化纤工艺学名词解释

2022-08-14

第一篇:化纤工艺学名词解释

化纤工艺学概论

第一章 总论

1.化学纤维的基本概念

纤维:比较柔韧的细而长的物质,纺织纤维长径比一般大于1000:1, 直径几微米~几十微米。

长丝(Continuous Filament):在化纤生产中经纺丝处理以后得到的长以千米计的丝叫长丝。

短纤维(Staple):化纤生产中被切成几厘米~十几厘米短段的纤维称短纤维。

丝束(Tow) :由几万根~百万根丝组成的一束。

再生纤维:以天然高分子为原料,经化学处理和机械加工制得的纤维,主要产品有再生纤维素和醋酸纤维素酯纤维。

合成纤维:以石油、天然气、煤及农副产品为原料,经过化学处理和机械加工制得的纤维。

复合纤维:沿着纤维轴向同时存在着两种或两种以上不相混合的聚合物,这种化学纤维称为复合纤维,或称双组分纤维。

异形纤维:在合成纤维成型过程中,采用异形喷丝孔纺制的具有非圆形截面的纤维或中空纤维。

变形纱:所有经过变形加工的丝和纱,如弹力丝、膨体纱。 差别化纤维:指通过化学改性或物理变形使常规化学纤维品种有所创新或被赋予某些特性的服用化学纤维。

特种纤维:一般指具有特殊物理化学结构、性能和用途的化学纤维,如高性能纤维、功能纤维。

高性能纤维:指具有高强度、高模量和耐高温、耐腐蚀、耐辐射、耐化学药品等性能的纤维。

功能纤维:指一般纤维具有物理机械性能基础上,具有某种特殊功能和用途的纤维,如具有反渗透、导光、导电、抗静电、阻燃等特性的纤维。

2.化学纤维的主要质量指标

线密度:表示纤维粗细程度的量,1000m长纤维重量的克数即为该纤维的特数。1tex=10dtex,9tex=1Denier 断裂强度:纤维在连续增加负荷的作用下,直至断裂所能承受的最大负荷与纤维线密度之比。1N/tex=1cN/tex .1g/D=0.882cN/dtex 断裂伸长率:纤维在伸长至断裂时的长度比原来长度增加的百分数。 初始模量:即弹性模量(杨氏模量)是指纤维在外力作用下伸长1%时所需要的应力。 极限氧指数LOI:着火的纤维离开火源而纤维继续燃烧时环境中氮和氧混合气体内所含氧的最低百分率。(化纤阻燃处理方法:采用共聚、共混和表面改性的方法,在纤维或织物表面引入有机膦化合物、有机卤素化合物或两者并用)

易燃纤维 <21% 棉、 麻、丙纶、腈纶、粘胶 可燃纤维 21~26% 羊毛、蚕丝、维纶、尼龙、涤纶 难燃纤维 >26% 氯纶、聚偏氯乙烯、改性腈纶 不燃纤维 玻璃纤维、碳纤维、石棉

回潮率R试样所含水分的重量100%

干燥试样的重量R试样所含水分的重量M100% 100%1R未干燥试样的重量 含湿率M(吸湿性好的纤维,摩擦和静电作用减小,穿着舒适)

沸水收缩率:将纤维放在沸水中煮沸30min后,其收缩后的长度与原来长度之比。

回弹率:纤维受拉伸力作用而伸长,当外力消除后的可回复程度。

3.化学纤维的纺丝方法(重点是熔体纺丝、湿法纺丝、干法纺丝)

熔体纺丝:聚合物熔体或聚合物切片在螺杆挤压机中熔融以后,被压送至各纺丝位、经计量泵定量送入纺丝组件,过滤后通过喷丝孔挤 出,在纺丝甬道冷却成型的工艺方法。(涤纶、尼龙、丙纶适用;聚丙烯腈、聚氯乙烯、聚乙烯醇不可熔纺)

熔体纺丝特点

①纺丝液是熔体,工艺过程简单,清洁无污染;

②纺丝速度高,一般的纺丝速度为1000~2000m/min,采用高速纺丝时,可达3000~6000m/min 或更高; ③熔融纺丝加工成本低,但喷丝板孔数少; 涤纶、锦纶、丙纶等均采用此法。

④基本条件:T 分解 > T熔点 或 T 流动

湿法纺丝:纺丝溶液经混合、过滤和脱泡等纺前准备后,送至纺丝机,通过纺丝泵计量,经烛形滤器、鹅颈管进入喷丝头(帽),从喷 丝头毛细孔中挤出的溶液细流进入凝固浴,溶液细流中的溶剂 向凝固浴扩散,浴中的凝固剂向细流内部扩散,于是聚合物在 凝固浴中析出而形成初生纤维的工艺过程。(腈纶、维纶、氯纶、粘胶纤维) 湿法纺丝特点

①纺丝液是高聚物溶液,纺出的丝条在液体中凝固;

②喷丝头孔数多,但纺丝速度较低,一般为18~380m/min,适合纺制短纤维;

③加工成本高且对环境污染较严重,纺出丝的截面多为非圆形,有皮芯结构;

④粘胶、腈纶、维纶、氯纶纤维多采用此法。

干法纺丝:从喷丝头毛细孔中挤出的溶液细流进入纺丝甬道,通过热空气的作用,溶液细流中的溶剂快速挥发,并被热空气流带走。 溶液细流在逐渐脱去溶剂的同时发生浓缩和固化,并在卷绕 张力的作用下伸长变细而成为初生纤维的工艺过程。(腈纶、醋酯纤维、氯纶、氨纶)

第二章 聚酯纤维

4. 对苯二甲酸乙二酯(BHET)的主要制造方法 A酯交换法 酯交换原理

纯对苯二甲酸二甲酯与乙二醇反应可生成对苯二甲酸乙二酯(BHET),释出甲醇。酯交换反应是在催化剂(Mn、Zn、Co、Mg等的醋酸盐)存在下加热至150~220℃进行的均相反应,乙二醇与对苯二甲酸二甲酯中的甲氧基(-OCH3)交换,生成BHET,被取代的甲氧基和乙二醇中的氢结合生成甲醇,其反应式如下:

B直接酯化法

所谓直接酯化法,就是TPA与EG直接进行酯化反应,一步法制得BHET。由于TPA在常态下为无色针状结晶或无定形粉末,其熔点(425℃)高于升华温度(300℃),而EG的沸点(197℃)又低于TPA的升华温度。因此,直接酯化体系为固相TPA与液相EG共存的多相体系,酯化反应只发生在已溶解于EG中的TPA和EG之间,反应式如下:

C直接加成法 用环氧乙烷(EO)代替乙二醇直接合成BHET。此法较直接酯化法具有成本更低、反应更快的优点。反应式如下:

5. 涤纶切片在纺前进行干燥的目的

干燥的目的:①除去切片中的水分 ②提高切片的软化点和结晶度。 涤纶切片干燥主要分两个阶段:预结晶、干燥 。 6. PET纤维纺丝技术路线的类型

①常规纺丝:纺丝速度1000~1500m/min,未拉伸丝,UDY。

②中速纺丝:纺丝速度1500~3000m/min,中等取向度,中取向丝,MOY。 ③高速纺丝:纺丝速度3000~4000m/min,预取向丝,POY。 4000~6000m/min,全拉伸丝,FDY。 ④超高速纺丝:6000~8000m/min,全取向丝。 7. 螺杆挤压机的分段

①依据螺杆挤压机的几何尺寸可以将其分为:进料段,压缩段,计量段。

②依据物料在螺杆挤压机中的状态可以将其分为:固体区,熔化区,熔融区。 8. PET熔体纺丝中纺丝温度过高或过低有何弊端? ①温度过高:热降解,熔体粘度下降,产生气泡丝;

②温度过低:熔体粘度增高,熔体输送困难,出现漏浆现象。

9. 生产涤纶短纤维时,初生纤维为什么要存放一定的时间后才能进行加工?

