钣金工程师工艺手册

2024-06-16

钣金工程师工艺手册(通用6篇)

篇1:钣金工程师工艺手册

钣金冲压件冲压,焊接,和电镀的工艺性检查条例

I 细节 1.弯曲

弯曲应该在靠近弯曲处设定正负半度。

同一平面有多重弯曲时, 应设置相同的弯曲方向。

避免在大钣金件上设置小弯曲。

低碳钢钣金件上,最小弯曲半径应为材料厚度的一半或者0.80 毫米,以两者中大的一项为准。(本公司推荐为三倍的材料厚度)

2.扩孔

两个扩孔之间的最小距离应为八倍的材料厚度。

扩孔与边缘之间的最小距离应为四倍的材料厚度。

扩孔与弯曲之间的最小距离应为四倍的材料厚度加上弯曲的半径。

3.锥形孔

最大深度沿着硬件的角度,可以是3.5倍的材料厚度。

硬件与锥形孔的接触必须在50%以上。

两锥形孔之间的最小距离应为八倍的材料厚度。

锥形孔与弯曲部之间的最小距离应为四倍的材料厚度加上弯曲的半径。

4.小卷边

小卷边的最小半径应为材料厚度的两倍, 在极端情况下为材料厚度的一倍。

小卷边与孔的最小距离应为其半径加上材料厚度。

小卷边与内翻的最小距离应为六倍的材料厚度加上小卷边的半径。

小卷边与外翻的最小距离应为九倍的材料厚度加上小卷边的半径。

5.凹点

其最大直径应为六倍的材料厚度, 其最大深度应为内径的一半。

凹点与孔的最小距离应为三倍的材料厚度加上凹点的半径。

凹点与材料边缘的最小距离应为四倍的材料厚度加上凹点的内半径。

凹点与弯曲的最小距离应为两倍的材料厚度加上凹点的内半径再加上弯曲的半径。

两凹点之间的最小距离应为四倍的材料厚度加上各个凹点的内半径。

6.凸座

其最大高度应与其内半径或者材料厚度成正比。

平顶凸座的最大高度应等于其内半径加上其外半径。

V形凸座的最大高度应等于三倍的材料厚度。

7.挤压孔

两挤压孔之间的最小距离应为六倍的材料厚度。

挤压孔与材料边缘的最小距离应为三倍的材料厚度。

挤压孔与弯曲的最小距离应为三倍的材料厚度再加上弯曲的半径。8.翻边

最小弯曲翻边是直接与材料厚度, 弯曲半径,及弯曲长度相联系的。

翻边的不变形部分的宽度应不小于2。5倍的材料厚度。

翻边的应力舒解缺口处的最小宽度值是(两倍)材料厚度或者1.5毫米, 以两者中大的一项为准。

9.角撑钣

角撑钣应是45度,其宽度和深度应与其内半径或者材料厚度成正比。

角撑钣与平行面上的孔的边缘的最小距离应为八倍的材料厚度加上角撑钣的半径。

10.压边

泪滴压边的最小半径等于材料厚度, 压边的高度应大于或者等于四倍的材料厚度,压后的裂口不应小于四分之一的材料厚度。

开口式压边的最小直径等于材料厚度, 压边的高度应大于或者等于四倍的材料厚度。

关闭式压边的最小高度应大于或者等于四倍的材料厚度(直径为零),注意: 关闭式压边易在翻边时开裂,在后续过程中造成液体的留置。

孔与压边的最小距离应为两倍的材料厚度再加上压边的半径。

压边与内弯的最小距离应为五倍的材料厚度。

压边与外弯的最小距离应为八倍的材料厚度。

压边的内钣应要求没有毛刺,以避免压边的表面质量问题。拐角压边设计应参考翻边的应力舒解缺口方式。

11.孔

最小孔直径应等于材料厚度或者是1毫米, 以两者中大的一项为准。

孔之间的最小距离应与其尺寸,形状或者材料厚度成正比。

孔的边缘与成形状结构(例如弯曲面)之间的最小距离应是三倍的材料厚度加上此形状结构的半径。

孔的边缘与翻边之间的最小距离应是两倍的材料厚度加上翻边的半径。

孔与边缘之间的最小距离应与其内半径,形状或者材料厚度成正比。

圆孔与边缘之间的最小距离应是一倍半的材料厚度,假如孔的直径小于五倍的材料厚度。

圆孔与边缘之间的最小距离应是两倍的材料厚度,假如孔的直径大于等于五倍的材料厚度,但小于十倍的材料厚度。

12.切压缝(压舌?)

开口切压缝的宽度应是材料厚度的两倍或者3毫米, 以两者中大的一项为准。其长度则不超过其宽度的五倍。

闭口压切缝的宽度应是材料厚度的两倍或者1.6毫米, 以两者中大的一项为准。在45度角时,其最大高度则不超过五倍的材料厚度。

切压缝与平行面上的翻边之间的最小距离应为八倍的材料厚度加上翻边的半径。

切压缝与垂直面上的翻边之间的最小距离应为十倍的材料厚度加上翻边的半径。

切压缝与孔之间的最小距离应为三倍的材料厚度。13.14.15.16.17.18.(预留)缺口

最小宽度应等于材料厚度或者是1毫米, 以两者中大的一项为准 直的和以圆弧结尾的缺口的最大长度应是五倍的其宽度。V形缺口的最大长度应是两倍的其宽度。

孔和缺口边缘的最小距离应其内半径,形状或者材料厚度成正比。

缺口与平行面上的翻边之间的最小距离应为八倍的材料厚度加上翻边的半径。缺口与垂直面上的翻边之间的最小距离应为三倍的材料厚度加上翻边的半径。缺口与缺口之间的最小距离应为两倍的材料厚度或者3。2毫米, 以两者中大的一项为准。

肋筋(加强筋)

