≤1an+1-1a1≤2n].

因此[12(n+1)≤an+1≤1n+2(n∈N*)]②.

由①②得,[12(n+2)≤Snn≤12(n+1)].

点拨 本题主要考查了数列的递推公式、不等式的证明等知识点,属于较难题. 由于数列综合题常与不等式、函数的最值、归纳猜想、分类讨论等数学思想相结合,技巧性比较强,需要平时多训练与积累,在后续复习时应予以关注.

例2 设[n∈N?],[xn]是曲线[y=x2n+2+1]在点[(1,2)]处的切线与[x]轴交点的横坐标.

(1)求数列[xn]的通项公式;

(2)记[Tn=x12x32…x22n-1],证明[Tn≥14n].

分析 (1)对题中所给曲线的解析式进行求导,得出曲线[y=x2n+2+1]在点[(1,2)]处的切线斜率为[2n+2]. 从而写出切线方程为[y-2=(2n+2)(x-1)].令[y=0,]解得切线与[x]轴交点的横坐标[xn=1-1n+1=nn+1].(2)要证[Tn≥14n],需考虑通项[x22n-1],通过适当放缩能够使得每项相消即可证明.

解 (1)[y=(x2n+2+1)=(2n+2)x2n+1,]曲线[y=x2n+2+1]在点[(1,2)]处的切线斜率为[2n+2].

从而切线方程为[y-2=(2n+2)(x-1)].

令[y=0,]解得切线与[x]轴交点的横坐标[xn=1-1n+1=nn+1].

(2)由题设和(1)中的计算结果知,

[Tn=x12x32…x22n-1=(12)2(34)2…(2n-12n)2].

当[n=1]时,[T1=14].

当[n≥2]时,

[x22n-1=(2n-12n)2=(2n-1)2(2n)2>(2n-1)2-1(2n)2=n-1n,]

所以[Tn>(12)2×12×23×…×n-1n=14n].

综上可得,对任意的[n∈N?],均有[Tn≥14n].

点拨 对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩. 在后一种类型中,一定要注意放缩的尺度和从哪一项开始放缩.

例3 在数列[an]中,[a1=3,an+1an+λan+1+μan2=][0n∈N*].

(1)若[λ=0,μ=-2,]求数列[an]的通项公式;

(2)若[λ=1k0k0∈N*,k0≥2,μ=-1,]

证明:[2+13k0+1<ak0+1<2+12k0+1].

分析 (1)由于[λ=0,μ=-2],因此把已知等式具体化得,[an+1an=2an2],显然由于[a1=3],则[an≠0](否则会得出[a1=0]),从而[an+1=2an],所以[an]是等比数列,由其通项公式可得结论.(2)本小题是数列与不等式的综合性问题,数列的递推关系式[an+1an+1k0an+1-an2=0,]经过缩放后可变形为[an+1=][an-1k0+1k0?1k0an+1.]

解 (1)由[λ=0,μ=-2],有[an+1an=2an2(n∈N*),]

若存在某个[n0∈N*],使得[an0=0],则由上述递推公式易得[an0+1=0],重复上述过程可得[a1=0],此与[a1=3]矛盾,所以对任意[n∈N*],[an≠0].

从而[an+1=2an(n∈N*)],即[an]是一个公比[q=2]的等比数列.

故[an=a1qn-1=3?2n-1].

(2)由[λ=1k0,μ=-1,]数列的递推关系变为[an+1an+][1k0an+1-an2=0,]变形为[an+1(an+1k0)=an2][(n∈N*)].

由上式及[a1=3,]归纳可得,

[3=a1>a2>…>an>][an+1>…>0].

因为[an+1=a2nan+1k0=a2n-1k20+1k20an+1k0]

[=an-1k0+1k0?1k0an+1,]

所以对[n=1,2,…,k0]求和得,

[ak0+1=a1+a2-a1+…+ak0+1-ak0]

[=a1-k0?1k0+1k0?1k0a1+1+1k0a2+1+…+1k0ak0+1]

[>2+1k0?13k0+1+13k0+1+…+13k0+1]

[=2+13k0+1.]