刚成形的初生纤维其预取向度不均匀,需经存放平衡,使内应 力减小或消除,预取向度降低,卷绕时的油剂扩散均匀,改善 纤维的拉伸性能。存放平衡后的丝条才能进行加工。

第三章 再生纤维素纤维

10.纤维素的分类、定义,各类纤维素的聚合度范围,哪类纤维素适合制备粘胶纤维

α-纤维素(聚合度200以上):植物纤维素在特定条件下不溶于20℃的17.5% NaOH溶液的部分,溶解的部分称为半纤维素。

β -纤维素(半纤维素,聚合度140-200):以上溶解部分用醋酸中和又重新沉淀分离出来的那一部分纤维素。

γ-纤维素(半纤维素,聚合度10-140 ):不能沉淀的部分。

11.粘胶纤维制备过程中的老成和熟成,及其作用

老成是借空气中的氧化作用,使碱纤维素分子链断裂,聚合度下降,以达到适当调整粘胶粘度的目的。(低温长时间老成效果较好) 纤维素黄酸酯在热力学上是不稳定的,即使在常温下放置也会逐步分解,酯化度下降。粘胶在放置过程中会发生一系列的化学和物理化学变化,称之为粘胶的熟成。结果使黄酸基团在纤维素分子链上分布均匀,从而使粘胶均匀稳定。

12.黄化反应的机理

黄化反应,使难溶解的纤维素变成可溶性的纤维素黄酸酯。

碱纤维素中存在的大量游离碱与二硫化碳发生一系列的副反应

机理

⑴主要是气固相反应,包括二硫化碳蒸汽按扩散机理从碱纤维素表面向内部渗透的过程以及二硫化碳在渗透部分与碱纤维素上的羟基进行反应的过程。

⑵是放热反应,低温有利,高温易生成更多的副产物。

⑶是可逆反应。二硫化碳对纤维素的渗透,在无定形区易于进行,而结晶区的二硫化碳主要在微晶表面进行局部化学反应。在溶解过程中,甚至在以后的粘胶溶液中,二硫化碳继续向微晶内部渗透,称之为“后黄化”。因此,二硫化碳的扩散和吸附对反应起着重要作用。

13.粘胶纤维纺丝中凝固浴的组成和作用 ⑴硫酸的作用

一是使纤维素黄酸钠分解,再生出纤维素和CS2;二是中和粘胶中的NaOH,使粘胶凝固;三是使黄化时产生的副产物分解。 ⑵硫酸钠的作用

抑制硫酸的解离,从而延缓纤维素黄酸钠的再生速度。硫酸钠是一种强电解质,能促使粘胶脱水而凝固,这些作用能改善纤维的物理机械性能。

⑶硫酸锌的作用

改进纤维的成型效果,使纤维具有较高的韧性和较优良的耐疲劳性能。

两个特殊作用:一是能与纤维素黄酸钠作用生成稳定的中间产物—纤维素黄酸锌,其分解速度比纤维素黄酸钠慢得多,有利于拉伸,从而提高纤维强度;二是纤维素黄酸锌具有交联结构,能形成结晶中心,生成均匀而细小的结晶,避免大块晶体的形成,从而使纤维结构均匀,强度、延伸度和钩接强度都得到适当提高。

第四章 聚酰胺纤维

14. 工业生产聚己二酰己二胺时,为何要用聚酰胺66盐为中间体? 为了保证获得相对分子质量足够高的聚合体,要求在缩聚反应 时己二胺和己二酸有相等的摩尔比,因为任何一种组分过量都 会使由酸或氨端基构成的链增长终止。为此,在工业生产聚己 二酰己二胺时,先使己二酸和己二胺生成聚酰胺66盐(PA-66 盐),然后用这种盐作为中间体进行缩聚制取聚己二酰己二胺。 15. PA 6生产中除单体的方法 ①连续聚合直接纺丝的纺前脱单体

原理:根据聚己内酰胺和单体的挥发性不同,使聚己内酰胺熔体中的单体蒸出来。为了提高蒸发效率,减少蒸发皿中的停留时间,一般在真空状态下进行。在真空闪蒸皿中熔体以薄膜状、细流状、雾状等形式进入闪蒸室以尽可能大的蒸发面积除去单体及低聚物。 ②切片法纺丝的切片萃取

切片的萃取采用热软水洗涤的办法,萃取过程中一方面是水渗透到切片内部,一方面是切片内的可萃取物不断向外扩散到切片表面,然后再溶解到热水中。

16. PA6纺丝中给湿的作用

刚从甬道出来的纤维是无定型的,它吸收水分后很容易发生诱导结晶,同时纤维发生自发的伸长。如果将无定型的PA6纤维绕在筒子上,它吸收空气中的水分后同样也会发生诱导结晶和纤维伸长,这样会出现绕在筒子上的丝松圈和塌边现象,因此在纺丝中要采取给湿的措施-卷绕前增加一个给湿盘。

第五章 聚丙烯纤维 17. 熔融指数概念

“MI”是热塑性高聚物在规定地温度和压力下在十分钟内通过指 定长度和内径的毛细管的重量值。

18. 聚丙烯纺丝时为什么纺丝温度要远高于熔点 PP熔体温度高出其熔点100℃左右,原因如下:

(1)PP的分子量高,熔融后的熔体粘度很高,因此要提高纺丝 温度以增加流动性使纺丝顺利进行。

(2)PP中没有强极性基因,内聚能较小,纺丝时容易出现熔体 破裂

(3)PP分子量分布宽,熔体弹性较大牛顿性能差。

(4)高温下纺丝,卷绕丝的预取向度低并生成不稳定的碟状液 晶结构以利于后拉伸倍数的提高。

第六章 聚丙烯腈纤维

19. 腈纶生产中加入第二单体的作用,常用的第二单体

第二单体的作用:降低大分子间的作用力,降低PAN的结晶性、增加纤维的柔软性、改善纤维的弹性。

常用的第二单体有:丙稀酸甲酯(MA)、甲基丙稀酸甲酯(MMA)、 醋酸乙烯酯(VAC)、丙稀酰胺(AAM)。 20. 腈纶生产中加入第三单体的作用,常用的第三单体

第三单体的作用:引入亲染料基团,改进纤维的染色性和亲水性。 常用的第三单体有:衣康酸(ITA )、丙稀磺酸钠(SAS) 甲基丙稀磺酸钠(SMAS)、对乙烯基苯磺酸钠(SSS) 乙烯吡啶、2-甲基-5-乙烯吡啶

21. 水相沉淀聚合及其优点

水相沉淀聚合是指以水为介质,单体在水中具有一定的溶解度.当水溶性引发剂引发聚合时.聚合产物不溶于水而不断地从水相中沉淀出来。

水相沉淀聚合具有下列优点。

(1)水相聚合通常采用水溶性氧化—还原引发体系,引发剂分解活化能较低.聚合可在30~50℃之间甚至更低的温度下进行。所得产物色泽较白;

(2)水相聚合反应的反应热容易控制,聚合产物的相对分子质量分布较窄;

(3)聚合速度较快,产物粒子大小较均匀且含水率较低,聚合转化率较高,浆状物料易于处理.回收工序相应地较为简单。

22. 湿法纺丝成形中的双扩散

纺丝液由喷丝头喷出进入凝固浴后,原液细流的表面首先与凝固浴接触,很快凝固成一层膜,凝固浴中的凝固剂(水)不断通过这一皮层扩散到细流内部,而细流中的溶剂也通过皮层不断扩散到凝固浴中。双扩散的不断进行,使皮层不断增厚。

23. 纤维干燥致密化机理

拉伸水洗后的纤维,其微孔被拉长拉细,内部充满水,在适当温度下进行干燥,大分子链段能较自由地运动,水分逐渐蒸发产生毛细管压力,使得微孔半径相应收缩,最后微孔融合。

(干燥致密化 经拉伸后的纤维超分子结构基本形成,但由于成形时间短,纤维中还存在内应力和缺陷,经干燥致密化和热定型消除内应力和结构缺陷。)

