62、智能交通信号控制系统

2024-06-15

62、智能交通信号控制系统(共8篇)

篇1:62、智能交通信号控制系统

62、智能交通信号控制系统

(一)科技奥运技术、产品、服务的名称及所属单位

1、项目名称:智能交通信号控制系统

2、所属单位:北京市公安局公安交通管理局

(二)科技奥运技术、产品、服务在奥运筹备建设中的应用情况、专利保护情况、技术水平情况等

1、应用情况:

目前智能化交通信号控制系统灯控路口已达到1160处,控制规模覆盖北京四环内及五环部分地区的主要道路、环线及联络线上的重要路口、路段。奥运场馆周边道路、奥运勤务路线涉及路口、路段正在建设中。

2、专利保护:

正在准备申请“快速路出入口检测法”的专利。

3、技术水平:

智能信号控制系统的管理控制技术水平达到国内先进水平。

(三)科技奥运技术、产品、服务的社会需求情况、推广应用前景、推广应用方式等

区别于老式单点控制信号灯,智能化交通信号控制系统的中心计算机根据各路口地面线圈检测信息,在路口配时限定的安全范围内以实际交通需求分配各路口的信号放行时间,均衡分配区域内路口流量,实现路口间的集中控制,分级管理,协调联动,最大程度的利用道路资源。

目前北京区域控制信号系统主要为SCOOT中心区

SCOOT中心区控制系统:

二环路以内北京城市中心区域采用英国SCOOT信号控制系统,从上世纪80年代初便开始建设,经过20年发展逐步积累了大量经验。使用信号机型为英国西门子公司生产的T系列,主要分为T200、T400型和T700、T800型,总数共计330台。SCOOT系统是一种两级结构,上一级为中央计算机,下一级为路口信号机。配时方案在中央计算机上完成;信号控制、数据采集、处理及通信在信号机上完成。SCOOT系统是方案生成式控制方式的典型代表,是一种实时自适应交通信号控制系统。SCOOT系统通过连续检测道路网络中交叉口所有进口道交通需求来优化每个交叉口的配时方案,使交叉口的延误和停车次数最小的动态、实时、在线信号控制系统。概括来讲,SCOOT系统具有5个特点。

1)实用性强,几乎不受城市交通出行方式、出行起讫点分布、土地使用情况、季节性和临时性交通变化以及天气和气候变化的影响。

2)对配时参数的优化是采用连续小步长调整的方式,稳定性强。3)个别交通车辆检测器错误的反馈信息几乎不影响SCOOT系统对配时方案参数的优化,而且该系统对这类错误的信息有自动鉴别和淘汰功能。

4)对路网上各交叉口信号配时方案的检验和调整,每秒钟都在进行,所以能对路网上交通状况的任何一种变化趋势做出迅速的反应。

5)SCOOT系统能提供各种反映路网交通状况的信息,为制定综合管理决策创造了有利的条件。

ACTRA系统:

ACTRA是由美国西门子公司开发的一个信号控制系统软件,2005年开始在北京使用。经过新建信号系统一期(2005年),新建信号系统二期(2006年),信号系统奥运工程(在建)的建设,目前已建设750处,基本实现朝阳、海淀、丰台三个区的四环路内地区的信号系统覆盖。ACTRA系统具有4个特点。

1)符合美国ITS框架的NTCIP协议(美国国家智能运输系统通信协议标准)及其他标准,其设备的通信协议采用了当前主流的协议,系统开放且易扩展。测试表明,Actra可以实现对基于NTCIP协议的第三方信号控制器的正常监控和管理。

2)系统基于Windows平台,采用的浏览器界面,具有友好图形用户界面和视频显示技术。

3)系统采用的开放式结构的信号机,信号机的软件和硬件分离,可分别按照硬件和软件的标准由不同供应商竞争获得,大大降低成本,提高采购自主性。

4)系统信号机软件具有自适应和多种灵活的控制战略,使得系统的许多自适应控制运算在下端完成,提高整个系统的反应速度。在系统未建成时或故障情况下,本地信号机仍能实施有效的自适应控制。