另一方面,由上已证的不等式知[a1>a2>…>ak0][>ak0+1>2]得,

[ak0+1=a1-k0?1k0+1k0?1k0a1+1+1k0a2+1+…+1k0ak0+1]

[<2+1k0?12k0+1+12k0+1+…+12k0+1=2+12k0+1.]

综上,[2+13k0+1<ak0+1<2+12k0+1].

篇5:放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。

注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。).

例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

3.【江苏省徐州市2018届高三上学期期中考试】已知数列的前项和为,满足,.数列

满足(1)求数列(2)若和,且. 的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.)成等差数列,若存在,求出所有满足条件的,若不存在,4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列

分别满足,其中(1)若数列(2)若数列①若数列②若数列,设数列的前项和分别为的通项公式;,使得,称数列

.都为递增数列,求数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列

为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.

10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式;

②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

放缩法证明数列不等式

基础知识回顾:

放缩的技巧与方法:

(1)常见的数列求和方法和通项公式特点:

① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的一次函数或常值函数)

② 等比数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。的指数类函数)③ 错位相减:通项公式为“等差错误!未找到引用源。等比”的形式

④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项

(2)与求和相关的不等式的放缩技巧:

① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手

② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)

③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

④ 若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。

(3)放缩构造裂项相消数列与等比数列的技巧:

① 裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)

② 等比数列:所面对的问题通常为“错误!未找到引用源。常数”的形式,所构造的等比数列的公比也要满足错误!未找到引用源。,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,常数可视为错误!未找到引用源。的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数错误!未找到引用源。,即可猜想该等比数列的首项为错误!未找到引用源。,公比为错误!未找到引用源。,即通项公式为错误!未找到引用源。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响

(4)与数列中的项相关的不等式问题:

① 此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形

② 在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即错误!未找到引用源。或错误!未找到引用源。(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为错误!未找到引用源。,另一侧为求和的结果,进而完成证明 应用举例:

类型一:与前n项和相关的不等式 例1.【2017届江苏泰州中学高三摸底考试】已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。满足:错误!未找到引用源。(错误!未找到引用源。为常数,且错误!未找到引用源。,错误!未找到引用源。).

(1)求错误!未找到引用源。的通项公式;

(2)设错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,求错误!未找到引用源。的值;(3)在满足条件(2)的情形下,设错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

(2)由(1)知,错误!未找到引用源。,即错误!未找到引用源。,若数列错误!未找到引用源。为等比数列,则有错误!未找到引用源。,而错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,故错误!未找到引用源。,解得错误!未找到引用源。,再将错误!未找到引用源。代入错误!未找到引用源。,得错误!未找到引用源。,例2.记错误!未找到引用源。.对数列错误!未找到引用源。和错误!未找到引用源。的子集错误!未找到引用源。,若错误!未找到引用源。,定义错误!未找到引用源。;若错误!未找到引用源。,定义错误!未找到引用源。.例如:错误!未找到引用源。时,错误!未找到引用源。.现设错误!未找到引用源。是公比为3的等比数列,且当错误!未找到引用源。时,错误!未找到引用源。.错误!未找到引用源。

(1)求数列的通项公式;错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。(2)对任意正整数,若,求证:;错误!未找到引用源。错误!未找到引用源。(3)设,求证:.【答案】(1)错误!未找到引用源。(2)详见解析(3)详见解析 【解析】

试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设错误!未找到引用源。,则错误!未找到引用源。因此由错误!未找到引用源。,因此错误!未找到引用源。中最大项必在A中,由(2)得错误!未找到引用源。.试题解析:(1)由已知得错误!未找到引用源。.于是当错误!未找到引用源。时,错误!未找到引用源。.又错误!未找到引用源。,故错误!未找到引用源。,即错误!未找到引用源。.所以数列错误!未找到引用源。的通项公式为错误!未找到引用源。.(2)因为错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。.因此,错误!未找到引用源。.综合①②③得,错误!未找到引用源。.类型

二、与通项运算相关的不等式 例3.设函数错误!未找到引用源。,数列错误!未找到引用源。满足:错误!未找到引用源。.(1)求证:错误!未找到引用源。时,错误!未找到引用源。;(2)求证:错误!未找到引用源。(错误!未找到引用源。);(3)求证:错误!未找到引用源。(错误!未找到引用源。). 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