24. 腈纶干法纺丝成形机理 凝固介质

热空气 溶剂蒸发

纺丝原液从喷丝孔挤出后进入纺丝甬道,溶液细流与甬道中热空气的热交换,使原液细流温度上升,当细流表面温度达到溶剂沸点时,便开始蒸发,细流内部的溶剂不断扩散至表面而蒸发。 原液细流固化

由于溶剂蒸发,使原液细流中高聚物浓度增加,而溶剂含量则不断降低,当达到凝固临界浓度时,原液细流便固化为丝条。

第七章 聚乙烯醇纤维

25.维纶纺丝前对PVA进行水洗的目的

⑴降低PVA中NaAc含量,使之<0.2%,减少热处理时的碱性着色; ⑵除去低分子量PVA,改善分子量分布; ⑶使PVA适度膨润,以利于溶解。

26.纺制维纶的凝固浴的组成及其作用

凝固浴组成:Na2SO4:410~420g/L ZnSO4:1~5g/L ① Na2SO4使丝条脱水凝固成形

②ZnSO.4控制纤维色相,适当加入可增加纤维白度。

③酸度过低会使纤维着色,酸度的调节是加入H2SO4来达到目的, 其中的HAc由NaAc水解而得。 27.维纶生产中缩醛化的目的是

在聚乙烯醇大分子上每个链节都含有一个羟基,经过纺丝,拉伸、热处理后,纤维的结晶度可达60%,在非晶区部分还有一些自由羟基。为了进一步提高纤维的耐热水性,要把这一部分羟基封闭掉,缩醛化反应的实质就是使用甲醛与非结晶区的自由羟基反应,构成分子内缩合,从而使纤维的耐热水性和玻璃化温度有所提高。

28.维尼纶生产中后处理的目的是什么,采取了哪些措施? 后处理的目的是使纤维的耐热水性和玻璃化温度有所提高。在聚乙烯醇大分子上每个链节都含有一个羟基,经过纺丝,拉伸、热处理后,纤维的结晶度可达60%。就是说一部分大分子上的羟基被纳入了晶格,成为被束缚的羟基、反应在纤维上其耐热水性有所提高。但是在非晶区部分还有一些自由羟基。不把这一部分羟基封闭掉,其耐热水性还达不到要求。采取的措施主要是进行缩醛化反应,就是使用甲醛与这一部分羟基反应,构成分子内缩合。

第八章 聚氯乙烯纤维 29.捏合的概念

纤维级的PVC不能溶解于丙酮,为了获得纺丝原液,首先使PVC树脂在丙酮中充分溶胀,这一操作在生产上叫做捏和。

30.溶液法氯化PVC生产过程,氯化PVC较之PVC有何好处 先使PVC悬浮在四氯乙烷或氯苯中,而后通入氯气氯化。当聚合物的含氯量由56.55%增至63%~65%时,即为氯化PVC。

优点:使分子的不规整性增大,结晶度下降,分子链的极性增强,因而使其热变形温度上升。CPVC产品的使用温度最高可达93~100℃,较PVC提高30~40℃。同时CPVC的抗张强度、抗弯强度较PVC也有改进。

31.维氯纶生产中如何将疏水的PVC和亲水的PVA共混

采用PVA与PVC两者的接枝共聚物作为两相的增溶剂。方法是在PVA溶液中进行氯乙烯的乳液聚合。

第九章 聚氨酯纤维

32 . 聚氨酯弹性纤维的用途

① 裸丝 : 主要纺织产品有:紧身衣、运动衣、护腿袜、外科用绷带和袜口、袖口等。 ②包芯纱 :棉型织物 ③包覆纱:又称包缠纱。

④合捻纱:又称合股纱。如弹力劳动布、弹力单面华达呢等。

33. 生产聚氨酯所用的主要单体

①生产聚氨酯弹性纤维一般选用芳香族二异氰酸酯,以满足硬链段的硬度。常用的芳香族二异氰酸酯有:二苯基甲烷4,4ˊ-二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)。

②聚醚二醇是软链段之一,其相对分子质量越大聚合物的极性越小,分子链越柔软,一般相对分子质量控制在1500~3500。常用聚醚二醇有:聚四氢呋喃醚二醇(又称聚四亚甲基醚二醇)、聚氧乙烯醚二醇、聚氧丙烯醚二醇等。

③聚酯二醇也是软链段之一。常用的合成聚氨酯的聚酯二醇有: 聚己二酸乙二醇酯、聚己二酸乙二醇丙二醇酯、聚己二酸丁二醇酯等。 ④ 扩链剂是含有活泼氢原子的双官能团低分子量化合物,大多数扩链剂选用二胺、二醇、肼等。 二胺扩链剂有间苯二胺、乙二胺、1,2 -二氨基丙烷等, 二元醇有1,4-丁二醇、乙二醇、丙二醇、二乙二醇等。

34. 聚氨酯纤维的生产方法有哪些?

①干法纺丝②熔融纺丝③湿法纺丝 ④反应纺丝 35. 什么是聚氨酯弹性纤维的化学反应纺丝法

先将预聚体与有机溶剂配成纺丝原液,由纺丝泵定量挤入喷丝头。原液细流在凝固浴中凝固的同时,与凝固浴中的链扩展二元胺发生化学反应,形成嵌段共聚物的长链。在纤维内的大分子间也会产生横向交 联,使之成为具有网状结构的大分子。初生纤维经卷绕后,还应在加压的水中进行硬化处理,使初生纤维内部继续发生交联,在大分子之间建立起具有尿素结合型式的横向连接。

第十章 高性能纤维

36. 碳纤维生产中主要的前驱体纤维 ⑴聚丙烯腈(PAN)基碳纤维 ⑵沥青基碳纤维 ⑶粘胶基碳纤维

37. 芳纶-1313的分子式、主要特点 单体

OClCOCCl+NH2NH2

聚间苯二甲酰间苯二胺纤维(芳纶1313 )

COCONHn NH优点:耐高温性能好,高温下的强度保持率好,以及尺寸稳定性、抗氧化性和耐水性好,不易燃烧,具有自熄性,耐磨和耐多次曲折性好,耐化学试剂,绝热性能也较好。缺点:强度和模量低,耐光性较差。

38. 芳纶-1414的分子式、主要特点 单体

OCl

OCClC+NH2NH2 聚对苯二甲酰对苯二胺(PPTA)纤维(芳纶1414)

COCONHNHn PPTA纤维具有高拉伸强度、高拉伸模量、低密度、优良吸能性和减震、耐磨、耐冲击、抗疲劳、尺寸稳定等优异的力学和动态性能;良好的耐化学腐蚀性;高耐热、低膨胀、低导热、不燃、不熔等突出的热性能以及优良的介电性能。

第二篇:化纤工艺部分知识

第一章 总论

1. 化学纤维的基本概念

天然纤维

:由纤维状的天然物质直接分离、精制而成。 化学纤维:用天然或人工合成的聚合物为原料,经化学处理和机械加工制得的纤维。

①按原料分类

人造纤维:以天然高分子化合物为原料,经化学处理和机械加工制得的纤维,也称再生纤维。

合成纤维:以石油、天然气、煤及农副产品等为原料,经一系列的化学反应制成合成高分子化合物,再经加工而制得的纤维。 无机纤维:主要成分是由无机物构成的纤维。 ②按尺寸分