快速路控制系统:

快速路控制系统是由爱德威公司承建的快速路出入口控制系统,目前已经建设90个控制点(50个出入口控制点和40个车道灯控制点)和上端控制系统,主要分布在二、三、四环,信号机为HSC-100型。覆盖奥运勤务路线的奥运快速路工程正在建设中。

快速路在城市交通系统中承担着大部分的流量,与此对应,快速路的信号控制在城市交通信号控制中起着非常重要的作用。由于北京乃至全国的城市快速道路的出入口和车道的信号控制技术在20世纪长期处于空白,北京市公安局公安交通管理局在“北京市道路交通管理现代化建设工程”中确定实施快速路信号控制已是国内的“开先河”之举。

快速路控制系统为改善快速路出入口秩序,提高快速路通行能力,增强勤务保证方面取得了一定的成绩。同时,项目的实施为全面建设快速路交通信号控制系统积累了宝贵的经验。

(四)科技奥运技术、产品、服务推广以后能够产生的技术转移、技术服务、产品销售等直接经济效益,以及连带产生的间接经济社会效益情况

将已建中心区、新建信号系统及快速路系统运行效果评价进行汇总,通过统计分析可知,在系统运行之后,路线内的旅行时间、停车次数有明显的减小,旅行速度有了明显的提高;路口的各方向车辆排队长度有了明显的降低,系统整体综合平均效益提高约15%。

篇2:62、智能交通信号控制系统

一、概述

我们知道智能交通系统最主要的任务就是:让交通更安全、更节省时间、更节省成本。为了协助交通界能够更完美的实现此目标,美国ITERIS公司专为ITS行业研发出一种目前国际上技术最为领先的智能交通信号控制系统应用视频检测技术——Vantage视频车辆检测器!

Vantage视频车辆检测器采用了国际上最先进的数字视频技术,它除了能够完美地融入于智能交通信号控制系统、电子警察抓拍系统,还能够无缝地整合到交通数据采集系统,其双重功用被广泛的应用于城市智能交通信号控制、城市电子警察、城市交通数据采集及公路隧道、桥梁的意外事故监控系统中。目前,Vantage视频车辆检测器在全球已有30000多个系统的运用业绩,已成为了全球在用业绩最多、最受用户欢迎的车辆检测产品之一。

本方案采用Vantage Edge2单、双路视频检测模块(硬件),集成到各种感应式信号灯控制机中,来实现交通信号的智能控制。Vantage Edge2模块可应用于城市点控、线控及面控系统中,实现感应式或自适应式控制,能够完美的与SCOOT、SCATS等系统无缝整合!

二、Vantage操作性能优势:

对于城市智能交通信号控制应用,Vantage视频检测技术与感应线圈检测技术相比,具有如下优势:

1、易于安装

Vantage视频检测器是利用安装在十字路口照明灯杆上的摄像机采集视频图像,然后由安装在信号灯控制机内视频处理模块进行分析处理,获取必要的信号灯控制信息,从而实现路口的智能控制!视频控制过程的实现只需在照明灯杆或专用立柱上安装必要的摄像机,而无需切割破坏路面,乃至铺设很长的线圈馈线电缆,最大程度的缩短了封闭道路的时间。另外,视频虚拟线圈的位置可以根据需要任意放置,而感应线圈安装在一个位置后就不能根据路况的变化而任意移动,否则重复切割路面会严重影响道路的使用寿命!

2、易于设置

Vantage 视频检测器本身具有全部的设置功能,完全可以不用笔记本电脑进行现场设置。每路视频图像上都可以显示一个设置菜单,利用鼠标和视频菜单便可在摄像机视频图像上画出检测区域并进行所有的参数设置,非常方便。

Vantage还具有动态区域设置(DZR)功能,此技术允许在任何时刻新建一个检测区域,或对一个检测区域进行修改,与此同时并不影响其它检测区域的正常工作。随后,一旦新的检测区域设置被保存,它便立即开始背景学习,进行检测!最有工程意义的是Vantage的操作非常简单,基本的培训工作不超过一小时便可完成。

另外,视频虚拟线圈的位置摆放可以根据路况任意调整,其线圈功能属性也可以根据需要进行设置,如:存在、延时、延迟、脉冲和计数。选用不同属性的线圈可以实现不同的控制需求,每路视频图像可以

设置24个这样的虚拟线圈!