故错误!未找到引用源。,则有:错误!未找到引用源。错误!未找到引用源。例4.已知错误!未找到引用源。是数列错误!未找到引用源。的前错误!未找到引用源。项和,且对任意错误!未找到引用源。,有错误!未找到引用源。.其中错误!未找到引用源。为实数,且错误!未找到引用源。.(1)当错误!未找到引用源。时,①求数列错误!未找到引用源。的通项;

②是否存在这样的正整数错误!未找到引用源。,使得错误!未找到引用源。成等比数列?若存在,给出错误!未找到引用源。满足的条件,否则,请说明理由.(2)当错误!未找到引用源。时,设错误!未找到引用源。,① 判定错误!未找到引用源。是否为等比数列;

②设错误!未找到引用源。,若错误!未找到引用源。对错误!未找到引用源。恒成立,求错误!未找到引用源。的取值范围.【答案】(1)①错误!未找到引用源。;②不存在;(2)①当错误!未找到引用源。且错误!未找到引用源。时,数列错误!未找到引用源。是以错误!未找到引用源。为首项,错误!未找到引用源。为公比的等比数列,当错误!未找到引用源。时,错误!未找到引用源。,不是等比数列;②错误!未找到引用源。.

方法、规律归纳: 常见的放缩变形:

(1)错误!未找到引用源。,(2)错误!未找到引用源。

注:对于错误!未找到引用源。还可放缩为:错误!未找到引用源。(3)分子分母同加常数:错误!未找到引用源。(4)错误!未找到引用源。

错误!未找到引用源。可推广为:错误!未找到引用源。

错误!未找到引用源。实战演练: 1.【江苏省无锡市普通高中2018届高三上学期期中】已知数列错误!未找到引用源。满足错误!未找到引用源。记数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,错误!未找到引用源。

(1)求证:数列错误!未找到引用源。为等比数列,并求其通项错误!未找到引用源。;

(2)求错误!未找到引用源。;

(3)问是否存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立?说明理由.【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)当错误!未找到引用源。为偶数时,错误!未找到引用源。都成立,(3)详见解析

(3)假设存在正整数错误!未找到引用源。,使得错误!未找到引用源。成立,因为错误!未找到引用源。,错误!未找到引用源。,所以只要错误!未找到引用源。

即只要满足 ①:错误!未找到引用源。,和②:错误!未找到引用源。,对于①只要错误!未找到引用源。就可以; 对于②,当错误!未找到引用源。为奇数时,满足错误!未找到引用源。,不成立,当错误!未找到引用源。为偶数时,满足错误!未找到引用源。,即错误!未找到引用源。令错误!未找到引用源。,因为错误!未找到引用源。

即错误!未找到引用源。,且当错误!未找到引用源。时,错误!未找到引用源。,所以当错误!未找到引用源。为偶数时,②式成立,即当错误!未找到引用源。为偶数时,错误!未找到引用源。成立.2.【江苏省常州市2018届高三上学期武进区高中数学期中试卷】在数列错误!未找到引用源。中,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,其中错误!未找到引用源。.

⑴ 求证:数列错误!未找到引用源。为等差数列;

⑵ 设错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,若当错误!未找到引用源。且错误!未找到引用源。为偶数时,错误!未找到引用源。恒成立,求实数错误!未找到引用源。的取值范围;

⑶ 设数列错误!未找到引用源。的前错误!未找到引用源。项的和为错误!未找到引用源。,试求数列错误!未找到引用源。的最大值.【答案】⑴见解析⑵错误!未找到引用源。⑶错误!未找到引用源。

要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,只要使错误!未找到引用源。对错误!未找到引用源。且错误!未找到引用源。为偶数恒成立,即使错误!未找到引用源。对错误!未找到引用源。为正偶数恒成立,错误!未找到引用源。,错误!未找到引用源。,故实数错误!未找到引用源。的取值范围是错误!未找到引用源。; ⑶由⑴得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,设错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,因此数列错误!未找到引用源。的最大值为错误!未找到引用源。.