长丝:在化学纤维制造过程中,经纺丝成形和后加工工序后,得到的连续不断的长度以千米计的纤维称为长丝。

短纤维:化学纤维经切断而成的、一定长度规格的纤维。 丝束:丝束是由大量单纤维汇集而成。

牵切纤维:化纤丝束经牵伸拉断而成的长度不相等(而有一定比例)的短纤维。 ③按性能分类 ⑴ 差别化纤维:泛指对常规化学纤维产品有所创新或赋予某些特性的化学纤维。 异形纤维:在合成纤维成形过程中,采用异形喷丝孔纺制的具有非圆形截面的纤维或中空纤维称为异形截面纤维,简称异形纤维。 复合纤维:在纤维横截面上存在两种或两种以上不相混合的聚合物,这种化学纤维称为复合纤维,或称双组分纤维,多组分纤维。

共混纤维:由两种或两种以上不同的聚合物混合后纺制成的化学纤维。

超细纤维:化学纤维可按单纤维的粗细(线密度)分类,一般分为常规纤维、细旦纤维、超细纤维和极细纤维。

有光纤维 :生产过程中,未加入消光剂经行消光处理的光泽较强的化学纤维 消光纤维 (无光纤维):生产过程中,经过消光处理(通常用二氧化钛为消光剂)制成的化学纤维。纤维表面的反射光减弱。

半消光纤维 (半光纤维):生产过程中,经部分消光处理(加入消光剂约0.5%)而制成的化学纤维。

⑵ 高性能纤维:具有高强度、高模量、耐高温、耐化学药品、特别优异的一类新型纤维。

⑶ 功能纤维:在常规化学纤维原有性能的基础上,又增加了某种特殊功能的一类新型纤维。

⑷ 智能纤维:一维的纤维状智能材料。 2.化学纤维的主要质量指标

一、 线密度 1.定义:线密度是表示纤维粗细程度的量,在我国化学纤维工业中,也称“纤度”。 • 线密度的单位名称为特[克斯],单位符号为tex, • 1000m长纤维重量的克数即为该纤维的特数。 • 其1/10称分特[克斯],单位符号为dtex。 • 旦尼尔数为9000 m长纤维重量的克数。 • 公支为单位重量纤维的长度,

2.换算关系:(对同一根纤维而言) 分特数=10×特数 特数×支数=1000 旦数=9 ×特数 1tex(特)=1mg/m 1tex=10dtex 1旦=1mg/9m 1特=9旦 1公支=1m/g

二.断裂强力

• 定义:纤维纤维拉伸至断裂时所能承受的最大负荷 称断裂强力,也称绝对强力或断裂负荷。 • 单位:牛[顿] (N)、厘牛[顿] (cN)

三.断裂强度

• 定义:纤维在连续增加负荷的作用下,直至断 裂所能承受的最大负荷与纤维的线密度之比。 • 单位:牛[顿]/特[克斯](N/tex) 厘牛[顿]/分特[克斯](cN/dtex)

四. 纤维的断裂伸长率一般用断裂时的相对伸长率,即 纤维在伸长至断裂时的长度比原来长度增加的百分 数表示:

断裂伸长率 =(L - L 0)/L0 ×100%

五. 初始模量

纤维的初始模量即弹性模量(或杨氏模量)是指纤维 受拉伸而当伸长为原长的1%时所需的应力。 六. 断裂功

• 断裂功为材料拉伸至断裂时外力所做之功。 • 可以从负荷伸长曲线下的面积求出。 • 断裂功反映纤维的韧性。 W=∫F(l)dl

七. 回弹性

纤维在外力作用下伸长和释放外力后恢复到原 始状态的能力称为回弹性。

八、吸湿性

纤维的吸湿性是指在标准温湿度(20℃、65%相对湿度)条件下纤维的吸水率。一般采用两种指标来表示:回潮率和含湿率。

回潮率 =(试样所含水份的重量/干燥试样的重量)× 100% 含湿率 = (试 样 所 含 水 份 的 重 量/未干燥试样的重量)× 100%

九. 卷曲性

• 卷曲数(个/cm)= 弯折点个数/2×L0 • 卷曲率 =( L1- L0)/ L1 × 100% • 卷曲回复率 = (L1 -L2)/ L1× 100% • 卷曲弹性回复率 = (L1 - L2)/(L1-L0)× 100% L0——预加张力为1.26×10-3dN/tex时的纤维长度;

L1 ——加负荷 8.8 ×10-2dN/tex并保持 lmin后测得的纤维长度; L2 ——除去负荷使纤维松弛2min后,再加预张力测得的纤维长度

十. 沸水收缩率

将纤维放在沸水中煮沸30min后,其收缩后的长度与原来长度之比,称为沸水收缩率。

十一。 燃烧性能

• 纤维的燃烧性能是指纤维在空气中燃烧的难易程度。为了测定和表征纤维及其制品的燃烧性能,国际规定采用“极限氧指数”(Limiting Oxggen Index,简称LOI)法。所谓极限氧指数,就是使着了火的纤维离开火源,而纤维仍能继续燃烧时,环境中氮和氧混合气体内所含氧的最低百分率。

3. 化学纤维的纺丝方法(重点是熔体纺丝、湿法纺丝、干法纺丝)

熔体纺丝:切片在螺杆挤出机中熔融后或由连续聚合制成的熔体,送至纺丝箱体中的各纺丝部位,再经纺丝泵定量压送到纺丝组件,过滤后从喷丝板的毛细孔中压出而成为细流,并在纺丝甬道中冷却成形的工艺过程。

湿法纺丝:纺丝溶液经混合、过滤和脱泡等纺前准备后,送至纺丝机,通过纺丝泵计量,经烛形滤器、鹅颈管进入喷丝头(帽), 从喷丝头毛细孔中挤出的溶液细流进入凝固浴,溶液细流中的溶剂向凝固浴扩散,浴中的凝固剂向细流内部扩散,于是高聚物在凝固浴中析出而形成初生纤维的工艺过程。

干法纺丝:干法纺丝时,从喷丝头毛细孔中挤出的纺丝溶液不进入凝固浴,而进入纺丝甬道。通过甬道中热空气的作用,使溶液细流中的溶剂快速挥发,并被热空气流带走。溶液细流在逐渐脱去溶剂的同时发生浓缩和固化,并在卷绕张力的作用下伸长变细而成为初生纤维的工艺过程。

聚氨酯纤维部分

4 . 聚氨酯弹性纤维的用途 ① 裸丝② 包芯纱③包覆纱④合捻纱

5. 生产聚氨酯所用的主要单体

①二异氰酸酯:二苯基甲烷4,4ˊ-二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)。

②聚醚二醇:聚四氢呋喃醚二醇(又称聚四亚甲基醚二醇)、聚氧乙烯醚二醇、聚氧丙烯醚二醇。

③聚酯二醇:聚己二酸乙二醇酯、聚己二酸乙二醇丙二醇酯、聚己二酸丁二醇酯 ④扩链剂:大多数扩链剂选用二胺、二醇、肼等。二胺扩链剂有间苯二胺、乙二胺、1,2 -二氨基丙烷等,二元醇有1,4-丁二醇、乙二醇、丙二醇、二乙二醇

6. 聚氨酯纤维的生产方法有哪些

①干法纺丝②熔融纺丝③湿法纺丝④反应纺丝

7. 什么是聚氨酯弹性纤维的化学反应纺丝法

先将预聚体与有机溶剂配成纺丝原液,由纺丝泵定量挤入喷丝头。原液细流在凝固浴中凝固的同时,与凝固浴中的链扩展二元胺发生化学反应,形成嵌段共聚物的长链。在纤维内的大分子间也会产生一定程度的横向交联,使之成为具有网孔结构的大分子。

初生的纤维经卷绕后,还应在加压的水中进行硬化处理,使初生纤维内部尚未充分反应的部分继续发生交联,在大分子之间建立起具有尿素结合形式的横向连接,从而转变为具有三维结构的聚氨酯嵌段共聚物。

第二章 聚酯纤维

8. 对苯二甲酸乙二酯(BHET)的主要制造方法

① 高温氧化法②低温氧化法③氧化酯化法 。

9. 涤纶切片在纺前进行干燥的目的

① 去切片中的水分②提高切片的软化点和结晶度

10. PET纤维纺丝技术路线的类型

①常规纺丝。纺丝速度1000~1500m/min,其卷绕丝为未拉伸丝,通称UDY②中速纺丝。纺丝速度为1500~3000m/min。其卷绕丝具中等取向度,为中取向丝,通称MOY。③高速纺丝。纺丝速度为3000~6000m/min。纺丝速度为4000m/min以下的卷绕丝具有较高的取向度,为预取向丝POY④超高速纺丝。超高速纺丝:纺丝速度为6000~8000m/min。卷绕丝具有高取向和中等结晶结构,为全取向丝,通称FOY

11. 螺杆挤压机的分段

进料段,压缩段,计量段

12. PET熔体纺丝中纺丝温度过高或过低有何弊端?

温度过高,切片在达到压缩段前就过早熔化,由于在螺槽等深的预热段无法压缩,无法往前推进,造成“环结”阻料。温度过低,切片在进入压缩段后还不能熔融,也必然造成切片在压缩段内阻塞。

附:生产涤纶短纤维时,初生纤维为什么要存放一定的时间后才能进行加工?