肋筋的最大内半径应是三倍的材料厚度,其最大高度不超过其内半径。

肋筋的中线与孔边缘之间的最小距离应不小于三倍的材料厚度加上其内半径。肋筋的中线与垂直面边缘之间的最小距离应不小于四倍的材料厚度加上其内半径。肋筋的与平行面边缘之间的最小距离应不小于八倍的材料厚度加上其内半径。

肋筋的与垂直于肋筋之间的翻边的最小距离应不小于两倍的材料厚度加上其内半径,再加上翻边的半径。

两平行肋筋之间的最小距离应不小于十倍的材料厚度加上其内半径。

半冲孔

半冲孔与成形状结构之间的最小距离应是三倍的材料厚度加上此形状结构的半径。半冲孔的边缘与翻边之间的最小距离应是两倍的材料厚度加上翻边的半径。两半冲孔之间的最小距离应不小于八倍的材料厚度。

槽(方孔)槽的最小宽度应为材料厚度或者1.0毫米, 以两者中大的一项为准。

翻边内表面与槽边缘之间的最小距离应与其长度,材料厚度,和翻边半径成正比。当使用槽与接头时,槽的最大宽度应大于接头的厚度。接头长度应与材料厚度相等。槽与边缘之间的最小距离应是两倍的材料厚度,假如槽的长度直径小于十倍的材料厚度。

槽与边缘之间的最小距离应是四倍的材料厚度,假如槽的长度大于等于十倍的材料厚度。

接头

接头的最小宽度应为两倍的材料厚度或者3.2毫米, 以两者中大的一项为准。最大长度则应为五倍的材料厚度。

两接头之间的最小距离应不小于材料厚度,或者1.0毫米, 以两者中大的一项为准。焊接

点焊应仅用于共平面的表面。

焊点之间的最小距离应是十倍的材料厚度。如定在20倍则更理想。焊点与钣金边缘之间的最小距离应是两倍的焊点直径。

焊点与弯曲面之间的最小距离应是焊点直径加上弯曲的半径。焊点与槽之间的最小距离应是两倍的焊点直径。

19.尽量避免三层或者更多层的焊点。焊点位置应在焊枪的可达范围只内。

焊点的两边应有足够的空间以便焊枪工作。使用PEM 自导插件,避免使用有螺纹的插件。

电(泳)镀

尖外角较之正常平面会接到两倍的电镀。

螺纹直径应留有余地,通常会增加约四倍的电镀厚度。攻丝的孔须在电镀后重新攻,以保证其精度。凸出处较之其他平面会接到更多的电镀。凹下处则不易镀到。

重叠韩接处则易有电镀液置留。一个解决方法是将凸座提高0.3毫米,以保证液体流动和吹干。

不推荐用遮盖方法以保证部分区域阳极氧化电镀。设计泄水孔和通风孔,以利于电镀液排放和冲洗。为另件的安装设计接口/孔。

II.冲压过程 1. 拉伸

1.1 尽量减少拉伸深度。

拉伸深度影模具的价格和复杂性。浅的拉伸就可能在相对快的单动压机上完成。深的拉伸则必须在相对慢的双动压机上做。浅拉伸深度可能避免使用高价的高性能材料,减少废料,减少工续,从而减少模具和生产成本。1.2 避免负角(Backdraft)

有负角的件不可能一次拉伸完成,负角部分会需要额外的模具和压机。成本上升是很显著的。1.3

Design for Open End Draw If the component can be designed for open end draw, as shown in Figure 18, it could be formed in a simple form die, whereas the closed end draw in the figure requires a complex draw die.The open end draw die also reduces engineered scrap because no binder stock is required in an open end.Soften Locally Severe Shape Changes The large radii and open angle walls shown in Figure 19 facilitate the use of simpler and less costly die processing.Both material cost and manufactured scrap are reduced.Keep Draw Walls Open in the Die Position Vertical draw walls, shown in Figure 20, usually add forming operations and increase the manufactured scrap, while reducing the production rate, because of springback.(See the discussion on springback in Section 5l1)

Keep Draw Walls the Same Depth Draw walls of unequal depth can cause the stamping to twist, often requiring subsequent straightening operations.The preferred design, shown in Figure 21B, virtually eliminates the tendency to twist, thereby reducing the number of die operations.Blanking cost and manufactured scrap may also be reduced.Where it is not possible to keep the opposing flanges at the same height, it may be possible to form two pieces simultaneously in a symmetrical configuration by double attaching, as shown in Figure 21C, then separating them.Observe Forming Limits The amount of stretch imparted to the metal must be within the safe region of the forming limit diagram for the material.This guideline is best observed through close cooperation between component designers and die construction sources who have the capability to make reasonable estimates of actual strains.Keeping all stretched areas comfortably within the safe region virtually eliminates costly splits due to minor process variations during manufacturing.4.2 Trimming Operations Automotive sheet metal stampings are trimmed during fabrication to remove excess metal that is required for processing.Trimming is generally accomplished in a die that has an upper punch and lower die block of the same shape except for a trim clearance between them.The clearance depends on the type and thickness of the sheet metal.The punch first stretches, then shears the metal when the punch and die block meet.The following guidelines should be followed to achieve the most efficient and least costly trimming operations.Design to Permit Trimming in One Direction The component should be designed so that all trim angles are in the same plane as closely as possible.(See Figure 22)This will permit trimming in one direction and eliminate the need for added trim dies or for adding cams to trimming operations.Trim edges will remain in better condition, reducing manufactured scrap.Keep Trim Walls Open Open trim walls permit trim shearing in a single operations for lower tool cost and less manufactured scrap.A minimum of 10?is recommended, as shown in Figure 23.Avoid Sharp Trim Corners Sharp trim angles require a more complex trim steel arrangement, increasing die construction and maintenance costs.A minimum corner angle of 60?is recommended, as shown in Figure 24.Provide Relief at Flanges The plastic flow of sheet metal during a flanging operation requires relief.A relief dimension of at least two metal thicknesses is required as shown in Figure 25.The preferred design is shown at C.Where this is not possible, notches should be provided as shown at B.The condition at A should be avoided.Keep Trim Notches Wide and Open Narrow trim notches with parallel side walls create difficult and costly die conditions.Notch width should be a minimum of four times metal thickness, and sides should be a minimum of 5?open as illustrated in Figure 26B.2. 切边 3. 达孔 4. 翻边 5. 重整