【点睛】本题考查数列与不等式的综合应用,涉及等差数列的判定与证明,其中证明(1)的关键是分析得到错误!未找到引用源。与错误!未找到引用源。的关系式.

3.【江苏省徐州市2018届高三上学期期中考试】已知数列满足,且

. 的前项和为,满足,.数列(1)求数列(2)若和的通项公式;,数列的前项和为,对任意的,(,都有,求实数的取值范围;

(3)是否存在正整数,使,请说明理由.

【答案】(1)(2))成等差数列,若存在,求出所有满足条件的,若不存在,(3)不存在

(2)由(1)得于是所以,两式相减得所以由(1)得因为对 即所以恒成立,都有,,恒成立,记所以因为从而数列于是,为递增数列,所以当.

(),使

成等差数列,则,时取最小值,(3)假设存在正整数即,若为偶数,则若为奇数,设于是当时,为奇数,而为偶数,上式不成立.,则,与

矛盾;,即,此时

4.已知数列错误!未找到引用源。、错误!未找到引用源。,其中,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。,错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。.

(1)求数列错误!未找到引用源。、错误!未找到引用源。的通项公式;

(2)是否存在自然数错误!未找到引用源。,使得对于任意错误!未找到引用源。有错误!未找到引用源。恒成立?若存在,求出错误!未找到引用源。的最小值;

(3)若数列错误!未找到引用源。满足错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【答案】(1)错误!未找到引用源。;(2)存在,错误!未找到引用源。;(3)错误!未找到引用源。. 【解析】试题分析:

(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.(2)bn=2n.假设存在自然数m,满足条件,先求出错误!未找到引用源。,将问题转化成错误!未找到引用源。可求得错误!未找到引用源。的取值范围;(3)分n是奇数、n是偶数两种情况求出Tn,然后写成分段函数的形式。

试题解析:(1)由错误!未找到引用源。,即错误!未找到引用源。. 又错误!未找到引用源。,所以错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.当错误!未找到引用源。时,上式成立,因为错误!未找到引用源。,所以错误!未找到引用源。是首项为2,公比为2的等比数列,故错误!未找到引用源。.(3)当错误!未找到引用源。为奇数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。; 当错误!未找到引用源。为偶数时,错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.因此错误!未找到引用源。.

点睛:数列求和时,要根据数列项的特点选择不同的方法,常用的求和方法有公式法、裂项相消法、错位相减法、分组求和等。

5.【江苏省启东中学2018届高三上学期第一次月考】设数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且满足错误!未找到引用源。,错误!未找到引用源。为常数.

(1)是否存在数列错误!未找到引用源。,使得错误!未找到引用源。?若存在,写出一个满足要求的数列;若不存在,说明理由.

(2)当错误!未找到引用源。时,求证: 错误!未找到引用源。.

(3)当错误!未找到引用源。时,求证:当错误!未找到引用源。时,错误!未找到引用源。. 【答案】(1)不存在,理由见解析(2)证明见解析(3)证明见解析

当错误!未找到引用源。时,错误!未找到引用源。,两式相减得错误!未找到引用源。,即错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,即错误!未找到引用源。,综上,错误!未找到引用源。.

6.【江苏省泰州中学2018届高三上学期开学考试】已知两个无穷数列的前项和分别为(1)若数列.分别满足,其中,设数列都为递增数列,求数列的通项公式;(2)若数列①若数列②若数列满足:存在唯一的正整数“坠点数列”,求 为“坠点数列”,数列,使得,称数列为“坠点数列”.为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1)

.(2)①,② 6.7.【江苏省南京师范大学附属中学2017届高三高考模拟一】已知数集错误!未找到引用源。具有性质错误!未找到引用源。对任意的错误!未找到引用源。,使得错误!未找到引用源。成立.(1)分别判断数集错误!未找到引用源。与错误!未找到引用源。是否具有性质错误!未找到引用源。,并说明理由;

(2)求证: 错误!未找到引用源。;