第三章. 再生纤维素纤维

13.纤维素的分类、定义,各类纤维素的聚合度范围,哪类纤维素适合制备粘胶纤维。 ①定义:纤维素是一种由大量葡萄糖残基彼此按照一定的联接原则,即通过第一个、第四个碳原子用β键连接起来的不溶于水的直链状大分子化合物。

②分类:α-纤维素(聚合度200以上),β-纤维素(聚合度140-200),γ-纤维素(聚合度10-140 )

③α-纤维素含量高、半纤维素含量低,标志着浆粕纯度高。

14.粘胶纤维制备过程中的老成和熟成,及其作用‘

①老成:借空气中的氧化作用,使碱纤维素分子链断裂,聚合度下降,以达到适当调整粘胶粘度的目的。(低温长时间老成效果较好) ② 熟成:粘胶在放置过程中会发生一系列的化学和物理化学变化 有利于粘胶凝固,使其均匀稳定。

15.黄化反应的机理

⑴主要是气固相反应,包括二硫化碳蒸汽按扩散机理从碱纤维素表面向内部渗透的过程以及二硫化碳在渗透部分与碱纤维素上的羟基进行反应的过程。 ⑵是放热反应,低温有利,高温易生成更多的副产物。

⑶是可逆反应。二硫化碳对纤维素的渗透,在无定形区易于进行,而结晶区的二硫化碳主要在微晶表面进行局部化学反应。在溶解过程中,甚至在以后的粘胶溶液中,二硫化碳继续向微晶内部渗透,称之为“后黄化”。因此,二硫化碳的扩散和吸附对反应起着重要作用。

16.粘胶纤维纺丝中凝固浴的组成和作用

是由硫酸、硫酸钠和硫酸锌按一定比例组成的溶液 ⑴ 酸的作用

①是使纤维素黄酸钠分解,再生出纤维素和CS2 ②是中和粘胶中的NaOH,使粘胶凝固③是使黄化时产生的副产物分解。 ⑵硫酸钠的作用

抑制硫酸的解离,从而延缓纤维素黄酸钠的再生速度。硫酸钠是一种强电解质,能促使粘胶脱水而凝固,这些作用能改善纤维的物理机械性能。 ⑶硫酸锌的作用 ①改进纤维的成型效果,使纤维具有较高的韧性和较优良的耐疲劳性能。 ②一是能与纤维素黄酸钠作用生成稳定的中间产物—纤维素黄酸锌,其分解速度比纤维素黄酸钠慢得多,有利于拉伸,从而提高纤维强度

③是纤维素黄酸锌具有交联结构,能形成结晶中心,生成均匀而细小的结晶,避免大块晶体的形成,从而使纤维结构均匀,强度、延伸度和钩接强度都得到适当提高。

第四章 聚酰胺纤维

17. 工业生产聚己二酰己二胺时,为何要用聚酰胺66盐为中间体

为了保证获得相对分子质量足够高的聚合体,要求在缩聚反应时己二胺和己二酸有相等的摩尔比(任何一种组分过量都会使由酸或氨端基构成的链增长终止)。

18. PA 6生产中除单体的方法

①连续聚合直接纺丝的纺前脱单体②切片法纺丝的切片萃取

19. PA6纺丝中给湿的作用

使纤维提前发生诱导结晶和纤维伸长,防止出现绕在筒子上的丝松圈和塌边现象。

第五章 聚丙烯纤维

20. 熔融指数概念

熔融指数是热塑性高聚物在规定的温度和压力下,在10分钟内通过指定长度和内径的毛细管的重量值。单位“g/10min”。

21. 聚丙烯纺丝时为什么纺丝温度要远高于熔点

①PP的分子量大,熔融后的熔体粘度很高,因此要提高纺丝温度以增加流动性使纺丝顺利进行。

②PP中没有强极性基因,内聚能较小,纺丝时容易出现熔体破裂。 ③PP分子量分布宽,熔体弹性较大,牛顿性能差。 ④高温下纺丝,卷绕丝的预取向度低并生成不稳定的碟状液晶结构,有利于后拉伸倍数的提高。

第六章 聚丙烯腈纤维

22. 腈纶生产中加入第二单体的作用,常用的第二单体

作用:①降低大分子间的作用力②降低PAN的结晶性、增加纤维的柔软性、改善纤维的弹性。

常用单体:丙烯酸甲酯(MA),甲基丙烯酸甲酯(MMA),醋酸乙烯酯(VAC),丙烯酰胺(AAM)

23. 腈纶生产中加入第三单体的作用,常用的第三单体

作用:引入亲染料基团,改进纤维的染色性和亲水性。 常用单体:衣康酸(甲叉丁二酸,ITA),丙烯磺酸钠,甲基丙烯磺酸钠,对乙烯基苯磺酸钠,乙烯吡啶,

6、2-甲基-5-乙烯吡啶。

24. 水相沉淀聚合及其优点

①概念:可用介质只能溶解或部分溶解单体,而不能溶解反应生成的聚合物,纺丝前需要用溶剂重新溶解聚合物制成纺丝溶液。因非均相的聚合介质通常采用水,所以又称为水相沉淀聚合。

②优点:通常采用水溶性氧化—还原引发体系,引发剂分解活化能较低。聚合可在30~50℃之间甚至更低的温度下进行,所得产物色泽较白;反应热容易控制,聚合产物的相对分子质量分布较窄。

25. 湿法纺丝成形中的双扩散

纺丝液由喷丝头喷出进入凝固浴后,原液细流的表面首先与凝固浴接触,很快凝固成一层膜,凝固浴中的凝固剂(水)不断通过这一皮层扩散到细流内部,而细流中的溶剂也通过皮层不断扩散到凝固浴中。双扩散的不断进行,使皮层不断增厚。

26. 纤维干燥致密化机理

拉伸水洗后的纤维,其微孔被拉长拉细,内部充满水,在适当温度下进行干燥,大分子链段能较自由地运动,水分逐渐蒸发产生毛细管压力,使得微孔半径相应收缩,最后微孔融合。

27. 腈纶干法纺丝成形机理

纺丝原液从喷丝孔挤出后进入纺丝甬道,溶液细流与甬道中热空气的热交换,使原液细流温度上升,当细流表面温度达到溶剂沸点时,便开始蒸发,细流内部的溶剂不断扩散至表面而蒸发。由于溶剂蒸发,使原液细流中高聚物浓度增加,而溶剂含量则不断降低,当达到凝固临界浓度时,原液细流便固化为丝条

第七章 聚乙烯醇纤维

28.维纶纺丝前对PVA进行水洗的目的

⑴降低PVA中NaAc含量,使之<0.2%,减少热处理时的碱性着色; ⑵除去低分子量PVA,改善分子量分布; ⑶使PVA适度膨润,以利于溶解。

29.纺制维纶的凝固浴的组成及其作用 凝固浴组成:

Na2SO4:410~420g/L

ZnSO4:1~5g/L 凝固浴作用:① Na2SO4使丝条脱水凝固成形②ZnSO4控制纤维色相(强酸弱碱盐、水溶液pH=3.35)

30.维纶生产中缩醛化的目的是

进一步提高纤维的耐热水性,玻璃化温度。

31.维尼纶生产中后处理的目的是什么,采取了哪些措施? ①目的:提高纤维的耐热水性及软化点温度。 ②后处理流程:

给纤→热水卷缩→前水洗→前回收→缩醛化→后回收→第1~4温水洗→上油→最终榨液→开纤→干燥→冷却→计量→打包。 ③主要措施:

⒈热水卷缩⒉前水洗⒊缩醛化4.前回收,后回收5.温水洗6.上油7.干燥、冷却、调湿

第八章 聚氯乙烯纤维 32.捏合的概念

纤维级的PVC不能溶解于丙酮,为了获得纺丝原液,首先使PVC树脂在丙酮中充分溶胀,这一操作在生产上叫做捏和。

33.溶液法氯化PVC生产过程,氯化PVC较之PVC有何好处

氯的质量分数较 PVC增加5%~8%,在结构上分子的不规整性增大,结晶度下降,分子链的极性增强,因而使其热变形温度上升。CPVC产品的使用温度最高可达93~100℃,较PVC提高30~40℃,具有很好的耐热性、耐化学腐蚀性,能抗酸、碱、盐、脂肪酸盐、氧化剂及卤素等的化学腐蚀,同时CPVC的抗张强度、抗弯强度较PVC也有改进。

34. 维氯纶生产中如何将疏水的PVC和亲水的PVA共混

在PVA溶液中进行氯乙烯的乳液聚合。在生成氯乙烯均聚物的同时,由子链转移作用,会在PVA分子上接枝氯乙烯,生成PVA-PVC接枝共聚物,因而制得与PVA有亲和性的PVC乳液。纺丝用共混原液是PVA浓溶液中加入35%~50%的PVC乳液。

第九章 高性能纤维

35. 碳纤维生产中主要的前驱体纤维

聚丙烯腈(PAN)原丝,沥青纤维,粘胶纤维。

36. 芳纶-1313的分子式、主要特点

COCONHNHn 耐高温性能好,高温下的强度保持率好,以及尺寸稳定性、抗氧化性和耐水性好,不易燃烧,具有自熄性,耐磨和耐多次曲折性好,耐化学试剂,绝热性能也较好。强度和模量低,耐光性较差。

37. 芳纶-1414的分子式、主要特点

COCONHNHn

PPTA纤维具有高拉伸强度、高拉伸模量、低密度、优良吸能性和减震、耐磨、耐冲击、抗疲劳、尺寸稳定等优异的力学和动态性能;良好的耐化学腐蚀性;高耐热、低膨胀、低导热、不燃、不熔等突出的热性能以及优良的介电性能。

第三篇:化纤纺丝后加工工艺初探

摘要:化学纤维后加工是指对化学纤维纺丝成形后的初生纤维进行一系列后处理加工,使其适应纺织加工和使用的要求。如果经过一系列的后处理加工,就有可能使最终的成品纤维的结构和性能得到完善和提高;反过来,比较完善的初生态纤维如采取的后处理工艺不合理,最终成品的质量也会大大降低。

关键词:化学纤维 后加工

对化学纤维纺丝成形后的初生纤维进行一系列后处理加工,使其适应纺织加工和使用的要求。依化学纤维品种和纺丝工艺的不同,后处理工序也不相同。湿法纺丝的后处理工序较长,例如粘胶纤维采取湿法成形,后处理工序有水洗、脱硫、漂白、酸洗、上油、脱水及干燥等;醋酯纤维采取干法成形,后处理工序比较简单,只有卷绕和加拈;至于大多数以熔体纺丝成形的合成纤维,则有卷绕、拉伸、热松弛、热定形、卷绕及加拈等,制造短纤维时还增加切段工序。以上品种所采用的后处理设备也不尽相同,有分段处理的单元设备,也有连续处理的设备。初生态化学纤维的结构和性质常常不完善,不能满足纺织加工和使用的要求,但如果经过一系列的后处理加工,就有可能使最终的成品纤维的结构和性能得到完善和提高;反过来,比较完善的初生态纤维如采取的后处理工艺不合理,最终成品的质量也会大大降低。因此后加工是化学纤维制造不可分割的组成部分。

水洗 用湿法成形的纤维常需要立即进行水洗以除去纤维表层所粘附的溶液及有机、无机物杂质,否则初生纤维有可能发生降解或受到变质和变色等损伤。粘胶纤维水洗是为了除去粘附在表面的硫酸、硫酸锌和其他胶体硫化物等;以硫氰酸钠溶液为溶剂的腈纶水洗是为除去残留的腐蚀性硫氰酸钠溶液和挥发性丙烯腈;锦纶(聚酰胺-6)的水洗则是为了洗去单体己内酰胺,同时也可以防止单体污染车间空气。水洗一般是使运行的丝条(或含大量丝条的束丝)在一个或两个连贯排列的洗涤槽内通过,槽内盛满洗涤水;或在行进的丝条上喷洒净液,直到丝条洗净到需要的程度为止。 拉伸

化学纤维的拉伸,不同于纺纱过程中的牵伸,是指初生态纤维在它的微观结构尚未完全固定以前,在特定的张力下使卷曲而无序的大分子沿轴向整列和伸展的过程。在这一过程中,无序的大分子朝有序方向发展,大分子之间的接触点增加,分子间力增强,聚集区域扩大,为纤维的结晶提供条件。这时纤维的密度增加,抗张强度上升;纤维变细,抗张延伸度下降;光学性和导热性则呈现各向导性。总之,纤维经拉伸后综合性的物理-机械性能得到改善,实用价值提高。

化学纤维的拉伸工序是在有两组或三组不同转速的导辊或导盘的拉伸装置上进行的。被拉伸的纤维或束丝从导辊或导盘的缝隙之间通过,两端导辊或导盘的速差使纤维伸长。这种拉伸也常和加拈工序结合,在拉伸-加拈设备上同时进行。

纤维的拉伸必须在一定的介质中和一定的温度下进行,一般有三种方法: ① 干热拉伸:在空气中加热状态下(如涤纶和维纶长丝)或在室温条件下(如锦纶和丙纶长丝)拉伸。

② 蒸汽拉伸:在饱和蒸汽中(如腈纶短纤维)或在过热蒸汽中(如涤纶短纤维生产中第二道拉伸)拉伸。

③ 湿热拉伸:在水浴中或在溶剂与沉淀剂混合液中加热拉伸,粘胶帘子线的塑性拉伸,涤纶短纤维第一道热拉伸以及腈纶短纤维的预拉伸等便是。

热定形

合成纤维被拉伸以后在定形装置中加热状态下停留一定时间,使拉伸之后的结构得到稳定。纤维在拉伸过程中大分子在应力作用下发生变形,拉伸作用越强,变形也越大,应力消失后就有回复到原位的倾向。纤维在松弛状态下加热,则会发生缩褶现象,直到在拉伸过程中所产生的变形全部消失为止。经过定形的纤维,外观形态能在定形温度以下长时期保持稳定而不变,纤维的性能也更为稳定,沸水收缩率降低,染色性能也可以得到改善。如果纤维的热定形是在张力下进行,变形也会被消除,这样的纤维可以在比松弛定形温度高得多的温度下加热,而只发生少量缩褶。

影响热定形的主要因素是温度、时间、容许松弛的量和在定形前分子经受整列的程度。在一般情况下,定形温度应高于纤维(或织物)的最高使用温度,以保证在使用条件下结构与形态的稳定。按纤维所处的介质和加热方式热定形分为:

① 干热空气定形; ② 接触加热定形; ③ 水蒸气湿热定形和 ④ 浴液热定形等。

根据不同纤维品种选用不同的定形设备,如定形锅、帘式热定形机和热板定形机等。

卷曲

用化学或机械的方式使化学纤维外形获得立体的、平面的或锯齿形波纹的过程。化纤短纤维通常用于与棉或羊毛等天然纤维混纺,也可以纯纺。一般的化学纤维表面平滑无卷曲(永久卷曲的复合纤维除外),抱合力小,不易互相拈合或与其他纤维拈合,即可纺性能差。卷曲加工能使化学短纤维获得与天然纤维相类似的卷曲,可纺性能会大大改善。

卷曲的方法有:机械法和化学法两类。机械卷曲法是先将纤维束在热水或蒸汽中预热,而后通过卷曲机,借卷曲轮和卷曲箱的作用产生锯齿形平面卷曲效应。用化学法获得的卷曲,则是空间立体状的永久性卷曲波纹(见复合纤维)。最常用的卷曲机主要由卷曲轮、卷曲箱和加压机构组成。

切段

化学纤维长丝一般只能象蚕丝那样制成织物或者与蚕丝交织。如切成短段使其长度与棉或羊毛相近,则可以象棉或羊毛那样供作纯纺或者混纺后制成织物。这样的织物用途远较长丝织物为广。短纤维的纺丝工艺与长丝基本相同,区别在于长丝常在孔数有限(50孔以下)的喷丝头上纺丝成形,而制造短纤维的喷丝头孔数常达数千甚至数万。短纤维在后处理工艺上除增加切段和卷曲外,设备结构也与长丝不同,容量较大。切成的短纤维常成簇,必须进一步开松、混和,而后用与棉或羊毛相同方式纺纱和织造。

切段有湿切、干切、牵切三种形式。用前两种切断法可获得段状纤维簇,再送入开松和混和机。后一种加工方式的短纤维仍具有连续粗束丝外形,许多纤维段间歇地分布在粗束丝内部,围绕束丝轴平行定向(见纺丝直接成条)。非连续式切段装置是由两个迅速旋转的刀轮组合而成,其中一个刀轮沿周边等距满布割刀,另一轮则在与割刀对应处刻有沟槽。当束丝以垂直方向从刀轮的缝隙中经过时,即被切成预定长度的纤维段,落入收集器内送出机外。

湿法成形丝精制

湿法成形的初生丝大都需要经过高度的精制处理才有实用价值。精制的工序随不同的品种而异,有的品种甚至在后处理过程中还有重大的化学变化,如在维纶的制造中对聚乙烯醇纤维进行缩甲醛化处理。

粘胶丝是湿法成形纤维中精制过程最繁复的品种之一。粘胶帘子线的后处理较普通粘胶纤维简单得多,只须经过洗涤、半脱硫和再洗涤即可,常在连续后处理机上进行。粘胶帘子线纤维表面光滑,在制造轮胎中不易与橡胶抱合,因此,必须先在树脂和橡胶溶液内对纤维进行热处理。此外,由于帘子线是条干粗而单丝根数多的束纤维,宜采用特殊条件的高效干燥法,以缩短处理时间。

第四篇:化纤工艺员理论考试题目

技术员试题

一、填空题:(每题0.5分)

1. 假捻加工过程中参数D/Y比指的是 摩擦盘的表面速度 与丝条离开 假捻器速度 之 比。

2. 随着卷绕速度的增大,纤维的取向度 增加 。

3. 圆形丝的织物有透视的倾向,越是复杂的形状覆盖性及蓬松性 越强 。

4.端羟基含量高,分子量分布宽,在纺丝过程中,受热后大分子降解 加剧 ,可纺性差 。 5. 非晶区的特征主要用 玻璃化温度 、非晶区密度 、非晶链段的取向 来描述。 6. 聚酯的熔点随着聚合物增大而 升高 。 7. 织造分为 机织 和 针织 两大类。

8. POY的物理指标主要有 线密度、断裂伸长率、断裂强度 、条干不匀率 9. QC小组的分类:现场型、服务型、攻关型、管理型。

10. FDY沸水收缩率提高,染色偏深,降低偏浅。沸水随着一辊速度的降低而增高。

二、不定向选择题(每题0.5分,)

1. 表示汽相热媒代号的是?( D )

A、 SXB B、 SXCC C、 SXD D、 SXA 2. 计量泵在下列哪些情况下会跳停( ABCD )

A 变频器故障 B 电机故障 C 操作不当 D 减速机故障 3. 控制油剂腐败的常见方法有哪些? ( A )

A、 控制温度和加杀菌剂 B、 更换油剂型号 C、 更换脱盐水 D、 更换杀菌剂 4. 丝饼的宽度是由(D)决定的。

A、 导丝辊速度 C、 卷绕速度

B、 横动导丝器速度 D、 横动导丝器的动程 5. 组件预热炉的温度应该(C)纺丝温度。

A、 低于 B: 等于 C:稍高于 D: 无关于 6. 随着油剂黏度的增加,则纤维之间的摩擦系数(B)。

A、 不变 B、 增加 C、 减小 D、 无规则变化 7. 下列选项中,不属喷丝板镜检的项目为(A)。

A、喷丝板使用时间 C、导孔光洁度 B、有无异物堵塞 D、板面有无伤痕 8. 卷绕头使用的压空为( A )

A、8kg B、 6 kg C、12 kg D、 8 kg 与12kg切换 9. 卷绕成型和哪些因属有关(ABCD)

A、 接压 B、 上油 C、 T3张力 D、 卷绕角

10. 若正常生产时泵前压力过低,下列哪些选项可以稍微提高泵前压力(CD ) A. 降低交接点到纺丝箱体间的温度 B. 提高纺丝箱体温度,加强计量泵保温效果 C. 提高管道温度

D. 提高增压泵后压及熔体输送温度

三、判断题(每题1分)

1. 卷绕丝的异型度随着冷却条件的加剧,如风速的增大,风温降低及吹风点距喷丝板的距离缩短,异型度减小。(×)

2. 异型截面染色上色速度快,但反射率小。 ( × )

3. 油剂的主要功能有平滑性、集束性、抗静电性及增大拉伸性能( × ) 4. 脱盐水是将水中的钙、镁、铁等离子除去后的水。 ( ∨ ) 5. 增压泵的作用是增大熔体压力,保证熔体到纺丝计量泵前有足够的压力。(∨) 6. 油剂常见的腐败原因都有氧气、营养源、温度、细菌等。 ( ∨ )

7. 喷丝孔的长径比增大,会导致熔体流经微孔时产生温升,从而减小出口膨化现象。 (√) 8. 组件压力表是一种膜片压力表,与普通膜片压力表相比,其具有耐高温性能。 (√) 9. 热定型所要达到的目的是修补或改善 纤维成形和拉伸过程中已经形成的不完善结构。 (√) 10. 凝胶粒子一般产生于酯化过程中。 (×)

四、简答题(每题4分)

1. DTY的捻向有几种?

答:DTY的捻向有S捻,Z捻,S+Z捻三种。

2. 请解释喷丝板型号PRB88-137-0.12*0.48,其中数字的含义?

答:

1、 88代表喷丝板直径。

2、137代表孔数。

3、0.12*0.48代表喷丝板微孔的长为0.48,直径为0.12 3. 简述沸水收缩率对成品布效果有哪些影响?

答:沸水收缩率越大,成品布幅宽越窄 沸水收缩率越大,成品布经(纬)密度大

4. 油剂为什么要使用脱盐水?