每个视频虚拟线圈的信号输出通道都可以任意定义,Edge2模块本身可提供4个独立的输出通道,如果需要还可以增加扩展输出通道,比如在控制信号灯的同时,还想增加闯红灯抓拍触发功能,我们就可以再增加4个输出通道。每个通道输出都有手动测试开关,利用这些开关可以极为方便的调试信号灯控制机的工作性能。

3、易于维护

在十字路口控制中经常会遇到交通状况变化或道路维修的时候,这时我们可能需要改变虚拟线圈的检测位置,这对视频检测来说非常简单,也不需要封路;而相对于感应线圈检测来说,就需要封路、重新切割路面,这样的维护工作需要大量的人力、财力。更甚者,如果感应线圈在使用过程中由于路面变形而断裂就更麻烦了!感应线圈的寿命大约在2-5年(根据交通量及路面温度而定),而Vantage视频检测器的使用寿命要超过10年。

此外,Vantage还具有VRAS远程管理系统,它是一个功能强大的软件工具,利用RS232通讯端口对Edge2进行远程管理控制,用于监测现场交通流,提供用户支持及系统诊断等功能,尤其是需要重新设置虚拟线圈时,您只需在监控中心便可完成,无需到现场操作,维护起来非常方便。

三、Vantage检测性能优势:

1、检测可靠性高

对于十字路口控制应用,在任何天气及光照条件下,Vantage视频检测器均能实现95-98%的检测精度,近似于进口高档感应线圈检测器(反应时间好于10ms)的检测精度。Vantage采用了数字信号处理技术(DSP),这使其能够面临各种天气情况及光照条件的挑战,不论是白天还是黑夜、下雨还是晴天,它都能够精确、可靠的提供交通检测。不受天气或温度的影响,真正实现全天候的检测控制。

另外,在一些特殊路况条件下,我们还可以层叠放置2-3个虚拟线圈,以提高检测的可靠性。

2、先进的视频检测算法

① 夜间检测难题的解决:在夜间检测时,Vantage系统会运行强制车灯检测算法(EHDA),当系统确定天色已黑时,它会自动运行EHDA算法,此算法将自动跟踪识别车辆前灯,从而减小夜间光线对检测精度的影响。

② 路面积水反光影响的解决:Vantage系统算法具有背景自适应、连续自动更新的功能,它能够识别路上的任何背景干扰因素,如积水反射光、抛洒物、树木和护栏的阴影等,如果有此类干扰背景存在于检测区域内,系统经过背景学习,会自动将它们定义为背景物质,从而实现可靠的检测。

③ 车辆阴影影响的解决:Vantage系统具有专门的阴影处理算法(SDA),它能够有效的识别车辆及其阴影,将其定义为同一移动车辆,而不进行重复检测,从而消除阴影对检测精度的影响。

④ 恶劣天气变化影响的解决:Vantage系统有双重保障来解决此问题,一方面,当天气非常恶劣,图像对比度非常低时,系统会自动切换到故障安全模式,发出警报,视为到处都是车辆,注意安全行驶!另一方面,采用三阶段图像分析算法,如果系统确定检测区域的检测有效性较好时,系统便运行正常的检测模式(S1);一旦遇到恶劣天气的影响,如雨、雪、雾等,系统确定检测区域的检测有效性降低,系统会自动切换到(S2)模式,增加检测区域的灵敏度,实现精确的检测;当天气更为恶劣,检测区域的检测能力完全丧失时,系统便会自动切换到故障安全模式(S3),当天气转好,图像质量变好时,系统又会自动切换到正常检测模式。此三阶段图像分析算法有效地减小了恶劣天气对检测精度的影响。