(2)若错误!未找到引用源。,求错误!未找到引用源。的最小值.【答案】(1)不具有(2)见解析(3)错误!未找到引用源。.(2)因为集合错误!未找到引用源。具有性质错误!未找到引用源。,所以对错误!未找到引用源。而言,存在错误!未找到引用源。,使得错误!未找到引用源。,又因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,同理可得错误!未找到引用源。,将上述不等式相加得: 错误!未找到引用源。,所以错误!未找到引用源。.(3)由(2)可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,故错误!未找到引用源。的最小值为错误!未找到引用源。.点睛:本题是一道新定义的迁移信息并利用信息的信息迁移题。求解第一问时,直接运用题设条件中所提供的条件信息进行验证即可;解答第二问时,先运用题设条件中定义的信息可得错误!未找到引用源。,同理可得错误!未找到引用源。,再将上述不等式相加得: 错误!未找到引用源。即可获证错误!未找到引用源。;证明第三问时,充分借助(2)的结论可知错误!未找到引用源。,又错误!未找到引用源。,所以错误!未找到引用源。可得错误!未找到引用源。,因此构成数集错误!未找到引用源。,经检验错误!未找到引用源。具有性质错误!未找到引用源。,进而求出错误!未找到引用源。的最小值为错误!未找到引用源。.8.记等差数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。.(1)求证:数列错误!未找到引用源。是等差数列;

(2)若 错误!未找到引用源。,对任意错误!未找到引用源。,均有错误!未找到引用源。是公差为错误!未找到引用源。的等差数列,求使错误!未找到引用源。为整数的正整数错误!未找到引用源。的取值集合;

(3)记错误!未找到引用源。,求证: 错误!未找到引用源。.【答案】(1)见解析(2)错误!未找到引用源。(3)见解析

解:(1)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,从而错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,即数列错误!未找到引用源。是等差数列.(2)因为的任意的错误!未找到引用源。都是公差为错误!未找到引用源。,的等差数列,所以错误!未找到引用源。是公差为错误!未找到引用源。,的等差数列,又错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,显然,错误!未找到引用源。满足条件,当错误!未找到引用源。时,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。不是整数,综上所述,正整数错误!未找到引用源。的取值集合为错误!未找到引用源。.(3)设等差数列错误!未找到引用源。的公差为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,即数列错误!未找到引用源。是公比大于错误!未找到引用源。,首项大于错误!未找到引用源。的等比数列,记公比为错误!未找到引用源。.以下证明: 错误!未找到引用源。,其中错误!未找到引用源。为正整数,且错误!未找到引用源。,因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,当错误!未找到引用源。时,因为错误!未找到引用源。为减函数,错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,综上,错误!未找到引用源。,其中错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。,即错误!未找到引用源。.9.已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1错误!未找到引用源。,(n+2)cn=错误!未找到引用源。,其中n∈N*.

(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;

(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 【答案】(1)cn=1.(2)见解析.10.已知各项不为零的数列错误!未找到引用源。的前错误!未找到引用源。项和为错误!未找到引用源。,且错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。.

(1)若错误!未找到引用源。成等比数列,求实数错误!未找到引用源。的值;(2)若错误!未找到引用源。成等差数列,①求数列错误!未找到引用源。的通项公式; ②在错误!未找到引用源。与错误!未找到引用源。间插入错误!未找到引用源。个正数,共同组成公比为错误!未找到引用源。的等比数列,若不等式错误!未找到引用源。对任意的错误!未找到引用源。恒成立,求实数错误!未找到引用源。的最大值.

【答案】(1)错误!未找到引用源。(2)错误!未找到引用源。(3)错误!未找到引用源。

篇6:2022高考专题----数列与不等式放缩法

广外外校姜海涛

放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从而向结论转化,其难度在于放缩的合理和适度。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧从而充满思考性和挑战性。为了帮助更多的学生突破这一难点,我们从以下几个方面对放缩法证明数列不等式的基本策略进行分析。

一、常见的放缩方法

常见的放缩方法法有:

1.“添舍”放缩:对不等式一边添项或舍项以达到放大和缩小的效果;

2.分式放缩:分别放缩分子、分母或者同时放缩分子分母以达到放缩的效果;

3.利用重要的不等式或结论放缩:把欲证不等式变形构造,然后利用已知的公式或恒不等式进行放缩,例如均值不等式、柯西不等式、绝对值不等式、二项式定理、贝努力公式、真分数性质等。

4.单调性放缩:挖掘不等式的结构特征和函数内涵来构造单调数列或单调函数,利用单调性、值域产生的不等关系进行放缩。

二、常见的放缩控制

当我们选择了正确的放缩方法后,却往往会在放缩的过程中不知不觉间失控,导致放缩的过大或过小,达不到欲证的目标。那么如何控制好放缩的尺度呢?