III. 节省模具和材料 1. 减少冲压工序

1.1 减少不必要的细节。1.2 减少不必要的方向。1.3 减少不必要的拉伸深度。1.1

2. 减少模具

2.1 设计通用零部件来减少模具。2.2

2.3 2.4 2.5

3. 减少材料消耗 3.1 3.2 3.3 3.4 3.5

4. 哈哈 4.1

III.提高精度

篇2:钣金工程师工艺手册

一般折弯1:(R=0, θ=90°) L=A+B+K1. 当0¢T£0.3时, K’=02. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等)a.    当0.3¢T¢1.5时, K’=0.4Tb. 当1.5£T¢2.5时, K’=0.35T c. 当 T/2.5时, K’=0.3T3. SUS T>0.3 K’=0.25T4.对于其它有色金属材料如AL,CU:当 T$0.3时, K’=0.5T6.3.2. 折床的加工工艺参数:折床使用的下模V槽通常为5TV,如果使用5T-1V则折弯系数也要相应加大, 如果使用5T+1V则折弯系数也要相应减小.(T表示料厚,具体系数参见折床折弯系数一览表)6.3.3 折弯的加工范围:6.3.3.1折弯线到边缘的距离大于V槽的一半.如 1.0mm的材料使用4V的下模则最小距离为2mm.下表为不同料厚的最小折边:                         直边断差             斜边断差  以,钨极氩弧焊一般只适于焊接厚度小于6mm的工件,基本符号是表示焊缝横截面形状的符号。国标GB324-88中规定的13种基本符号见表7-3。焊缝辅助符号是表示焊缝表面形状特征的符号。国标GB324-88中规定的三种辅助符号见表7-4。焊缝辅助符号是为了补充说明焊缝的某些特征而采用的符号。国标GB324-88中规定的补充符号见表7-5。焊缝尺寸符号是表示坡口和焊缝各特征尺寸的符号。国标GB324-88中规定的16个尺寸符号见表 7-6。7.4p焊接符号在图面上的位置7.4.1 基本要求s完整的焊缝表示方法除了上述基本符号o辅助符号o补充符号以外o还包括指引线o一些尺寸符号及数据,

焊缝符号和焊接方法代号必须通过指引线及有关规定才能准确的表示焊缝。指引线一般由带有箭头的指引线(简称箭头线)和两条基准线(一条为实线o另一条为虚线)两部分组成。7.4.2 箭头和接头的关系s

篇3:机床钣金零件基础构造与其工艺

关键词:零件构造,设计工艺,要求

一般来说, 机床钣金类的零件的主要制造分为3个步骤:一是利用设备为数控剪钣机、数控激光切割机、数控转塔冲和数控折弯机等设备对钣料进行加工;二是对需要焊接的零件进行人工焊接, 使其成形;最后对其表面进行喷涂。由此步骤来看, 机床钣金类的零件的加工一般不会采取使用成型模具进行批量加工, 次类零件的具体结构只要有设备的加工能力和工艺所决定。因此, 本文通过论述机床钣金类的零件的结构与工艺, 为次类零件的加工与设计提出借鉴。

1 机床钣金类的零件的基本设计要求

随着当今科技的飞速发展, 对于机床钣金类的的零件的加工工艺也有着巨大的影响。因此, 在传统方法之上, 计算机也在很大程度上用来完成这些计算工作, 就是最基本的模型的钣金零件CAD方法, 这种方法十分可靠、高效的, 值得我们推广。总体来说有拼合造型操纵方法、特征造型操纵方法、展开操纵方法、计算机辅助坯料排样、数控指令编制、数控冲压指令的优化和仿真等等。CAD和CAM方式具有智力高、知识密集度高、更新速度更快, 综合性更强等特点。基于现今机床钣金类零件的特点, 几何造型方法分为2D几何造型法和3D几何造型法。2D几何造型法主要包括编码法、面素拼正当和交互尺寸输人法等;3D几何造型法则包括体素拼正当等方法。各种CAD/CAM系统的功能和方式都不一样。具体方式也有区别, 例如, 其中的目标函数优化排样法, 可以使用参数△x (X方向平移△x) 、△y (Y方向平移△y) 、△φ (旋转△φ) , 再根据参加排样料块类型和数目关系等得出函数的关系程式, 得出目标函数。再使用得出的目标函数按一定的算法进行运算。为了进步工作效率, 可以限定部分参数的变动范围。

1.1 计算法

公式:ρ=R+Kδ, 为中性层半径, R为弯曲内半径, 为钣材厚度, K为中性层位置系数。

1.2 查表法

查表法是利用《冲模设计手册》等一系列工具书, 在理论计算的基础上, 直接给出其数据的方法。

1.3 利用Solid Works等软件

此方法主要利用软件的钣金功能生成三维实体, 在展开获得。

1.4 经验公式计算法

公式为:L=A+B+C+……X-N (2δ-0.5) .其中L为毛坯展开长度, A, B, C……X为各个折边长度, δ为料厚, N为折弯次数。0.5为修正系数。

2 机床外观对钣金类零件结构的要求

机床外观对钣金类零件结构的要求主要为各个钣材零件之间的端面不外漏, 且要相互包边, 此要求的目的为加强零件的硬度和使其防水功能更好, 在某种条件下还可以有防尘的作用。具体表现为以下:各个棱面圆滑一致, 之间的接缝均匀一致, 相邻钣金零件之间接缝不与棱边重合。如图1所示:

3 加工能力对钣金类零件的要求

机床钣金类的零件的展开尺寸应小于现有设备。根据其特点, 作如下说明:折弯压力计算公式为为折弯压力, L为折弯宽度, 为板料厚度, V为折弯下模V形开口尺寸, 以上均为mm。折弯下模V形开口与折边尺寸关系公式为:、与上式V形口相同, Z与下模V形口的倒角和板材厚度有关。模具形状与零件解构关系折弯件的各个折边受到加工模具的限制。

4 加工工艺路线对钣金类零件解构的影响

加工工艺路线也会对机床钣金类的零件解构有着很大的影响。因此对于需要进行焊接的机床钣金类的零件, 在设计时还需要考虑其工艺性, 以减少工作量和焊接变形的几率。优先选取的设备应该是电阻焊和气体保护焊接, 同时还要考虑其折弯加工的便利性。例如, 有些零件需要在设计时加入溢水孔, 这样就可以防止出现在运行过程中将槽液带出已造成污染的情况。并且在进行表面喷涂工艺时, 应注意尽量使用已经配有的孔洞, 如果已有的孔洞不适合当时的设计与加工工艺的要求, 则应该考虑到其重心的位置, 尽量避免出现碰撞的情况。

5 在加工与设计机床钣金类的零件时应注意的问题

在加工与设计机床钣金类的零件时应注意以下问题:先考虑使用增加零件折边尺寸, 或者增加“几何形”加强钢槽, 而不是只顾增加零件的厚度, 这样就可以很大程度上提高零件的刚度, 而不增加零件的实际重量。再设计机床钣金类的零件时, 事先标明零件是否能够直接折弯成型, 避免人为拆分或焊接或过分拆分。在拆分机床钣金类的零件时, 要在分件上飞出各种孔洞, 尽量避免人工制孔, 应该由数控激光切割机或者转塔冲机来完成。适当更改零件解构, 提高板材的利用率。其他问题。在注意以上问题的同时, 还需要注意弹簧的状态, 在机床钣金类的零件中, 弹簧的状态应该是一种均匀的球状珠光体, 尤其是比较小的弹簧, 这一点就更为重要。使用的工艺应该以等温球化退火工艺, 使用正火加高温回火的方法, 这样既可以使其表面的球状珠光体均匀, 又可以为下一步工艺做准备, 减少加热过程中的过敏感性, 使其晶粒细化, 提高使用寿命。如不如此, 则很容易产生脱碳的现象, 降低材料的疲劳强度。

本文针对机床钣金类零件的结构特点, 对其零件的加工设计以及生产工艺进行了分析, 总结出了较为详尽与系统的方法与注意问题, 对机床钣金类零件的设计生产有着一定的理论支持。帮助进一步完善机床钣金类零件的设计生产工艺。

参考文献

[1]张新华.数控机床钣金加工的探析[J], 2007 (4) .

篇4:钣金加工工艺研究

关键词:钣金;加工工艺

钣金是一种针对厚度在6mm以下的金属薄板加工的一种综合冷加工工艺,它包括剪切、冲和、切合、复合、焊接、折弯、拼接、成型、等步骤,在现代零件制造中应用非常广泛。加工工艺是钣金制造中的重要指导,对于钣金加工能否合格起着纲领性的作用。

1.控制冲孔尺寸

钣金下料的加工工艺由于数控设备和激光切割技术的广泛应用已经从传统的半自动切割向数控冲床加工和激光切割加工演变,在钣金下料的加工中要注意控制冲孔尺寸和选择合适的激光切割板材。如果钣金工件的尺寸精度要求比较高,就必须使用激光切割机进行大口径孔隙,它的核心是激光系统,由于光束横截面上光强分布接近高斯分布,所以具有很好的光束质量。[1]数控冲床是一种可编程控制的自动化设备,不仅用于完成各种钣金薄版零件加工,还可以一次性自动完成多种复杂孔型和浅拉深成形工件的加工。在选择冲孔尺寸上,要根据图纸的需要来分析冲孔的形状、板材的机械性能及板材的厚度情况等,然后根据公差要求为冲孔尺寸留有余量,以使加工余量在允许的偏差范围内。

2.钣金折弯的加工工艺研究

2.1.控制钣金校弯的最小弯曲半径

钣金折弯的加工工艺是钣金加工中的重要工序之一,在钣金折弯过程中,应根据不同材料按照不同的最小弯曲半径进行控制,如08F、DX2、等材料按照最小弯曲半径0.4t作要求,材料Q235A、15F要按照最小弯曲半径0.5t进行控制。在钣金折弯时,要控制弯曲直边高度不应过小,通常钣金折边弯曲直边高度以不小于板材厚度的两倍为标准。[3]否则不仅加工难度大,而且会影响工件的强度。钣金折弯件上不可避免要开孔,为了保证折弯件的强度和开孔质量,应对折弯件上的孔边距进行规范。当孔为圆形时,板材厚度应不超过2mm,孔边距应不超过板材厚度与弯曲半径之和,并大于2mm,孔边距不能小于板材厚度的1.5倍与弯曲半径之和。当孔为椭圆形时,孔边距的数值要大于圆孔。[4]

2.2.以方管钣金工件为例

对于工件较大而θ角很小的零件,工件变形大导致校弯线难以准确定位,由于厚度较薄所以用直刀折弯上模容易使校弯线发生移动,使零件变形而达不到校弯目的。如下图2。这种情况下可以使用上下模刃口都是平的专门压平折弯上下模,上模刃口的厚度可以达到20mm,容易使校弯线覆盖在模具的刃口下,准确校弯。这样,方管钣金工件就能一次性折弯成型,既保证零件的整体强度,又能保证零件有较高的表面质量。

