伺服控制实训总结

2024-04-11

伺服控制实训总结(精选8篇)

篇1:伺服控制实训总结

《设备控制实训实训》实训总结

设备控制实训是数控技术应用专业教学体系中重要的教学环节之一,是基于《设备控制系统》课程的学习基础并与之配套所进行的常见伺服控制系统原理掌握和操作的技能强化训练,是具备理解伺服控制系统原理,继而形成数控加工技术应用能力的必不可少的教学环节。

本实训的任务主要是对数控专业在校学生进行常见伺服控制系统原理掌握和操作的技能强化训练;同时,使学生具备常见伺服控制基本操作应用维修能力,做好数控操作加工方面的准备,打牢数控原理基础。

在实训前通过下达任务书,使学生明确实训目标、实训要求及注意事项、实训步骤及考核方式,克服畏难情绪。根据学习心理学家的学习迁移及促进理论,考虑到高职学生在学习上可能的自卑、畏惧心里,本课程借鉴‘家庭教师式’和企业中‘师徒式’教学形式,以教师与学生面对面的“一对一”教学为基本思路,实践教学实现了上机操作——发现问题解决问题——上机操作——正迁移思路的单元式教学模式。以教材为蓝本的同时,注意实践加工时编程处理;以FANUC及华中数控编程指令系统为主体,辅以伺服控制原理的掌握同时说明其他数控指令在格式上的差别,开阔了学生的视野,使他们进去企业后能快速适应不同的数控系统和伺服系统。

在教学中通过加工大量的零件,总结经验教训,使学生做到举一反

三、触类旁通;针对学生出现的问题,教师面对面引导解决,增强了学生的自信心、解问题的能力和成就感,激发了学生的学习热情;实训中在注重手工编程训练的同时,也注重伺服控制系统在数控加工中的应用,与企业中最新技术应用情况接轨,体现了现代制造技术的发展趋势。

在实训中,提倡学生根据自己的爱好、兴趣、机床的加工工艺范围和刀具、材料等情况,自行设计伺服控制系统,独立编程、选择加工的刀具、确定加工的工艺、独立加工处所构思的零件,体现了自主学习和个性化发展,同时,也巩固了学生的制图、工艺、装夹、刀具等方面的知识。

为使研究性学习落到实处,取消学生因为该课程与一般理论教学组织模式不一样而存在“蒙混过关”的侥幸心理,使学生得到有力管制;教学采用小组授课,教师根据学生学习情况,科学合理的将学生进行分组;根据学校数控设备台数,如每个机床、机床总共14台,将全本成员按照能力强弱搭配,男女搭配;指派组长,阐明组长责任、组员与组员直接的协作关系,使学生形成互帮互学的风气,增强了学生团队意识和竞争意识。

针对数控专业学生,主要采用“挖掘式”教学方法。根据学生各自能力水平,采用“台阶式”,一步一步加强难度,充分挖掘学生的学习潜能,使各个层次学生的学习成绩都有所提高,同时个人难度要求不一,减轻了学生学习的心理负担,数控编程与加工能力得到最大限度的提高。

伺服控制实训在完成教学任务的同时,也存在一些问题,如伺服系统不够,每个学生上机时间相对较少,影响实训效果;教学方法、实训设计题目的难易等有待进一步完善。

数控技术教研室

篇2:伺服控制实训总结

① 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

② 联系数控装置与被控设备的中间环节,起着传递指令信息和反馈设备运行状态信息的桥梁作用

伺服系统的主要特点 精确的检测装置有多种反馈比较原理与方法高性能伺服电动机宽调速范围的速度调节系统

2.怎样利用旋转变压器的鉴幅工作方式进行角位移的测量?

当励磁电压加到定子绕组时,通过电磁耦合,转子绕组产生感应电压,当转子转到使它的绕组磁轴与定子绕组磁轴垂直时,则转子绕组感应电压为零,当转子绕组磁轴自垂直位置转过一个角度θ时,这时转子绕组中产生的感应电势为: E2 =nV1sinθ= nVm sinωt sinθ

当转子转到两磁轴平行时(即θ=90°),转子绕组中感应电势为最大,值为E2 = n Vm sinωt 通常采用的是正弦余弦旋转变压器,其定子和转子绕组中各有互相垂直的两个绕组,当励磁用两个相位相差90°的电压供电时,应用迭加原理,在副边的一个转子绕组中磁通为: ф3=ф1 sinθ1 +ф2 cosθ1 而输出电压为u3 = n Vm sinωt sinθ1 + n Vm cosωt cosθ1= n Vm cos(ωt-θ1)

综上可知 旋转变压器转子绕组感应电压的幅值严格地按转子偏转角θ的正弦(或余弦)规律变化,其频率和励磁电压的频率相同。因此,可以采用测量旋转变压器副边感应电压的幅值或相位的方法,作为间接测量转子转角θ的变化。

3.提高光栅分辨精度的措施有哪些?

为了提高光栅分辨精度,线路采用了四倍频的方案,所以光电元件为4只硅光电池(2CR型),相邻硅光电池的距离为W/4。当指示光栅和标尺光栅作相对运动的时候,硅光电池产生正弦波电流信号,但硅光电池产生的信号太小需经放大才能使用,常用5G922差动放大器,经放大后其峰值有16伏左右。信号是放大了,但波形还近似正弦波,所以要通过射极耦合器整形,使之成为正弦和余弦两路方波,然后经微分电路获得脉冲,由于脉冲是在方波的上升边产生的,为了使0°,90°,180°及270°的位置上都得到脉冲,所以必须把正弦和余弦方波分别各自反相一次,然后再微分,这样就可以得到四个脉冲。

4.三相永磁无刷直流电动机与一般的永磁有刷直流电动机相比,在结构上有什么不同? 用装有永磁体的转子 → 取代有刷直流电动机的定子磁极 用具有三相绕组的定子 → 取代电枢

用逆变器和转子位置检测器组成的电子换向器 →取代有刷直流电动机的机械换向器和电刷

5.要得到圆形旋转磁场,加在励磁绕组和控制绕组上的电压应符合什么条件? 当励磁绕组有效匝数和控制绕组有效匝数相等时,要求两相电压幅值相等,相位相差90度;当励磁绕组有效匝数和控制绕组有效匝数不相等时,要求两相电压相位相差90度,电压幅值应与匝数成正比。

6.对伺服系统的基本要求有哪些?