例1.求证:11117 122232n2

4分析1:不等式左边不能直接求和,我们希望通过合适的放缩后可以求和。1111 (n2)”的方法向右端放大,n2n(n1)(n1)n

111111171111()()()22 则左边11223n1nn41223(n1)n若采取“

很明显,放得有点大了,导致传递性失败,不等式链中断,放缩失败。那怎么办呢?

1.调整放缩的“量”的大小

分析2:分析1中“放”的有点过大,因为11,放大了1111,所以可以22212432318

通过调整放大的“量”来控制放缩的效果。在减少1,即11分母减少了n,我们可以把分母只n2n(n1)11111()n2),这样放的量就少了。22nn12n1n

***17)=1+(1)<1+(1)= 证明:左边<1()()()+(2132435n1n122nn1224

2.调整放缩的“项”的起点

分析3:分析1中从第二项开始放缩,放的最终有点大。可以调整放缩的项数,从第三项开始放缩。证明:左边1111117171111()() 423n1n4n4423(n1)n

由此可见,调整成功。显然从第三项开始放缩所得的结果比从第二项开始放缩所得的结果又更小些。以此类推,当放缩的项数越少,放缩后的结果就会越来越精细,越来越逼近目标。

除此之外,还可以调整放缩的次数,通过多次放缩的调整来达到效果;有时也可以根据欲证式子的结构特点,把相邻的项分组捆绑后进行放缩,也可以达到控制放缩合理和尺度的效果。

三、常见的问题类型

数列型不等式的一边常与求和有关,所以可以通过放缩后求和(或求和后放缩)来达到欲证的目标。一.放缩与“公式法求和”

选择恰当的放缩方法,通过“通项”的适度放缩使之转化为等差或等比数列,从而利用求和达到简化....证题的目的。

n(n1)(n1)

2sn例2

.设Sn 22

分析:此数列通项为ak因为kk

n

k(k1),k1,2,n.k(k1)

1,kk(k1)k 22

k(k1)

n

n(n1)(n1)21

snkSn(k),即 222k1k1

例3.求证:

1111

2 1!2!3!n!

k1,k1,2,,n.k!2

分析:通项k!k(k1)2122212k1,

11()n

111111112(1)n12012k1

11!2!3!n!22222

12

例4.已知an2n1,证明:

an1a1a2n

n 23a2a3an12

n

aakn2k12k11

分析:通项k1k1,k,不等式右边得证。

ak121222k1ak12

akak1

n

11

2111111111 k1kkkk

112232(22)232023221

2(2k)4(2k)

k

2k

n

ak11n1111n11n1

()()(1),不等式左边得证。k12nn

a2232323322222k1k1k1

二.放缩与“裂项法求和”

在例1中,不等式的左边无法求和,但通过放缩产生裂项相消的求和效果后,使问题解决。例2的右

边也是利用放缩产生了裂项的效果,然后求和。下面我们再通过几道例题的证明体会裂项求和效果的运用。例5.求证:2(n11)

1

3

1n

2n

分析:

n

1k

2kk

2kk1

2(kk1),(k2)



k1

1k

12[(2)(32)(nn1)]12(1n)2n12n 2kk

2kk1

2(k1k)

1k

n



k1

1k

2[(2)(2)(n1n)]2(1n1)2(n11)

n

1n111

例6.已知an(),bn,证明:bk2n

31an1an13k1

分析:bn

111n

1

3n3n13n113n11111nn1nn12nn1 1313131313131

3n1

113n3n1

n

111111111

bk2n[(12)(23)(nn1)]2n(n1)2n

333333333k1bn2

例7.已知f(1)2,f(n1)f(n)f(n),求证:

k1

n

f(k)12

分析:f(n1)f(n)[f(n)1],

1111

,f(n1)f(n)[f(n)1]f(n)f(n)1

111,

f(n)1f(n)f(n1)

n



k1

111111111

[][][]

f(k)1f(1)f(2)f(2)f(3)f(n)f(n1)f(1)f(n1)