3.钣金拉伸的加工工艺研究

钣金拉伸的加工工艺主要由以下几点需要注意:

3.1.控制拉伸件的圆角半径

控制拉伸件的圆角半径分为拉伸件底部与直壁的圆角半径控制和拉伸件凸缘与边壁的圆角半径控制。拉伸件底部与直壁的圆角半径应该大于板材的厚度,为了保证加工质量,拉伸件底部与直壁的圆角半径最大不能超过板材厚度的8倍。拉伸件凸缘与边壁的圆角半径与之类似,拉伸件凸缘与边壁的最大圆角半径也要控制在板材厚度的8倍之内,并且拉伸件凸缘与边壁的最小圆角半径要高于板材厚度的两倍。

3.2.控制矩形拉伸件的相邻圆角半径

矩形拉伸件的相邻圆角半径数值要严格控制,矩形拉伸件的相邻两壁间的圆角半径应满足r3≥3t,并且为了减少拉伸次数应尽量取r3≥H/5,便于一次性拉出来。

3.3.控制圆形拉伸件的内腔直径

为了保证圆形拉伸件的整体拉伸质量,应控制内腔直径不小于圆形直径与板材厚度的十倍之和,以保证圆形拉伸件在拉伸过程中内部不出现褶皱。

4.钣金焊接的加工工艺研究

钣金焊接的加工工艺是钣金加工中重要的环节。在钣金加工中,将若干个钣金零件组合在一起的最好办法就是焊接。焊接不仅能满足连接零件的需要,还能增加钣金强度。钣金焊接方法有电弧焊、电渣焊、熔化焊、等离子弧焊、氩弧焊、压力焊、钎焊等七种焊接手段。不同的焊接方法适用于不同的钣金加工,应根据实际情况选择适当的加工方式。还应根据不同的材质选择适当的焊接方式,如在焊接3mm以下的碳钢、低合金钢、不锈钢、铜、铝等非铁合金的时候,选择用氩弧焊或气焊的方式。由于钣金是表面部件,所以钣金表面的质量十分重要,为了保证钣金的表面成形质量能够达到要求,在钣金焊接加工中应注意焊道成型和焊接质量,使钣金的表面质量和内在质量都能达到焊接要求合格。

除了增加加强筋,在钣金成型过程中还会出现很多凹面和凸面,应该按照工艺标准严格控制凹边距和凸边距的最大尺寸,使钣金成型的加工质量得到保证。

处理板金加工孔的翻边问题时,要严格控制加工螺纹的加工质量和内孔翻边的尺寸,以保证钣金孔翻边的质量。[5]

5.结束语

随着工业生产的发展,钣金工件在工业企业、家用电器、交通工具、航空航天等领域都有着越来越广泛的应用。同普通的机械加工零件相比,钣金工件具有形状多样、加工精度高、加工速度快等优势。完善钣金加工工艺有利于提高机械加工效率,提高人民物质生活水平。

参考文献:

[1] 蔡新平,丁荣. 铝合金脉冲MIG焊工艺实验研究与分析[J]. 应用能源技术. 2011,05(05):25-26

[2] 金怀建. 钣金加工车间制造过程集成运行支持系统体系结构研究[D]. 重庆大学 2011,12(21):35-36

[3] 陶晓环. 基于CAD的双曲率钣金件成型系统的设计与实现[D]. 沈阳工业大学 2010,58(19):47-48

[4] 果雪莹. Pro/ENGINEER的钣金展开与数控加工[J]. CAD/CAM与制造业信息化. 2011,25(12):65-67

篇5:钣金焊接工艺守则

本工艺守则规定了手工电弧焊、CO2气体保护焊、电容储能焊设备、材料、焊接准备、焊接工艺参数、焊接操作工艺流程,

适用于本企业生产柜体及其附件的焊接工序。

2.焊接设备、材料、工具

2.1焊接设备

1.BX系列交流弧焊机

2. CO2气体保护焊机

3.电容储能焊机

2.2焊接材料

1.

E4303交流焊条

2.H08MnSiA

CO2气体保护焊丝

3.镀铜碳钢焊接螺柱

4. CO2气体

2.3焊接辅助工具

劳动保护用品

敲渣工具

砂带机

磨光机

3.焊接技术标准

3.1材料的焊接特性

材料的焊接特性是材料对焊接工艺的适用性,是保证焊接质量的基础。

3.1.1钢材的可焊性

低碳钢,如A3、10#、20#、25#以及1Cr18Ni9不锈钢等可焊性良好,焊接牢固、变形小、易保证焊接后的尺寸精度;中碳钢以及1Cr13不锈钢的冷裂倾向和变形大,只有在合适的工艺规范下,才能保证焊接的进行。

3.1.2有色金属的可焊性

有色金属中的黄铜(H62)的可焊性良好,铜(T2)铝镁合金(LF2

LF5)及铝锰合金(LF12)一般,铝铜镁合金(LY12)较差。

3.1.3异种金属的可焊性

异种金属的焊接,在产品中也有应用,例如在碳钢上焊接不锈钢和铜螺钉。一般情况下,碳钢、黄铜和不锈钢之间可焊性良好,铜与碳钢、黄铜和不锈钢可焊性尚可,铝与碳钢、黄铜和不锈钢不可焊,铝与铜之间可焊性尚可。

3.1.4储能焊螺柱的可焊性

A3、1Cr18Ni9不锈钢、黄铜材质的储能焊螺柱与以上材质的板材之间可焊性良好,在铝材质板材上只能用铝储能焊螺柱。

3.2焊缝坡口的基本尺寸

合理的焊缝的坡口,可以保证尺寸精度、减少焊接变形。

一般焊缝坡口的工件厚度、坡口形式、焊缝形式、坡口尺寸,见下面要求:

1.工件厚度为1-3mm时,两件同一平面对缝焊接,一般采用一面焊接,缝间距为0-1.5mm.。

2.工件厚度为3-6mm时,两件同一平面对缝焊接,一般采用两面焊接,缝间距为0-2.5mm.。

3.工件厚度为1-3mm时,两件L型对缝焊接,一般采用一面焊接,缝间距为0-2mm.。

4.工件厚度为3-6mm时,两件L型对缝焊接,一般采用两面焊接,缝间距为0-2mm.。

5.工件厚度为1-6mm时,两件T型对缝焊接,一般采用两面焊接,缝间距为0-2mm.。

3.3焊接结构

焊接时,不允许长焊缝连续焊接,应采用交替断续焊接,以免热变形剧烈,影响产品质量;焊接时,应保证焊条能进入焊接区,一般手工电弧焊间距为20mm,气体保护焊应保证间距为35mm,并且保证焊条能保证倾斜45°。

4.焊接准备

4.1准备好各种焊接劳动保护用品。

4.2检查焊接设备、焊条、螺柱和辅助设备、气体储量是否齐全,合乎标准。

4.3清除焊件上的铁锈、油脂和水分。

4.4焊条如果潮湿,防在250℃-450℃烘炉中烘烤2小时。

5.操作工艺规范

5.1手工电弧焊

5.1.1工艺参数选择:

工艺参数主要包括:焊条直径、焊接电流、焊接电压和焊接速度。

1.焊条直径的选择:焊条直径的选择取决于焊件厚度、焊接接头和焊缝位置。焊条直径粗,生产效率高但是容易生成未焊透和成型不良。

一般情况下:焊件厚度2mm焊条直径为2mm,焊接电流为55-60A,焊件厚度2.5-3.5mm焊条直径为3.2-4mm,焊接电流为90-120A,焊件厚度4-5mm焊条直径为4mm焊接电流160-200A。

2.焊接电流的选择:根据选择的焊条直径,参照焊机操作说明调节焊机电流。电流小,电弧不稳定并且易形成未焊透、生产效率低;电流大,易产生烧穿。

3.电弧电压的选择:电弧电压与电弧长度成正比。焊接时,一般用短电弧,弧长不超过焊条直径。

4.焊接速度的选择:在保证质量的情况下,采用大直径焊条和大焊接电流的快速焊接。

5.2 CO2气体保护焊

CO2气体保护焊的工艺规范一般有焊丝直径、焊接电流、焊接电压和焊接速度、气体流量等。

CO2气体保护焊的工艺规范见下表:

焊接形式

气体流量

板厚

(mm)

焊丝直径

(mm)

电流

(A)

电压

(V)

速度

(cm/min)

焊嘴与母材的距离(mm)

I型对接

10-20

L/min

1

0.8

50-60

16-17

40-50

8

1.2

0.8

60-70

17-18

40-50

8

1.6

0.8

80-100

18-20

40-50

8

2..3

1

100-120

20-21

40-50

10

3.2

1

130-150

20-23

30-40

10

4.5

1.2

150-180

21-23

30-40

10-15

角对接

10-15

L/min

1.2

0.8

55-60

16-17

40-45

8

1.6

1

65-75

16-18

40-45

8

2.3

1

80-100

19-20

40-45

10

3.2

1.2

130150

20-22

33-40

10-15

1.适用范围:

本工艺守则规定了手工电弧焊、CO2气体保护焊、电容储能焊设备、材料、焊接准备、焊接工艺参数、焊接操作工艺流程。

适用于本企业生产柜体及其附件的焊接工序。

2.焊接设备、材料、工具

2.1焊接设备

1.BX系列交流弧焊机

2. CO2气体保护焊机

3.电容储能焊机

2.2焊接材料

1.

E4303交流焊条

2.H08MnSiA

CO2气体保护焊丝

3.镀铜碳钢焊接螺柱

4. CO2气体

2.3焊接辅助工具

劳动保护用品

敲渣工具

砂带机

磨光机

3.焊接技术标准

3.1材料的焊接特性

材料的焊接特性是材料对焊接工艺的适用性,是保证焊接质量的基础。

3.1.1钢材的可焊性

低碳钢,如A3、10#、20#、25#以及1Cr18Ni9不锈钢等可焊性良好,焊接牢固、变形小、易保证焊接后的尺寸精度;中碳钢以及1Cr13不锈钢的冷裂倾向和变形大,只有在合适的工艺规范下,才能保证焊接的进行。

3.1.2有色金属的可焊性

有色金属中的黄铜(H62)的可焊性良好,铜(T2)铝镁合金(LF2

LF5)及铝锰合金(LF12)一般,铝铜镁合金(LY12)较差。

3.1.3异种金属的可焊性

异种金属的焊接,在产品中也有应用,例如在碳钢上焊接不锈钢和铜螺钉,

一般情况下,碳钢、黄铜和不锈钢之间可焊性良好,铜与碳钢、黄铜和不锈钢可焊性尚可,铝与碳钢、黄铜和不锈钢不可焊,铝与铜之间可焊性尚可。

3.1.4储能焊螺柱的可焊性

A3、1Cr18Ni9不锈钢、黄铜材质的储能焊螺柱与以上材质的板材之间可焊性良好,在铝材质板材上只能用铝储能焊螺柱。

3.2焊缝坡口的基本尺寸

合理的焊缝的坡口,可以保证尺寸精度、减少焊接变形。

一般焊缝坡口的工件厚度、坡口形式、焊缝形式、坡口尺寸,见下面要求:

1.工件厚度为1-3mm时,两件同一平面对缝焊接,一般采用一面焊接,缝间距为0-1.5mm.。

2.工件厚度为3-6mm时,两件同一平面对缝焊接,一般采用两面焊接,缝间距为0-2.5mm.。

3.工件厚度为1-3mm时,两件L型对缝焊接,一般采用一面焊接,缝间距为0-2mm.。

4.工件厚度为3-6mm时,两件L型对缝焊接,一般采用两面焊接,缝间距为0-2mm.。

5.工件厚度为1-6mm时,两件T型对缝焊接,一般采用两面焊接,缝间距为0-2mm.。

3.3焊接结构

焊接时,不允许长焊缝连续焊接,应采用交替断续焊接,以免热变形剧烈,影响产品质量;焊接时,应保证焊条能进入焊接区,一般手工电弧焊间距为20mm,气体保护焊应保证间距为35mm,并且保证焊条能保证倾斜45°。

4.焊接准备

4.1准备好各种焊接劳动保护用品。

4.2检查焊接设备、焊条、螺柱和辅助设备、气体储量是否齐全,合乎标准。

4.3清除焊件上的铁锈、油脂和水分。

4.4焊条如果潮湿,防在250℃-450℃烘炉中烘烤2小时。

5.操作工艺规范

5.1手工电弧焊

5.1.1工艺参数选择:

工艺参数主要包括:焊条直径、焊接电流、焊接电压和焊接速度。

1.焊条直径的选择:焊条直径的选择取决于焊件厚度、焊接接头和焊缝位置。焊条直径粗,生产效率高但是容易生成未焊透和成型不良。

一般情况下:焊件厚度2mm焊条直径为2mm,焊接电流为55-60A,焊件厚度2.5-3.5mm焊条直径为3.2-4mm,焊接电流为90-120A,焊件厚度4-5mm焊条直径为4mm焊接电流160-200A。

2.焊接电流的选择:根据选择的焊条直径,参照焊机操作说明调节焊机电流。电流小,电弧不稳定并且易形成未焊透、生产效率低;电流大,易产生烧穿。

3.电弧电压的选择:电弧电压与电弧长度成正比。焊接时,一般用短电弧,弧长不超过焊条直径。

4.焊接速度的选择:在保证质量的情况下,采用大直径焊条和大焊接电流的快速焊接。

5.2 CO2气体保护焊

CO2气体保护焊的工艺规范一般有焊丝直径、焊接电流、焊接电压和焊接速度、气体流量等。

CO2气体保护焊的工艺规范见下表:

焊接形式

气体流量

板厚

(mm)

焊丝直径

(mm)

电流

(A)

电压

(V)

速度

(cm/min)

焊嘴与母材的距离(mm)

I型对接

10-20

L/min

1

0.8

50-60

16-17

40-50

8

1.2

0.8

60-70

17-18

40-50

8

1.6

0.8

80-100

18-20

40-50

8

2..3

1

100-120

20-21

40-50

10

3.2

1

130-150

20-23

30-40

10

4.5

1.2

150-180

21-23

30-40

10-15

角对接

10-15

L/min

1.2

0.8

55-60

16-17

40-45

8

1.6

1

65-75

16-18

40-45

8

2.3

1

80-100

19-20

40-45

10

3.2

1.2

130150

20-22

33-40

10-15

5.3 电容储能螺柱焊

工艺规范包括:充电电压、螺柱夹持长度、导电嘴直径和电极压力等参数。

1.

充电电压的选择:不同的螺柱,需要不同的充电电压。螺柱直径为3mm、4mm、5mm 、6mm对应的充电电压为55-60V、63-70V、72-80V、90-100V。

2.

螺柱夹持长度的选择:螺柱底部露出导电嘴2-4mm。

3.

导电嘴直径的选择:导电嘴的直径必须与螺柱直径相同。

4.

电极压力的选择:低碳钢螺柱直径为3-8时,选择4.5;不锈钢螺柱直径为3-6时,选择4.5。

6.

焊后处理

焊接后清渣、磨平。注意:在焊点小的情况下,不允许磨开焊点。

7.

检验

7.1外观检验:不允许有气孔、裂纹、咬边、烧穿、夹渣、焊瘤、未熔合等缺陷。

8.

2外形尺寸要求

一般零部件按照图纸标注的尺寸测量,记录。柜体属于规则型工件和尺寸大的情况,按下面要求检验:

1.高、宽、深尺寸要求及检验部位按以下要求:

高:在工件正反面两面四角测量

宽:在工件正反面离边缘10cm处分三处测量

深:在工件两侧边缘10cm处分三处测量

图纸未注公差按以下规定检验

尺寸范围

偏差(mm)

前宽

后宽

400-1000

±1

±1

-1.5

-2

1000-1500

±1.5

±1.5

-2

-2.5

1500-

±2

±2

-2.5

-3

2000-2500

±2.5

±2.5

-3

-3.5

2.外观垂直度检验

柜体在未注垂直度要求的情况下,垂直度只允许向后倾斜4-5mm

3.柜体对角尺寸偏差要求

尺寸范围

偏差(mm)

400-1000

3

1000-1500

4

1500-2000

4.5

2000-2500

5

8.注意事项

1.

严格按设备的安全操作规

程的有关规定进行操作

2.

工作场所通风良好、无易燃易爆物品。

附录:

1.手工电弧焊操作工艺参数记录

2.CO2气体保护焊操作工艺参数记录

篇6:机床钣金零件基础构造与其工艺

1 对机床钣金零件的基础要求

对于机床外观要求具有一些特殊性, 构成各个零件的材料端面不能漏在外面并且用来连接各个零件的螺钉也要隐藏起来, 将两个紧邻的钣金件边缘向里面折, 同时两个零件一高一低, 进行重叠包边, 这种的结构优点之一就是防水, 另外一个作用是使强度增加, 在一些需要高度防护的一些零配件当中, 需要在折边的位置加压一个密封条, 这样就不仅可以防水还可以做到防尘。机床在外观上的另外一个要求是保持钣金零件的棱边和接合缝尽量是整齐的、均匀的, 这样的要求就决定了相邻钣金零件之间的接缝同棱边最好是没有重叠, 同时位置不是在圆弧的曲面位置。工人在处理接缝的位置时候大部分都会将其避开曲面位置, 而是安排在礼物底面、顶面、背面之类的并不显眼的位置, 同时通过斜接缝的技术, 使零件的三条棱边被弯成一个个的圆弧。