稳定性好,精度高,快速响应并无超调,低速大转矩和调速范围宽 稳定性好 稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有的平衡状态。

精度高 伺服系统的精度是指输出量能跟随输入量的精确程度。

允许的偏差一般都在0.01~0.001mm(1~0.1)之间,高的可达到0.01~0.005m 快速响应并无超调 是伺服系统动态品质的标志之一,即要求跟踪指令信号的响应要快: 一方面要求过渡过程时间短,一般在200ms以内,甚至小于几十毫秒,且速度变化时不应有超调;另一方面是当负载突变时,要求过渡过程的前沿陡,即上升率要大,恢复时间要短,且无振荡。这样才能得到光滑的加工表面。低速大转矩和调速范围宽

机床的加工特点,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。同时,为了适应不同的加工条件,要求数控机床进给能在很宽的范围内无级变化。这就要求伺服电动机有很宽的调速范围和优异的调速特性。

7.步进控制系统为什么常用开环形式?步进控制系统有什么不足之处?

步进电动机开环系统结构简单、使用维护方便、可靠性高、制造成本低。适用于经济型数控机床和现有机床的数控化改造,且在中、小型机床和速度、精度要求不是很高的场合得到了广泛的应用。

不足:步进电机存在振荡和失步现象,必须对控制系统和机械负载采取相应的措施。步进电机自身的噪声和振动较大,带惯性负载的能力较差。控制输入脉冲数量、频率及电机各相绕组的通电顺序,可得到各种需要的运行特性?

8.步进控制系统主要由哪几部分组成?各部分功能是什么? 步进电机开环控制系统主要由步进控制器、功率放大器及步进电机组成。步进控制器是由缓冲寄存器、环形分配器、控制逻辑及正、反转控制门等组成。步进电动机或称脉冲电动机,是一种将电脉冲信号变换成相应的角位移或直线位移的机电执行元件。

步进电机实际上是一个数字/角度转换器,也是一个串行的数/模转换器。输入一个电脉冲,电动机就转动一个固定的角度,称为“一步”,这个固定的角度称为步距角。步进电动机的运动状态是步进形式的,故称为“步进电动机”。从步进电机定子绕组所加的电源形式来看,与一般交流和直流电动机也有区别,既不是正弦波,也不是恒定直流,而是脉冲电压、电流,所以有时也称为脉冲电动机或电脉冲马达。功率放大器的输出直接驱动电动机的控制绕组

9.改变交流伺服电机旋转方向的方法有哪些? 改变交流伺服电机的相序。①改变控制电压的相位或改变控制绕组的极性; ②改变励磁绕组的特性。

10.感应同步器由有哪些部分组成? 其测量原理是什么? 定尺,滑尺,正弦励磁绕组,余弦励磁绕组? 感应同步器工作原理

感应同步器是一种检测机械角位移或直线位移的精密传感器。在伺服系统中,它提供被测部件偏移基准点的角度和位置的测量电信号。感应同步器有旋转式和直线式两种,前者用于测量角度后者用于测量长度,由于在数控机床上应用直线式感应同步器较多。而旋转式感应同步器的工作原理及使用方法与自整角机和旋转变压器相似,它可以用于测量角度,但其精度比感应同步器低些。11.步进控制系统主要由哪几部分组成?各有什么功能?

12.简述伺服系统中直线位移或大角位移检测常用器件有哪些? 大角位移检测或直线位移检测,常用感应同步器、光栅、磁尺

13.直流测速发电机与交流测速发电机性能上有什么区别?

异步测速发电机的主要优点是:不需要电刷和换向器,因而结构简单,维护容易,惯量小,无滑动接触,输出特性稳定,精度高,摩擦转矩小,不产生无线电干扰,工作可靠,正、反向旋转时输出特性对称。其主要缺点是:存在剩余电压和相位误差,且负载的大小和性质会影响输出电压的幅值和相位。

直流测速发电机的主要优点是:没有相位波动,没有剩余电压,输出特性的斜率比异步测速发电机的大。其主要缺点是:由于有电刷和换向器,因而结构复杂,维护不便,摩擦转矩大,有换向火花,产生无线电干扰信号,输出特性不稳定,且正、反向旋转时,输出特性不对称。

14.比较普通变压器和旋转变压器的结构和功能有哪些不同。

普通变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。

旋转变压器(resolver/transformer)是一种电磁式传感器,又称同步分解器。它是一种测量角度用的小型交流电动机,用来测量旋转物体的转轴角位移和角速度,由定子和转子组成。其中定子绕组作为变压器的原边,接受励磁电压,励磁频率通常用400、3000及5000HZ等。转子绕组作为变压器的副边,通过电磁耦合得到感应电压。(百度)

15、旋转变压器的信号处理有哪两种方式? 鉴相型和鉴幅型两种。若一台三相反应式步进电动机,其步距角为1.8度/0.9度,问 a: 1.8度/0.9度表示什么意思?

1.8度是整步,也就是电机转一圈360度,就需要200步,0.9度是半步,如果驱动器有半步输出功能,这个电机转一圈就需要400步? b:转子齿数是多少?

c:写出三相六拍运行方式正反转的通电顺序

三相六拍通电方式通电顺序为A—AB—B—BC—C—CA—A。这种通电方式是单、双相轮流通电。它具有双三拍的特点,且通电状态增加一倍,而使步距角减少一半。三相六拍步距角为15º。

d:在A相测得的电源频率为300hz时,求三相三拍和三相六拍每分钟的转速为多少?(相数和拍数参数改变时要会)

设m为相数,z为转子的齿数则齿距:

360tb=z

因为每通电一次(即运行一拍),转子就走一步,各相绕组轮流通电一次,转子就转过一个齿距。故步距角:

b齿距齿距360拍数KmKmz

若步进电动机的转子齿数z=40,按三相单三拍运行时,K=1,m=3:

b36031340

3600.92540 若按五相十拍运行时,则K=2,m=5,z=40 b若步进电动机通电的脉冲频率为ƒ(脉冲数/秒)步距角用弧度表示,则步进电动机的转速:

17.分析直流机、感应电机、步进电机、伺服电机的特点。直流伺服电动机具有良好的启动、制动和调速特性,可很方便地在宽范围内实现平滑无级调速,故多采用在对伺服电动机的调速性能要求较高的生产设备中。直流伺服电动机的结构主要包括三大部分:定子,转子,电刷与换向片。

感应电机:由定子、转子、端盖三大部件组成,利用电磁感应原理,通过定子的三相电流产生旋转磁场,并与转子绕组中的感应电流相互作用产生电磁转矩,以进行能量转换。步进电动机有如下特点:

1.电机输出轴的角位移与输入脉冲数成正比;转速与脉冲频率成正比;转向与通电相序有关。当它转一周后,没有累积误差,具有良好的跟随性。

2.由步进电机与驱动电路组成的开环数控系统,既非常简单、廉价,又非常可靠。同时,它也可以与角度反馈环节组成高性能的闭环数控系统。3.步进电机的动态响应快,易于起停、正反转及变速。

4.步进电机存在振荡和失步现象,必须对控制系统和机械负载采取相应的措施。

5.步进电机自身的噪声和振动较大,带惯性负载的能力较差。控制输入脉冲数量、频率及电机各相绕组的通电顺序,可得到各种需要的运行特性。

篇3:伺服电机的无线控制

导电滑环属于电接触滑动连接应用范畴, 它又称集电环, 或称旋转关节、旋转电气接口、滑环、集流环、回流环、线圈、换向器、转接器, 是实现两个相对转动机构的图像、数据信号及动力传递的精密输电装置。特别适合应用于无限制的连续旋转, 同时又需要从固定位置到旋转位置传送功率或数据的场所。导电滑环迄今为止都是基于电刷接触原理, 能够方便传输电信号。由于是直接接触的形式, 滑环的寿命有限, 受接触温度和材料的限制, 滑环的速度也受很大的限制, 很难满足高速旋转设备, 同时接触电刷采用的是贵金属材料, 因此成本也很高。

针对以上分析, 笔者提出了无线传输方式来驱动多轴旋转运动的伺服系统。

一、系统设计方案

本方案拟对信号线采用无线传输的方式, 只有系统供电采用导电滑环传输, 这样可以适应高速旋转设备电信号的传输, 减少了滑环的环数, 提高了滑环的可靠性, 同时降低了成本。笔者针对交流伺服电机实现了无线控制, 选用的是Kollmorgen公司交流伺服驱动器和交流伺服电机, 反馈传感器选用海德汉公司的高精度光电编码器, 对伺服驱动器的控制方式选择的模拟量输入速度控制模式。设计过程中针对该系统提出了两种可行的无线传输方式, 方案分析比较如下。

方式一:系统设计原理如图1所示, 在上位计算机中使用无线收发转换模块与无线运动控制模块进行无线通信, 无线运动控制模块接收上位计算机运动指令, 同时将当前伺服机构的角度信息传送给上位计算机。无线运动控制模块对伺服系统做闭环控制。无线运动控制模块既有前面提到的运动控制卡功能, 又增加了无线传输转换模块。

方式二:系统设计原理如图2所示, 将常用的PCI、ISA、PC104等总线形式的运动控制卡增加无线传输转换模块, 在每个伺服旋转轴上增加一个无线收发转换模块, 无线收发转换模块只进行数据转换和收发, 不对数据进行复杂处理。

由上述分析可知, 方式一缺点是需要为伺服系统的每个旋转轴上配一个无线运动控制模块, 成本高、体积大, 不利于应用;方式二只需一个运动控制卡, 给每个伺服旋转轴上安装一个无线收发转换模块, 无线收发转换模块只进行数据转换和收发, 不对数据进行复杂处理, 可以做到体积小, 成本低, 有利于多轴运动控制系统。本系统最终采用了第二种设计方案。

二、系统软硬件设计实现

1. 硬件设计

系统的硬件设计主要是无线收发转换模块的设计, 考虑到互换性将连接运动控制卡的无线收发转换模块和伺服电机轴上的无线收发转换模块做成一样的, 信号传递采用双向通信。信号收发转换模块由MCU、射频模块、A/D模数转换器、D/A数模转换器等基本模块组成。

考虑到无线收发模块不涉及到复杂的数据处理, MCU采用MCS51系列单片机AT89C51作为处理器系统, 时钟可达12MHz, 运算速度快, 控制功能完善, 内部有128字节RAM, 而且内部还有4KB的EPROM不需要外扩存储器, 可使系统整体结构简单、实用。

射频模块选用nRF905, nRF905是Nordic VLSI公司推出的单片射频收发器, 工作电压为1.9~3.6V, 工作于433MHz、868MHz、915MHz 3个ISM频段, 频道转换时间小于650μs, 最大数据速率为100kb/s。nRF905由频率合成器、接收解调器、功率放大器、晶体振荡器和GFSK调制器组成。

无线收发转换模块将伺服驱动器、编码器及其他测试信号, 经过A/D转换成数字信号, MCU处理器对数据进行打包处理, 控制RF发送端, 将数字信号传送到RF接收端, 接收端对数据进行相应处理转换成适合运动控制卡的输入信号。反之亦然, 运动控制卡输出的电机控制信号经A/D转换成数字信号, MCU处理器对数据进行打包处理, 控制RF发送端, 将数字信号传送到RF接收端, 接收端对数据进行相应处理转换成适合驱动器输入的模拟量信号, 对伺服电机进行驱动控制。

2. 软件设计

软件设计主要涉及到数据的转换及收发, 不做复杂的数据计算以保证实时性要求, 软件采用C语言和汇编语言相结合的编程方式, 采用C语言开发速度快、可读性好、可移植性好, 而汇编语言对程序代码的执行效率高。经综合考虑本系统采用二者混合编程。

三、结论和展望

通过以上方案, 实现了交流伺服系统的无线控制, 解决了高速旋转系统滑环受限的问题, 同时降低了系统的成本。随着技术的推广, 可以在伺服驱动器上增加无线收发转换模块, 减少产品的设计环节, 可以进一步降低设计成本。

随着科技的进步, 无线电力传输成为可能, 目前已经可以实现1m距离对60W灯泡进行供电。当无线电力传输技术成熟以后, 多轴伺服电机控制系统可以做到无滑环工作方式, 当然受到转换设备体积、重量、造价等因素的制约, 想要真正做到对多轴伺服系统的无线控制还需更多的努力。

参考文献

[1]胡祐德.伺服系统原理与设计[M].北京理工大学出版社, 1993.

[2]沈兰荪.高速数据采集系统的原理与应用[M].北京:人民邮电出版社, 1995.

[3]尧鹏, 谢志江, 余中云.一种高精度数据采集无线传输系统硬件设计[J].重庆大学学报, 2006 (4) .

[4]林锦国.过程控制:系统.仪表.装置[M].东南大学出版社, 2001.

[5]徐惠民, 安德宁.单片微型计算机原理、接口及应用[M].北京:北京邮电大学出版社, 2000.