由已知可得f(n)0, 

三.放缩与“并项法求和” 例8.已知an

k1

n



f(k)1f(1)2

2n21117[2(1)n1],n1,证明:对任意整数m4,有 3a4a5am8

n1

分析:通项中含有(1),把

整体捆绑同时结合奇偶性进行适度放缩。anan1

1131132n12n232n12n2

证明:当n为奇数时,[]

anan122n212n11222n32n12n21222n3

即当n为奇数时,当m为偶数且m>4时:

11311(n2n1),且a42, anan1222

11111111131111()()(34m3m2)a4a5ama4a5a6am1am222222

=

13111317

(1m4) 22422482

当m为奇数且m>4时:m1为偶数,11111117

 a4a5ama4a5amam18

综上可知,对于任意整数m>4,都有

1117

 a4a5am8

例9.求证1

11111n

nn1(n2,nN)2342212

分析:寻求合适的处理手法,可以通过分组“捆绑”进行放缩。左边=1

11111111111111()()()(n1nn)***1212

1

=1

11111111111111()()()(nnn)***222

11111n(共n个)1 222222

四.利用递推关系式放缩

利用递推关系式产生的不等关系,在很多题目中可以起到很好的放缩效果。例10.已知a13,ak2ak11(k2),求证:

1111

 1a11a21an2

分析:根据欲证不等式的结构特点,通过递推关系式构造关于1ak的不等式

ak2ak11,ak12(ak11)且a114ak1

ak1ak-11a111k1

()2(a11)22242k1

ak12ak-11ak-21a11

12131n1111

左边()()()1-n)

222222

例11.已知an2n1,证明:

1112

 a2a3an13

分析:an2n12n22(2n11)2an1,

an

2(n2)且a11,a23, an1

n3时,an

左边

anan1a113a22n23,3()n2

an2an1an2a2

1111212

[1()2()n1](1n) 3222332

五.构造和数列后进行放缩

如果数列不等式没有直接的求和的形式,很多时候可以间接的构造和数列,然后进行放缩处理。例12.已知

nan11111

[log2n],正数列an满足a1b0,an(n2)23n2nan1

2b

(n2)

2b[log2n]的递推关系式,然后利用“累加法”把欲证的不等式转化为和数列的形式 an

证明:an

分析:根据已知构造关于

0an

nan1111111,,(n2)

anan1nanan1nnan1

111111111111

n2()()()

ananan1an1an2a2a1a1nn12b

2b1112b[log2n]

[log2n]0,an

2b[lo2gn]an2b2b

1*

nN,定义数列:,,{x}x0xf(x)n1n1n2

x2

例13.已知函数f(x)

若0xk

11(k2,3,4,),证明:对任意mN*都有:xmkxk.k123

4分析:利用递推式构造关于xk1xk的不等式,利用“绝对值不等式”把xmkxk放缩为和数列的形式

由x10得x2

114, x3,当k2时,0xk,229

xkxk1xkxk1xkxk1xk2xk2111

22∴xk1xk2 2

44xk2xk12(xk2)(xk12)

∴xk1xk

*

xk1xk

xkxk1xk1xk2

xkxk1



x3x2()k2x3x2()k2

x3x24418

x4x3

对mN,xmkxk(xmkxmk1)(xmk1xmk2)(xk1xk)

xmkxmk1xmk1xmk2xk1xk 

1111

mk3mk4k218444

()k2(1m)18(1)k1118(1)k11(1)k11mk1

***3414

上面介绍的数列不等式主要与“求和”的形式有关。如果不等式的一边与求和没有直接的关系,也可以辨析题目的结构特征选择合适的方法进行处理,譬如“构造单调数列”放缩;构造“二项展开式”放缩;

对不等式的局部换元,然后再谋求放缩等。限于篇幅所限,本文就不做阐述了。

上一篇:煤矿雨季防汛防洪隐患排查制度下一篇:以责任为话题的800字作文