2 机床钣金零件在加工中有何影响

对于机床钣金零件在加工的过程当中其规格只能是在目前机床的生产能力之内, 比如说:折弯机可以承受的极强压力和折弯最大的宽度;剪钣机自身的一个刀口的最大宽度;转塔冲本身的冲模尺寸;切割机切割最大跨度和厚度等等。本文就只是针对折弯加工, 做一个简单的说明。

2.1 如何去计算折弯压力

以Q235型号的钢材举例来说明一下, 按计算我们用A来表示折弯的压力大小, 单位是千牛;l代表所要加工的板料的折弯宽度是多少, 单位是m;要加工的板料厚度则用O来表示, 单位是mm;C是代表零件折弯模具中V形开尺寸是多少, 单位是mm。可以导出这样的公式:压力A=2×650lC。在对板料进行折弯的时候所施加的折弯压力A不能大于折弯机所能承受的压力范围, 如果超过了折弯机所能承受的压力范围那么对机床的整个寿命会产生一定的影响和破坏作用。

2.2 折边尺寸同V形开口之间的联系

还是以Q235型号的钢板为例, 在折弯的工程中, 模具中的V形开口通常为所要加工的板料厚度的6到8倍左右, 那么我们可以得出所要加工的钣金零件的折边尺寸B同模具V形开口是有一定的关系的。我们还是用C来表示V形开口的尺寸、O来表示要加工的板料厚度;系数X是由模具的V处的倒角和要加工的板料的厚度两个因素来决定的, 通常我们是将板料的厚度乘以0.5到1作为系数, 所以如果零件的板料厚度或者是下模V形开口尺寸是不一样的, 那么它的折边尺寸B也是不一样的, 通常状况下最小的折边长度如果是在相同的钣金零件板料厚度情况下, 那么就会使用最小允许范围的折弯V形开口所可以使有的长度;如果在所要加工的机床零件折边上有孔村镇, 那么就要避免在进行折弯动作的时候由于拉伸出现孔变形的状况, 在这种状况想最小的折边尺寸就可以由孔的尺寸以及其距板料边沿的加工工艺所允许的一个最小距离数据D来做一下计算。其中D值我们可以通过一些专业的资料来获得。

2.3 零件折弯结构同模具自身的联系

机床所加工的模具对钣金零件折弯时候的各折弯的形状以及折边尺寸是有一定的影响和限制的。在钣金零件进行折弯的时侯零件无法同下模之间进行互相干扰, 但在一些状态下可以通过存在于下模侧面的一个V形凹槽来使钣金零件加工的尺寸加大一些, 同时对钣金零件折弯的顺序来进行一些调整, 这样一些具有在结构上有特殊要求的钣金件以在一些折弯要求上就可以进行满足了。但是与之前所说的要求是一样的, 钣金零件在进行折弯工序的时候同上模自己都是互相不能干扰的。

3 选择钣金零件结构加工工艺的选择

选择一个合适的机床钣金零件加工工艺对钣金零件结构会产生很大的影响。举例来说明一下, 如果我们所要加工的零件是一个型腔结构的钣金零件, 那么就一定要在这个零件上设计一个避免在做一些工作的会有槽液溢出的问题, 为了避免这种现象的发生就有设计溢水孔。给钣金零件做喷漆的时候在悬挂的时候不要在打多余的孔, 我们可以借用之前做的孔, 如果零件自身的重量比较重那么就需要考虑此钣金零件重心的位置, 这时还是需要一个专门的工艺孔。在进行工艺设计的时候必须要考虑焊接状况的工艺, 接缝的位置尽量不暴露出来, 同时接缝的长度尺寸也尽可能短, 这样做的目的是减少由于焊接所影响的零件变形以及减少工人的焊接工作数量。整个零件在设计工艺中还要想到在进行折弯的时候要具有便利性, 如果钣金零件对于折弯尺寸的要求两边是不同的, 必须要进行不同定位的来进行折弯, 即使是两边折弯的尺寸是一样的, 那么在折弯的工程中两边要在同一时间进行折弯。

4 机床钣金零件工艺中要注意的问题

一些人希望通过加大原材料的厚度的方式来使机床钣金零件的刚度或强度提高, 其实这样做只是表面的, 在工艺设计当中设计人员第一个考虑的应该是用增加折边尺寸或加大折边数量的办法来增加零件的刚度或者强调;然后在看下增加筋板数量或加固槽钢的方法, 使受力增大, 这样做的目的是不增加零件的重量;如果是零件是能够直接加工折弯成形的, 要避免进行再加工, 工艺设计的工程中, 一定要考虑到这一点;在做打孔的设计的时候, 都要在分件的上面给出, 这样在对板料进行表2 BOD5实测值与方程计算值相对偏差表加工的时候就可以直接一次加工出来, 减少在后道工序是进行人工制作;在机床钣金零件工艺设计的时候, 一定要注意提高原材料的利用率。例如说一个立板零件用的激光切割机自动排样下料零件, 可能在加工的工程中会增加一些时间, 但是相对增加时间所产生的费用成本却相对节约了很多。

5 结论

本文对机床钣金零件的基础构造及其工艺在一些外观加工设备上, 会互相制约和影响, 其实除了本文所论述的问题之外, 还有一些需要解决的问题。需要工艺师们在工作的实践过程中, 要对具体的问题具体分析, 将企业自身的加工特点和能力融合在一起, 只有这样才能不断的进行完善和进步使整个工作更加顺利, 创造更好的效益。

参考文献

[1]张新华.数控机床钣金加工的探析[J], 2010 (4) .

上一篇:安然事件表外融资下一篇:最全运动会口号