[6]蔡志祥, 刘冬生, 曾晓燕.基于单片机的交流伺服电机控制系统[J].机械与电子, 2005 (5) .

篇4:伺服控制实训总结

过去的电气控制技术主要以低压继电触器为主,控制方便简单,但很难大范围深度地使用。目前,先进的电气控制技术主要有现场总线技术、伺服系统技术、人机界面技术、PLC控制技术等,控制方式及其系统有PLC控制系统、自动控制系统、DCS集散系统、FCS现场总线控制系统等。其中伺服系统是自动控制系统中的一类,它是伴随控制论、微电子、和电力电子等技术应用而发展起来的,最早出现于20世纪。近十几年,新技术革命使伺服系统及其技术突飞猛进,其应用几乎遍及社会各个领域,所以其重要性不言自明。

二、步进伺服系统

电气控制中伺服系统有速度伺服控制和位置伺服控制,可以有交流伺服、直流伺服、步进伺服、液压伺服、气压伺服等。采用步进电机控制的伺服系统称为步进伺服系统,是一种将电脉冲信号转换成角位移的系统。可在宽广的范围内调速。特别适合于开环控制。又因步进电动机输出轴的角位移与输入脉冲成正比,转速与脉冲频率成正比,转向与通电相序有关,当它转一周后,没有积累误差,具有良好的跟随性,因此步进伺服系统具有很好的实用性。

(一)步进伺服系统的组成

步进伺服系统主要由指令脉冲信号、步进电动机驱动电路、步进电机、步进电机扭矩放大器、执行机构、反馈环节等组成。

(二)步进伺服系统的分类及基本特征

没有反馈环节的部分叫做开环控制,因为其没有位置和速度反馈回路,因此省去了检测装置,系统简单可靠,具有结构简单、使用维护方便、可靠性高、制造成本低等一系列优点,在中小型机床和速度、精度要求不十分高的场合得到了广泛的应用,并适合于发展功能简化的经济型数控机床和对现有的普通机床进行数控化技术改造。

在整个控制环节里,有部分反馈环节的伺服控制系统称为半闭环伺服系统;如果角度、位置和速度反馈形成封闭的系统,就称为闭环控制伺服系统,闭环系统是直接或间接地检测转子的位置和速度,然后通过反馈和适当处理自动给出驱动脉冲串。因此采用闭环控制可以获得更加精确的位置控制和更高更平稳的转速,从而提高步进电机的性能指标,可以具有更大的通用性。其控制方案主要有核步法、延迟时间法、用位置传感器等。

三、步进伺服系统的控制

(一)步进伺服系统的控制元件

步进伺服系统的控制元件为步进电动机,工作时,步进电动机的控制绕组受电脉冲信号控制,靠一种叫环形分配器的电子开关器件,通过功率放大后使控制绕组按规定顺序轮流接通直流电源。

步进电机主要分为转子本身没有励磁绕组的称为“反应式”步进电机,用永久磁铁做转子的“永磁式”步进电机,感应子式步进的混合式步进电机,目前反应式步进电机用得最多。步进电机是一种将电脉冲信号变换成相应角位移或直线位移的机电执行元件,步进电机实际上是一个数字/角度转换器,也是一个串行的数/模转换器。输入一个电脉冲,电动机就转动一个固定角度,称为“一步”,这个固定的角度称为步距角。步进电机的运动状态是步进形式的,故称为“步进电动机”。

其通电方式有“拍”、“单”、“双”,其中相数、拍数、步距角为其主要参数。

步进电机动态特性主要有步距角精度,失步,失调角,最大空载起动频率,最大空载的运行频率,运行矩频特性。矩频特性是电机在某种测试条件下测得运行中输出力矩与频率关系的曲线,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。

(二)步进伺服系统的控制原理

步進伺服系统主要分为开环、半闭环、闭环控制系统,其控制基本要求为:精度高(0.01—0.001mm),响应快(小的跟踪误差),调速范围宽(1:100,1:1000),低速大转距(电机可以直接连丝杠),较强的过载能力(数分钟内,电枢电流大于额定值4—6倍),能频繁起停,正反向运动。步进伺服系统控制的驱动电源包括环形分配器和功率放大器两部分。其中环形分配器是按一定的顺序导通和截止功率放大器,使相应的绕组通电或断电,它由门电路、触发器等基本逻辑功能元件组成,目前有硬件环形分配器和软件环形分配器。其通电顺序为AB-B-ABC-C-BC-A.

功率放大器的输出直接驱动电动机的控制绕组,由于从环形分配器输出的电流只有几个毫安,而一般步进电机的励磁电流需要几安到几十安,因此需要功率放大器进行功率放大和电流放大。功率放大器的性能对步进电动机的运行状态有很大影响。关键是要提高电动机的快速性和平稳性。目前国内使用的步进电机的驱动电路主要有单电压恒流功放电路、高低压(双电压)功率放大电路、调频调压功放电路。其中斩波型功放电路克服了电压恒流功放电路、高低压(双电压)功率放大电路谷点现象,得到广泛应用。

四、步进伺服系统的应用及其发展前景

因为步进伺服系统具有快速起停、精确步进以及能直接接受数字量等特点,其在各种应用场合得到广泛应用。例如军事上,雷达天线的自动瞄准跟踪控制,冶金行业,运输行业绘图机、打印机及光学仪器等,在工业工程控制的位置控制系统中PLC应用,在机械制造行业中,应用最多最广泛,如各种高性能机床运动部件的速度控制、运动轨迹控制等。未来随着工业以太、现场总线技、先进控制技术的PCS的发展将向着通信自动化、智能化、电子化快速发展。

五、结语

电气控制中伺服系统在现在社会技术发展中的重要作用促使其快速发展和应用,其中以步进电机为控制元件的步进伺服系统更在各种位置和速度控制中体现了其重要性,通过本文的介绍,可以比较清楚地了解和认识到步进伺服系统的组成及其特征还有其控制原理等方面的知识,可以为这方面的研究提供一定的参考和指导作用。

参考文献:

[1]敖荣庆,袁坤.伺服系统[M].航天工业出版社,2006.