⑤ 摄像机晃动影响的解决:在大风天气条件下,摄像机会产生很大的晃动,一般会影响图像处理,但Vantage系统采用了特殊的图像晃动补偿处理算法,避免了由于图像晃动造成的检测误差。

3、能够实现更多的检测功能

① 三个独立的现场结构设置:Vantage系统允许用户设置三个不同的现场虚拟线圈设置方案,其中一个用于正常交通状况下,另外两个用于特殊交通状况,如道路维修,临时道路交通状况等。三个结构设置可以相互切换,使设置工作更为简单。

② 主辅线圈联合控制功能(And/W):Vantage系统可以实现两个虚拟线圈配合控制一个通道输出,一般主辅线圈安装要有一定距离,只有当主辅两个线圈同时被不同车辆占用,并达到一定时间后,主线圈才发出一个检测信号,这对感应式信号机控制非常有用。

③ 过滤行人检测功能:在视频十字路口控制中,由于大量的行人,可能对检测有一定影响,而Vantage系统可以过滤掉行人,可以避免由于行人经过而造成的误信号控制。这一功能对多行人路***通信号控制非常有用。

④ 逆行车辆过滤功能:当检测区域属性设置为行驶方向向下时,逆向行驶的车辆将被过滤掉,不予检测输出!

⑤ 眩光检测功能:当检测区域被车辆眩光充满时,则相应的输出通道便输出一个检测信号,从而降低眩光对检测精度的影响,此功能特别适用于路灯光线较差的路口控制。

⑥ 绿灯强制通行功能(Green/Input):此功能在国内应用较少,它是为了使快速行驶车辆顺利通过绿灯路口,而不需紧急刹车而设置的。当路口绿灯将要变成红灯时,而此时离路口一定距离的地方有车辆经过预设的专用虚拟线圈,那么此时的绿灯会延时,延时多久可以设置,一般由虚拟线圈与停车线的距离而定。

四、工程示例:

1、摄像机安装高度

大约在9.2~15米之间,只要图像清晰、车辆图像足够大,摄像机安装越高越好,并尽可能固定在检测区域的中间位置,建议安装高度在10米左右。如果不能满足这种要求,要尽可能的避免遮挡问题。另外,尽可能将摄像机固定在稳固的立柱上,特别是长期应用。

2、摄像机安装视域

摄像机视域取决于它的安装高度和镜头,一般摄像机视距为其安装高度的10倍。Vantage视频车辆检测器,具有0-100米的有效检测范围,可以同时检测4条车道,一般摄像机的视域要能容纳4.5~5条车道,为了保证检测的精度,要尽量确保视域中车辆停止线保持水平,右图为标准的视域范围:

3、检测区域的设置

虚拟线圈的大小一般接近于我们的大拇指肚大小,基本上与图像中夏利轿车的尺寸相同,这样可以避免漏检较小的车,又能保持较好的灵敏度。

虚拟线圈的放置位置不一定在每条车道的正中间,而是可以根据摄像机的视角略微偏移向某一侧,基本上要根据大多数车辆的行驶轨迹而确定。

每路视频图像最多可以设置24个虚拟线圈,也就是说它可以取代6个4通道的感应线圈检测器!每路视频图像有4个独立的通道输出,可以随意定义虚拟线圈的输出通道。如果必要,还可以将多个检测线圈重叠放置,设置主辅线圈,进行联合控制。所有设置通过面板鼠标即可完成。

4、对摄像机的要求

用于视频检测的摄像机必须是固定式的,云台摄像机通常不适合用于这种检测。不论是用于十字路口控制还是交通数据采集,对摄像机都要有一个最低的要求:

① CCIR/EIA 1Vpp(+/-20%)

② 1/3 CCD适应昼夜亮度变化,自动亮度调节,在夜间照度水平低于0.1 Lux或日间照度达到10000 Lux时所产生的视频图像仍为可用视频信号并具有可分辨特性;