答:原因:○1脱盐水中除去了钙、镁、铁等离子,可以防止产生沉淀污垢堵塞管道及油嘴。○2油剂与脱盐水搅拌能充分混合且清澈透明。○3成本低廉且容易制造。

五、问答题(每题6分)

1. 纺丝计量泵跳停产生原因及处理方法? 答:产生原因:设备故障联锁跳、工艺参数修改错误跳 处理方法:

1) 紧急联系聚酯中控调整增压泵转速。

2) 若跳位超出6个位,通知班长和车间领导并要立即联系公用工程控制各压空压力(尤其是8Kg压空)。判断属电气故障,通知电气进行处理,根据事故情况向上级汇报。

3) 协助班长安排对产品进行隔离处理,使用黄卡,根据情况注明剥丝时间,并出联系单,要求外检测纤,直至正常;

4) 并及时进行跟踪,确认纤度正常后,出联系单,产品正常处理。故障处理完成后,联系聚酯逐位开泵,开泵速度控制在3~5min/位(严禁全部同时启动)。

2. 突发性跳车后如何处理?

1) 如果突发性跳车,当班班长首先了解跳车原因,迅速向车间主任、总经理等相关领导汇报情况,然后电话通知工艺人员及复产人员(根据上下班情况通知)。

2) 在确保安全的情况下,根据供电、供气情况卷绕人员展开落筒清场,纺丝人员向组件上喷适量硅油,空调班启动环境空调系统,保证空气畅通等。

3) 各岗位人员接到电话通知后迅速到达指定岗位,准备相关工具(如:纺丝工需铲刀、硅油等)等待总指挥的开车指令。

4) 工艺员检查工艺参数有无变化,如发生变化迅速调整到规定值,等待领导的开车指令。 5) 车间主任、班长合理安排好复产人员,完成复产前的各项准备工作,等待领导的开车指令。 3. 列举条干的影响因素,平时巡检应注意哪些问题来确保条干稳定。怎样分析条干波谱图,找出影响条干的关键因素?

1) 条干的影响因素有:①风速、风温 ②熔体均匀性 ③熔体粘度 ④集束位置及上油均匀性 ⑤喷丝孔吐出量 ⑥计量泵质量及其吐出量 ⑦组件压力 ⑧纺丝冷却窗和丝室结构 ⑨卷绕装置

2) 平时巡检应注意:①风速、风温的变化 ②集束上油位置 ③中控数据 ④物检数据 ⑤导丝器有无磨损

3) 条干波谱图不呈山峰状,而是一条比较平坦的波幅较低的谱线。则表明其条干均匀性好。相反当其条干不匀率较大时,测得的波谱图上就会有突起的峰。波谱图上出现馒头形的高峰,可归之于工艺性因素差异造成,出现烟囱形突起的峰,一般由机械性因素引起。

4. 怎样合理选择卷绕角?

答:卷绕是由两种运动组成的,一种是筒管的圆周运动,使丝束绕在筒管上,另一种是往复运动,由往复导丝器带着丝束在筒管轴线方向作来回运动,完成铺丝工作,这两种运动的合成使丝束在筒管上作来回螺旋形卷绕,一往一复使相邻两层丝束的绕向相反,从而产生相邻两层间的交叉结构。丝束与筒管轴线法线的夹角称为卷绕角。一般选择合理卷绕角才能达到满意卷量和成型。卷绕角过大,筒子二端高,中间低,对拉伸退卷困难,断头多。卷绕角太小,筒子二端易塌边,卷绕筒子达不到重量要求,且成型不良。

六、计算题(每题10分)

1. 规格为88dtex/72f,纺速为2850m/min ,计量泵规格1.2×10 cc/rev,熔体密度1.21g/cm3,油剂泵规格0.05*10,上油效率85%,油剂密度为1.0g/cm3,上油率0.35%,油剂浓度10%,原油有效成分为90%,卷重15kg。请计算

1、计量泵转速。

2、卷绕时间。

3、原油单耗。

4、每位理论日产量(10头)。

5、需配制油剂1000kg,需要原油和水各多少kg?

答:

1、计量泵转速:17.27r/min

2、卷绕时间:598.1分钟 35886秒 9.968小时

3、原油单耗:4.575kg/T

4、理论日产量361Kg/位

5、油配比例:原油:110Kg,水:890Kg

第五篇:金属材料工艺性能名词解释

关键字:金属

1:铸造性(可铸性):指金属材料能用铸造的方法获得合格铸件的性能。铸造性主要包括流动性,收缩性和偏析。流动性是指液态金属充满铸模的能力,收缩性是指铸件凝固时,体积收缩的程度,偏析是指金属在冷却凝固过程中,因结晶先后差异而造成金属内部化学成分和组织的不均匀性。

2:可锻性:指金属材料在压力加工时,能改变形状而不产生裂纹的性能。它包括在热态 或冷态下能够进行锤锻,轧制,拉伸,挤压等加工。可锻性的好坏主要与金属材料的化学成分有关。

3:切削加工性(可切削性,机械加工性):指金属材料被刀具切削加工后而成为合格工件的难易程度。切削加工性好坏常用加工后工件的表面粗糙度,允许的切削速度以及刀具的磨损程度来衡量。它与金属材料的化学成分,力学性能,导热性及加工硬化程度等诸多因素有关。通常是用硬度和韧性作切削加工性好坏的大致判断。一般讲,金属材料的硬度愈高愈难切削,硬度虽不高,但韧性大,切削也较困难。

4:焊接性(可焊性):指金属材料对焊接加工的适应性能。主要是指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。它包括两个方面的内容:一是结合性能,即在一定的焊接工艺条件下,一定的金属形成焊接缺陷的敏感性,二是使用性能,即在一定的焊接工艺条件下,一定的金属焊接接头对使用要求的适用性。

5:热处理

(1):退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火,去应力退火,球化退火,完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

(2):正火:指将钢材或钢件加热到Ac3 或Acm(钢的上临界点温度)以上30 ~ 50℃, 保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。

(3):淬火:指将钢件加热到 Ac3 或 Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

(4):回火:指钢件经淬硬后,再加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。

(5):调质:指将钢材或钢件进行淬火及回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。

(6):化学热处理:指金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分,组织和性能的热处理工艺。常见的化学热处理工艺有:渗碳,渗氮,碳氮共渗,渗铝,渗硼等。化学热处理的目的:主要是提高钢件表面的硬度,耐磨性,抗蚀性,抗疲劳强度和抗氧化性等。

(7):固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。固溶处理的目的:主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。

(8):沉淀硬化(析出强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由之脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。如奥氏体沉淀不锈钢在固溶处理后或经冷加工后,在400 ~500℃或700 ~800℃进行沉淀硬化处理,可获得很高的强度。

(9):时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持,其性能,形状,尺寸随时间而变化的热处理工艺。若采用将工件加热到较高温度,并较长时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。

(10):淬透性:指在规定条件下,决定钢材淬硬深度和硬度分布的特性。钢材淬透性好与差,常用淬硬层深度来表示。淬硬层深度越大,则钢的淬透性越好。钢的淬透性主要取决于它的化学成分,特别是含增大淬透性的合金元素及晶粒度,加热温度和保温时间等因素有关。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。

(11):临界直径(临界淬透直径):临界直径是指钢材在某种介质中淬冷后,心部得到全部马氏体或 马氏体组织时的最大直径,一些钢的临界直径一般可以通过油中或水中的50%淬透性试验来获得。

(12):二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于参与奥氏体转变为马氏体或贝氏体所致。

(13):回火脆性:指淬火钢在某些温度区间回火或从回火温度缓慢冷却通过该温度区间的脆化现象。回火脆性可分为第一类回火脆性和第二类回火脆性。第一类回火脆性又称不可逆回火脆性,主要发生在回火温度为 250~400℃时,在重新加热脆性消失后,重复在此区间回火,不再发生脆性,第二类回火脆性又称可逆回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在 400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。回火脆性的发生与钢中所含合金元素有关,如锰,铬,硅,镍会产生回火脆性倾向,而钼,钨有减弱回火脆性倾向。

上一篇:会计工作职责英文版下一篇:环卫所个人年终总结