篇5:伺服控制实训总结

伺服电机是运动控制中一个很重要的器件,通过它可以进行精确的位置控制。它一般带有编码器,通过高速计数功能,中断功能和脉冲输出功能,构成一个闭环系统,来进行精确的位置控制。PLC的脉冲输出

由于PLC在进行高速输出时需要使用晶体管输出。当将高速输出点作为普通输出而带电感性负载时,例如电磁阀,继电器线圈等,一定要注意,在负载端加保护,例如并联二极管等。以保护输出点。

心得二:步进电机的控制方法

我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。

一、S7-200 PLC 的脉冲输出功能

1、概述

S7-200 有两个 置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。

当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电

机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。

为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。

2、开环位控用于步进电机或伺服电机的基本信息

借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下:

⑴ 最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED)

图1是这2 个概念的示意图。

MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

图1 最大速度和启动/停止速度示意

SS_SPEED:该数值应满足电机在低速时驱动负载的能力,如果SS_SPEED 的数值过 低,电机和负载在运动的开始和结束时可能会摇摆或颤动。如果SS_SPEED 的数值过高,电机会在启动时丢失脉冲,并且负载在试图停止时会使电机超速。通常,SS_SPEED 值是MAX_SPEED 值的5%至15%。

⑵加速和减速时间

加速时间ACCEL_TIME:电机从 SS_SPEED速度加速到MAX_SPEED速度所需的时间。减速时间DECEL_TIME:电机从MAX_SPEED速度减速到SS_SPEED速度所需要的时间。

图2 加速和减速时间

加速时间和减速时间的缺省设置都是1000 毫秒。通常,电机可在小于1000 毫秒的时间工作。参见图2。这2 个值设定时要以毫秒为单位。

注意:电机的加速和失速时间要 过测试来确定。开始时,您应输入一个较大的值。逐渐减少这个时间值直至电机开始失速,从而优化您应用中的这些设置。

⑶移动包络

一个包络是一个预先定义的移动描述,它包括一个或多个速度,影响着从起点到终点的移动。一个包络由多段组成,每段包含一个达到目标速度的加速/减速过程和以目标速度匀速运行的一串固定数量的脉冲。位控向导提供移动包络定义界面,在这里,您可以为您的应用程序定义每一个移动包络。PTO 支持最大100 个包络。

定义一个包络,包括如下几点:①选择操作模式;②为包络的各步定义指标。③为包络定义一个符号名。

⑴选择包络的操作模式:PTO 支持相对位置和单一速度的 续转动,如图3所示,相对位置模式指的是运动的终点位置是从起点侧开始计算的脉冲数量。单速续转动则不需要提供终点位置,PTO 一直持续输出脉冲,直至有其他命令发出,例如到达原点要求停发脉冲。

图3

一个包络的操作模式

⑵包络中的步

一个步是工件运动的一个固定距离,包括加速和减速时间 的距离。PTO 每一包络最大允许29 个步。

每一步包括目标速度和结束位置或脉冲数目等几个指标。图4 所示为一步、两步、三步和四步包络。注意一步包络只有一个常速段,两步包络有两个常速段,依次类推。步的数目与包络中常速段的数目一致。

图4

包络的步数示意 7.2.5

使用位控向导编程

STEP7 V4.0 软件的位控向导能自动处理PTO 脉冲的单段管线和多段管线、脉宽调 制、SM 位置配置和创建包络表。

本节将给出一个在YL-335A 上实现的简单工作任务例子,阐述使用位控向导编程的方法和步骤。表1 是YL-335A 上实现步进电机运行所需的运动包络。

表1

步进电机运行的运动包络

1、使用位控向导编程的步骤如下:

1)为S7--200 PLC选择选项组态 置PTO/PWM操作。

在STEP7 V4.0软件命令菜单中选择 工具→位置控制向导并选择配置S7-200PLC内 置PTO/PWM操作,如图5所示。

图5 位控向导启动界面 2)单击“下一步”选择“QO.0”,再单击“下一步”选择“线性脉冲输出 PTO)”。

图5

选择PTO或PWM界面

3)单击“下一步”后,在对应的编辑框中输入MAX_SPEED 和SS_SPEED 速度值。输入最高电机速度“90000”,把电机启动/停止速度设定为“600”。这时,如果单击MIN_SPEED值对应的灰色框,可以发现,MIN_SPEED值改为600,注意:MIN_SPEED值由计算得出。用户不能在此域中输入其他数值。

图6

4)单击“下一步”填写电机加速时间“1500”和电机减速时间 “200”

图7 设定加速和减速时间

5)接下来一步是配置运动包络界面,见图8。

图8 配置运动包络界面

该界面要求设定操作模式、1个步的目标速度、结束位置等步的指标,以及定义这一包络的符号名。(从第0个包络第0步开始)

在操作模式选项中选择相对位置控制,填写包络“0”中数据目标速度“60000”,结束位置“85600”,点击“绘制包络”,如图9所示,注意,这个包络只有1步。包络的符号名按默认定义。这样,第0个包络的设置,即从供料站→加工站的运动包络设置就完成了。现在可以设置下一个包络。

图9 设置第0个包络

点击“新包络”,按上述方法将下表中上3个位置数据输入包络中去。

表中最后一行低速回零,是单速连续运行模式,选择这种操作模式后,在所出现的界面中(见图10),写入目标速度“20000”。界面中还有一个包络停止操作选项,是当停止信号输入时再向运动方向按设定的脉冲数走完停止,在本系统不使用。

6)运动包络编写完成单击“确认”,向导会要求为运动包络指定V存储区地址(建 议地址为VB75~VB300),默认这一建议,单击“下一步”出现图11,单击 “完成”。

图11 生成项目组件提示

2、项目组件 运动包络组态完成后,向导会为所选的配置生成三个项目组件(子程序),分别是:PTOx_RUN子程序(运行包络),PTOx_CTRL子程序(控制)和PTOx_MAN子程序(手动模式)子程序。一个由向导产生的子程序就可以在程序中调用如图12所示。

图12 三个项目组件

它们的功能分述如下:

⑴ PTOx_RUN子程序(运行包络):命令 PLC 执行存储于配置/包络表的特定包络中的运动操作。运行这一子程序的梯形图如图13所示。

图13 运行PTOx_RUN子程序

EN位:启用此子程序的使能位。在“完成”位发出子程序执行已经完成的信号前,请确定EN位保持开启。

START参数:包络的执行的启动信号。对于在START参数已开启且PTO当前不活动时的每次扫描,此子程序会激活PTO。为了确保仅发送一个命令,请使用上升缘以脉冲方式开启START参数。Profile(包络)参数:包含为此运动包络指定的编号或符号名。Abort(终止)参数命令,开启时位控模块停止当前包络并减速至电机停止。Done(完成)参数:当模块完成本子程序时,此参数 ON。Error(错误)参数:包含本子程序的结果。C_Profile参数:包含位控模块当前执行的包络。C_Step参数:包含目前正在执行的包络步骤。