③ 图像水平分辨率应在500线以上,垂直分辨率在350线以上;

彩色摄像机也可以使用,但要注意,彩色摄像机的灵敏度通常要比黑白摄像机低4倍左右,这样最大的影响是在晚上,在这种低对比度条件下检测的性能会很差。

5、使用VRAS远程管理软件设置

如果您想通过远程设置管理,使用VRAS软件模块即可。

我们可以通过VRAS软件对Edge2检测模块进行远程控制,可以设置检测区域的参数以及对检测模块进行各种操作,它为Vantage系统提供以下主要功能:

★ 远程浏览现场图像,单帧或连续帧两种模式

★ 浏览多个Vantage摄像机的图像

★ 为每台摄像机重新设置检测区域

★ 远程执行系统诊断

★ 远程获得交通统计数据

Vantage视频车辆检测器采用闪存的方式可以将参数设置存储起来,以防止数据意外丢失,即使有意外断电的情况也不会带来损失!

另外,如果您想用Edge2模块再采集一些交通数据,也没有问题,不必更换硬件,只需用我们提供的VSU软件模块将Express数据采集程序写入到Flash闪存中即可,非常方便!

五、Edge2硬件特点及技术指标

1、主要功能及特点

① 双路视频输入;

② 每路摄像机图像能够设置24个检测区域;

③ 每个Edge2具有4个通道输出,通过增加扩展模块,可以设置多达24个的通道输出;

④ 检测区域之间可以设置成“And”逻辑功能,来提供联合控制;

⑤ 每一个检测区域当有车辆存在时,可以持续输出一个存在信号;

⑥ 可以对系统进行远程设置及状态监控;

⑦ 采用FLASH闪存存储,使处理器具有编程能力,并能够实现多种应用;

⑧ 通过串口进行软件升级,不需要修改硬件,同时增加了用于储存数据的FLASH存储空间;

⑨ 易于操作的主菜单接口界面,使系统设置或维护不需要电脑即可完成;

2、接口指标

① 输入:BNC视频输入,RS170(NTSC),CCIR(PAL)

② 输出:BNC视频输出,RS170(NTSC),CCIR(PAL)

③ 75 Ohm或Hi-Z视频输入端口

④ USB型鼠标接口

⑤ DB9针RS232接口

⑥ RJ45与扩展模块连接接口

3、工作环境

① 环境温度:-37℃~+74℃

② 环境湿度:0%~95%,无冷凝

③ 电源:12VDC或24VDC(490/280mA)

六、感应式路口控制系统组成

Vantage视频车辆检测器是感应式路口控制系统的感应部分,在本方案中就不再论述信号灯控制机及摄像机等系统部件。Edge2模块可应用于单点路口控制、线控及面控系统中,实现感应式或自适应式控制,能够完美的与SCOOT、SCATS等系统无缝整合!

需要将Vantage Edge2集成到信号灯控制机中,Edge2模块适用于多种型号控制机,如170、TS-

1、TS-2、2070、ATC等。一般只需将Edge2模块直接插入到信号灯控制机内相应的位置即可,非常方便。

1、系统部件组成

① Vantage Edge2视频检测模块(双路视频输入)

② Vantage Intersection十字路口控制专用软件(固化在Edge2中)

③ Vantage Remote Access System(VRAS)远程管理软件

④ 符合要求的摄像机

⑤ 感应式信号灯控制机

篇3:62、智能交通信号控制系统

1 我国城市道路交通控制系统的现状

1.1 交通信号控制的方式

随着经济的发展和技术的进步, 交通信号的控制方式也不断发生着变化。我国城市交通信号的控制方式先后经历了定时控制、车辆感应控制和自适应控制三个阶段。现阶段, 城市街道路口的交通信号控制方式也主要有这三种。对于交通信号的定时控制, 即根据原先的交通流量数据, 事先对信号机的运行参数进行定时设计, 设计方案主要有定周期控制和变周期控制, 在变周期控制状态下, 交警可以根据实际的交通流量对运行方案进行切换。车辆感应式控制方式摆脱了定时控制的固定周期控制, 系统会根据实际交通流量而变化, 控制的灵活性大大提高。在这种控制方式下, 最短和最长绿灯时间、单位延长绿灯时间为主要参数。随着计算机技术和通信技术的发展, 自适应控制应运而生。通过信号和车辆的感应状态, 交通控制系统可借助网络实现实时传输, 也可以根据交通流量的变化自动调整, 从而提高道路的通行效率。