⑵ PTOx_CTRL子程序:(控制)启用和初始化与步进电机或伺服电机合用的PTO输出。请在用户程序中只使用一次,并且请确定在每次扫描时得到执行。即始终使用SM0.0作为EN的输入,如图14所示。

图14 运行PTOx_CTRL子程序

I_STOP(立即停止)输入:开关量输入。当此输入为低时,PTO功能会正常工作。当此输入变为高时,PTO立即终止脉冲的发出。

D_STOP(减速停止)输入:开关量输入。当此输入为低时,PTO功能会正常工作。当此输入变为高时,PTO会产生将电机减速至停止的脉冲串。“完成”输出:开关量输出。当“完成”位被设置为高时,它表明上一个指令也已执行。Error(错误)参数:包含本子程序的结果。当“完成”位为高时,错误字节会报告无错误或有错误代码的正常完成。如果PTO向导的HSC计数器功能已启用,C_Pos参数包含用脉冲数目表示的模块;否则此数值始终为零。

⑶ PTOx_MAN子程序(手动模式):将PTO输出置于手动模式。这允许电机启动、停止和按不同的速度运行。当PTOx_MAN子程序已启用时,任何其他PTO子程序都无法执行。运行这一子程序的梯形图如图15所示。

图158 运行PTOx_MAN子程序

RUN(运行/停止)参数:命令PTO加速至指定速度(Speed(速度)参数)。您可以在电机运行中更改Speed参数的数值。停用RUN参数命令PTO减速至电机停止。当RUN已启用时,Speed参数确定着速度。速度是一个用每秒脉冲数计算的DINT(双整数)值。您可以在电机运行中更改此参数。

Error(错误)参数包含本子程序的结果。

篇6:电机控制实训报告总结

实习地点:湘潭电机集团有限公司(小电机厂和成套车间)

实习性质和目的:实习教学是教学过程中的重要组成部分,目的是巩固学生的理论知识,培养学生的实践能力、创新能力和敬业、创业精神,拓宽学生视野,增强劳动观念。

本次实习性质为认知实习。

参加本次实习的学生是网院05级机电专业刘毅同学,我们已经学完大部分基础课程和部分专业课程,如《电工技术》《电子基础》《机械制造》等。除了在教室学习外,我们接触实际的机会比较少,为了曾进感性知识,接触工厂生产现场,扩大视野,我们安排恶此次实习,主要任务是:○1对各类电机、电气元件作一基本了解:○2对发电厂生产输配电有一个初步认识;○3认识自动控制在现代工业生产现场的作用与重要性○4接触社会,认识和学习工人阶级。

认知实习是大学生活一个必要的学习环节,它为我们后续的专业基础课和专业课学习,提供了思维驰骋的物质空间,使学生对本专业从事的工作、专业方向和特点更加明确,因而增强对专业热爱,激发勤学热忱和敬业精神,自觉地造就自己成为面向新世纪,热爱社会主义祖国的、为自动化事业贡献青春的、出类拔萃的人才。

实习内容:

1.深化掌握交、直流电机的工作原理,初步掌握电机的基本结构和基本制造工艺。

2.初步掌握各类电器元件(自动开关、刀开关、继电器、接触器、高压断路器、隔离开关等等)工作原理、构造和用途。

3.对电器控制电路有初步了解,对电气成套设备有初步印象。

4.初步了解一些大型企业的生产组织和管理方法。

5.学习工人阶级优秀品质。

实习总结:

1.湘电集团简介

湘电集团有限公司前身是国民政府资源委员会中央电工器材厂,创建于1936年,1949年由人民政府接管,1953年更名为第一机械工业部湘潭电机厂。

享有 电工产品摇篮 、 中华民族工业脊梁 的美誉。 一五 期间被列入国家156项重点建设项目,经过几十年的扩建、发展,已经成为我国电工行业的骨干企业、国家重大技术装备的生产基地、国防装备定点生产厂家。从20世纪60年代起,先后为北京、天津、平壤、德黑兰等城市提供地铁配套电机电控设备1000多套;80年代跻身于全国500家最大工业企业行列;90年代列入520户国家重点企业。3月,工厂按照建立现代企业制度要求,改制为湘潭电机集团有限公司,由湖南省人民政府授权行使国有资产投资主体职能。底,企业集中主业部分的优良资产,联合北京地铁总公司等六家企业共同发起设立了 湘潭电机股份有限公司 ,并于7月成功上市, 湘电股份 7500万A股在上海证券交易所成功发行,成为湖南省首家在核准制下通过的上市公司、湘潭市第一家上市公司。11月,完成首次再融资工作,共募集资金33120万元。公司正式更名为湘电集团有限公司,资产总额达43亿元,拥有分公司6个,全资子公司6个,控股公司10个。

建国50多年来,湘电集团先后研制开发新产品1000多项,100多种重大新产品开创了中国第一:第一套船用动力推进设备;第一套地铁车辆电机电器成套设备;第一台108吨电动轮自卸车;第一辆城市轻轨车等。目前公司具有一批稳定的大型客户和合作伙伴,产品远销东南亚、欧洲、中美洲等26个国家和地区。20公司通过ISo9001系列标准的质量认证。所生产的大中型交、直流轧钢电机为国内驰名品牌;独家生产的大吨位工矿电机车系列和千万吨级矿用108吨、154吨电动轮自卸车遍布全国各大露天矿;企业是国家城轨车辆电机电器成套设备的重点生产企业近年来公司集中发挥电气牵引技术、舰船电力推进技术和电动车辆制造技术三大核心技术优势,着力推行 4+2 发展战略,全面推进企业持续、快速、健康、稳定地发展。

湘电集团始终立足并走在中国装备制造业前列,以 兴业报国,共赢共享 为企业宗旨,以 领军中国装备制造业 为发展目标;坚持人才兴厂,科技强厂,质量立厂,依法治厂,不断进行技术创新,制度创新,管理创新,文化创新,为振兴民族工业作出新的更大的贡献。

2.实习安全及日程安排

10月22日上午抵达湘电后,我们按照要求进驻本次实习基地 湘潭电机集团有限公司。安全方面主要涉及穿戴及防护,进出厂要求等,包括禁止穿拖鞋、背心、短裤、凉鞋等入场,女生需想头发挽起,如进入特殊车间还需按照特殊要求佩戴安全帽、安全手套等装备;进出厂需佩戴 临时出入证 ,如场内特殊区域标有 实验禁区 、 禁止入内 、 闲人免入 等标识,则未经允许不得擅自入内。

篇7:伺服控制实训总结

-0.6569i 0.4560-0.6549i 0.7486+0.3037i 0.7486-0.3037i 0.8586 ] K=-0.4072(2 5 阶模型 z1~z4 = [-1.3230 + 0.8407i-1.3230 – 0.8407i 0.8226-0.5599 ] p1~p5 = [0.7534+0.3015i 0.75 340.3439i] K =-0.3807(3)2 阶模型)z1 = [-21.0109 ] p1~p2 = [ 0.8148+0.3688i 0.8148 – 0.3688i ] K =(a 5 阶 模 型 OUTPUT # 1 INPUT # 1 2 1.5 1 0.5 0-0.5-1-1 0 1 2-1.5-2-2-1 0 1 2 OUTPUT # 1 INPUT # 1 10 8 6 4 2 0-2-4-6-8-10-10-5 0 5 10(c 2 阶模型 图 38 不同阶数模型的零极点分布 Fig.38 Zero-Pole Position in Different Order Models 图 38 中给出了取不同阶数时零极点的变化状态。此环节是非最小相位系 统,当取 2 阶时,一个零点远离单位圆。8.2.2 8.2.2 速度测量信号与模型仿真数据曲线拟合对比 从图 39 中看到,取 5 阶模型时,曲

线已能很好地拟合测量数据。取 2 阶 模型时的拟合误差较大。Output # 1 Fit: 0.17134 电 测 压 速(V 1.5 1---测量曲线 —模型曲线 电 压(v 0.5 0-0.5-1-1.5-2 0 50 100 150 200 Blue: Model output, Black: Measured output 250 300 350 400(a 5 阶模型 电 测 压 速(V 电 压(v Simulated(yellow/solid and measured(magenta/dashed output 1.5 1 0.5 0-0.5-1-1.5-2-2.5 采样时间(×7.81ms)----测量曲线 — 模型曲线 0 50 100 150 200 250 300 350(b 2 阶模型 采样时间(×7.81ms)图 39 Y 轴测量数据与仿真数据曲线拟合 Fig.39 Comparing Speed Signal Measured with Simulated on Techometer of Y Axis 至测速电机输入/ 8.2.3 Y 轴 NC 至测速电机输入/输出信号残差相关函数 Correlation function of residuals.Output # 1 0.5 0 输出值残差自相关函数 1 Correlation function of residuals.Output # 1 输出值残差自相关函数 0.5 0 相 关 系 数-0.5 0 0.1 0.05 0-0.05 5 10 15 20 25 相-0.5 Cross corr.function between input 1 and residuals from 输出值残差自相关函数 关 系 数 0 5 10 15 20 25 Cross corr.function between input 1 and residuals from output 1 0.15 0.1 0.05 0-0.05 输出值残差自相关函数-0.1-30-20-10 0 10 20 30 延迟(lag)-0.1-30-20-10 0 10 20 30(s 延迟(lag)(s(a 5 阶模型(b 2 阶模型 图 40 Y 轴 NC 单元至测速电机间不同阶数模型的残差相关函数 Fig.40 Correlation Function of Residuals in different Order Models between NC Unit and Techometer 8.2.4 不同阶数模型的阶跃响应特性 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-0.1 0 0.7----CRA —ARX 0.6 0.5 0.4 0.3 0.2 0.1 0-0.1 0----CRA —ARX(a5 阶模型 5 10 15 20(b2 阶模型 5 10 15 20 图 41 不 同阶数模型 的阶跃响应 Fig.41 Step Response Using CRA and ARX Models 时间(×7.81ms)时间(×7.81ms)8.2.5 Bode 图 幅 值(dB 10 2 AMPLITUDE PLOT, input # 1 output # 1 10 0-2----测 量 曲 线 — 模型曲线 10 10-4 10 0 101 102 103 相 位(度 PHASE PLO T, input # 1 output

# 1 0-500-1000-1500----测 量 曲 线 — 模型曲线(a 5 阶模型-2000 0 10 10 1 频率 10 2 frequency(rad/sec 10 3 幅 值(dB 10 0 AMPLITUDE PLOT, input # 1 output # 1----测量曲线 — 模型曲线 10-2 10-4 10 相 位(度 0 0 10 1 10 2 10 3 PHASE PLOT, input # 1 output # 1----测量曲线 — 模型曲线-500-1000-1500 0 10 10 1 频率 10 2 10 frequency(rad/sec 3(b 2 阶模型 图 42 不同阶数模型的 Bode 图 Fig.42 Bode Curves in Different Order Models 8.3 8.3 Y 轴 NC 单元至测速电机参数化模型 8.3.1 8.3.1 差分方程传递函数 式(2)中的系数为:(1)5 阶差分方程传递函数)b1~b10 = [ 0 0 0 0 0 0.0039 0.0025 0.0027 0.0041 0.0091 ] a1~a5 = [-1.8504 0.8120 0.0786 0.1823-0.2040 ] b 系数各项对应的

方差值为:0 0 0 0 0.0011 0.0015 0.0015 0.0015 0.0013; a 系数各项对应的方差值为: 0.0304 0.0668 0.0722 0.0639 0.0261。(2)2 阶差分方程传递函数)b1~b6 = [ 0 0 0 0 0 0.0014 0.0143 ] a1~a2 = [-1.8403 0.8617 ] b 系数各项对应的方差值为:0 0 0 0 0 0.0014 0.0015 a 系数各项对应的方差值为:0.0104 0.0104 8.3.2 8.3.2 零-极点模型 阶零(1)5 阶零-极点模型 式(3)中的系数为:K= 0.0039, 零极点参数见表 8 Table 8 Zero-Pole Parameters of Five Orders Model 表 8 5 阶模型的零极点参数 序号 零点(z)极点(p)1 0.6249 + 1.0771i 0 2 0.62490.7817i 0 5 0.7953 + 0.3312i 6 0.79530.4218i 9 0.9381 极点模型(2)2 阶零-极点模型)z1=-10.2143 p1~p6 = [ 0 0 0 0 0.9202 + 0.1226i 0.9202-0.1226i ] K = 0.0014 3.8.3.3 3.8.3.3 状态方程(1)2 阶模型)

0 T B = [1 0 0 0 0 0] C = [ 0 0 0 0 0 0.0014 ] D=0(2 5 阶模型的状态方程 阶模型的状态方程

0 0.5413 0 0

小结 对所建立的智能加工平台进行各个组成环节动态特性参数的辨识,这些组 成环节包括:NC 单元速度

篇8:交流伺服张力控制系统

交流伺服张力控制系统是为数控气瓶缠绕机配套的线轴控制系统。数控缠绕机为4轴联动系统,能在各种气瓶上缠绕碳纤维(或玻璃纤维),其加工程序依缠绕花式工艺要求编制,由缠绕机数控系统完成。因缠绕工艺要求每层纤维有不同的张力,所以数控编程中有张力给定数据,数控系统在执行缠绕程序时,会随时将张力给定数据以8位BCD码形式传给张力控制系统,经译码形成张力控制的给定信号。数控缠绕机可同时加工3只同规格、同缠绕花式的气瓶,每只气瓶最多缠绕4根纤维,为此张力装置设计成12线轴的,每个线轴由一个独立的伺服闭环控制,12个伺服闭环共用一个张力给定信号。

张力控制系统以PLC为控制核心:

(1)完成张力信号BCD码译码、D/A转换,输出0~10V模拟电压给压力调节阀。

(2)张力反馈信号取自张力杆上光电编码器的A、B脉冲,A、B脉冲的相位和脉冲数经PLC运算输出脉冲+方向信号给伺服驱动器,调节系统张力。

(3)输入点控制系统启动,完成自动取零点和延时伺服驱动器使能输出。

(4)有手动零点设置。

此张力系统运行时,线轴要做正、反旋转,既有放线也有收线,要求快速、稳定,故选用交流伺服电机来驱动;检测元件是非接触式光电编码器,比电位器更可靠。系统由PLC位置控制、交流伺服驱动器、交流伺服电机、光电编码器、低摩擦气缸、压力调节器组成。

2 控制系统选件

张力控制系统采用3台OMRON CP1H PLC,每台负责4路位置控制,其中1台选用模拟输出单元以输出张力给定的模拟电压。每台PLC有8个高速计数输入点,接4台编码器的A、B脉冲信号。伺服系统选用安川∑Ⅱ系列的SGDM-10ADA伺服驱动器和SGMGH-09ACA61伺服电机。因为PLC的高速计数输入点只有8个,编码器如使用双端输出,2台编码器就占了8个高速输入点,故编码器选用集电极开路输出型、工作电压为DC 24V的ZSF6.215-008CW-1024BZ3-12-24C。

3 控制系统工作过程

PLC输入点接到启动信号,立刻输出10V模拟电压给压力调节器,10V电压对应压力调节器最高压力输出,从而给12个气缸加上最高压力。此时伺服电机没上使能,线轴可自由转动,气缸将张力杆推到极限位置(一15°),以这个位置为零点并将所有计数器清零;同时启动延时开始,5s后输出伺服使能,伺服电机按张力控制系统指令运行。这段过程就是取零点。

低摩擦气缸、张力杆和编码器组成了张力控制系统反馈与给定的比较环节。张力杆的角度变化就是比较结果,其轴与编码器直连,摆动的角度经编码器转换成A、B脉冲信号后送到PLC的高速计数单元。张力杆的极限位置是±15°,现场实际测得编码器在极限范围内转动的脉冲数是196个,给定与反馈比较的零点(0°)在96个脉冲处。张力杆从一15°向+15°转动时,A脉冲超前B脉冲90°,计数器加计数;张力杆由+15°向一15°方向转动时,B脉冲超前A脉冲90°,计数器减计数。在PLC内设置96,与计数器的数比较,计数器的数小于96,线张力大于给定,PLC方向脉冲输出1,伺服电机正转放线;计数器的数大于96,线张力小于给定,PLC方向脉冲输出0,伺服电机反转收线。96与计数器的差值决定速度脉冲数,控制伺服电机的转速(设置伺服为脉冲+方向的控制方式),差值越大,电机转速越高。这样,位置控制的闭环系统就能保证张力杆在96个脉冲(0°)处左右运行。实际运行中,张力杆的摆幅不超过±5°。

数控系统张力信号的8位BCD码,经PLC的译码程序和D/A转换,输出0~10V模拟电压,电压值对应所要求的张力,此电压控制压缩空气的压力调节阀,使供给12个低摩擦气缸的压缩空气的压力随张力要求而变,从而实现纤维张力跟随数控缠绕机程序自动给定。

当需要暂停时,只下使能信号,零点和张力信号不变。PLC不下电,计数单元就不清零(为处理暂时性工作,加有手动清零开关)。

缠绕机很少有12根线同时使用的情况,为此伺服驱动器的电源是分别控制的,通过面板开关可选择开、停任意一台伺服驱动器。

要使CP1H具有4路位置控制能力,只有用集电极开路型的编码器高速点才行;但是该编码器为单端输出形式,故抗干扰性不如差动输出型。为使系统运行稳定、可靠,设计前在现场做了试验,编码器使用长度为15m电缆,而实际使用的电缆长度在10~14m。

为获得高速和高精度,通过位置控制闭环内的PLC可设置PID参数,本系统在调试时没用PID调节就已达到运行要求,所以省去了这个环节。

本张力系统是多环自动控制系统,图1和图2是系统框图和机械结构图。给定是低摩擦汽缸的拉力,反馈是线的张力,张力臂完成二力的比较,编码器输出比较的结果,即位置信号。这个位置信号由A、B脉冲组成,作为计数脉冲送到计数单元。张力杆向张力小的方向转动,计数器加计数,反之计数器减计数,这是第一个比较环节;在第二个环节,计数器里的数与程序编制的张力杆中心的脉冲数比较,其结果做PID调节后由PLC输出控制信号到伺服驱动器;伺服驱动器还有第三个环节——位置控制环(位置环内还有电流环),PLC的双脉冲输出是给定,反馈是伺服电机的编码器,这个环节要保证伺服电机准确地跟踪PLC送出的速度脉冲(CW)和方向脉冲(CCW),实现伺服电机的位置控制,即控制张力杆在中心位置,从而保证张力恒定。

系统PLC部分电路和伺服电机部分电路如图3和图4所示。

4 应用情况

目前,本系统应用在缠绕机上的线速度约为1m/s。为检查系统的快速性,试车时曾快速拉近至10m/s,跟踪得较好,张力杆的波动幅度不大于±5°。另外,此方案的最大优势在于系统工作稳定、可靠,3年没出现过任何故障。

上一篇:圣诞老人优秀作文下一篇:荷包蛋 阅读答案