1.2 交通控制的基本评价指标

交通控制的评价指标是指制订控制策略、优化控制参数的目标函数, 即评估控制系统的控制效益参数。在交通控制的实际操作中, 基本评价指标主要包括通行能力、延误、停车次数、停车率、饱和度、燃油消耗和废弃物排放等。通过对这些基本评价指标的研究, 可不断优化交通控制的效率和质量, 为实现智能交通信号控制系统的设计奠定坚实的基础。

2 智能交通信号控制系统的软、硬件设计

2.1 智能交通信号控制系统的软件设计

智能交通信号系统的核心在于软件的支持, 涉及到信号控制策略的管理平台, 这是交通控制系统设计者控制思想的体现。随着信息技术的日益成熟, 未来交通信号智能化的发展离不开英国运输和道路研究所的SCOOT系统和澳大利亚的SCATS系统, 它们都是早期重要的适应控制系统代表。智能化交通控制系统中重要的技术部分是实现人机交互。该控制系统一方面记录了交通车流量数据, 控制道路信号装置的正常运行;另一方面, 能为交通参与者提供数控参数信息, 并对数据进行分析、为道路参与者提出合理化的解决方案, 从而确保道路秩序的正常。交通信号控制系统是一种嵌入式的系统开发软件, 为了适应交通信号的周期性, 要求其具有实时更新的功能。同时, 智能化的交通控制系统确保了计算机网络技术的应用和数字化数据传输信息的准确性。

在智能化交通信号控制系统设计中, 为了保证交通控制效果, 在软件设计中应着重实现系统参数的显示功能、系统参数的查询功能、系统参数的修改功能、数据通讯功能、故障报警功能、故障处理功能、多种控制方式的无障碍切换功能、控制算法的实现功能、控制量的输出和系统的自我诊断功能。为了保证智能化交通信号控制系统可正常工作, 应严格设计系统控制程序, 利用完整的程序将各种模块有序地联系在一起。系统主程序是智能化交通信号控制系统软件设计的重要环节之一, 为了优化主控制程序, 应对设计方案进行优化, 如图1所示。通过完善的控制程序, 可保证智能化交通信号控制系统的正常运行。

2.2 智能交通信号控制系统的硬件设计

智能交通信号控制系统软件运行的载体——交通信号机的发展离不开电子技术的支持。智能交通信号机设计包括主板、交通信号输出模块、车辆检测输入模块、通信模块、键盘和显示板模块、灯泡检测板模块和绿冲突模块等的设计。在设计过程中, 主板是整个智能交通信号控制系统的硬件核心, 通过对不同模块的操控, 能实现智能交通信号控制机的各项功能, 通过主板的处理, 由信号输出模块输出, 再通过操控固态继电器实现对交通信号的控制, 主板处理的车流量信号是由车辆检测输入模块完成并输送入主板的, 借助于车辆检测输入模块, 主板能全面掌握各个方向的车辆信息, 实现对路口交通的模糊控制;通信板模块是实现主机与中央控制机信息交通通讯的媒介;键盘和显示板模块由液晶显示模块与键盘组成, 可显示信号控制状态, 并实现对信号状态参数的查询和修改;灯泡检测板模块可用来检测交通信号灯能否正常工作, 保证损坏的信号灯可及时得到更换;绿冲突板模块的主要作用是实现对不同相位绿灯信号的检测, 避免同绿现象的发生, 减少不必要的交通混乱。

3 结束语

交通信号控制系统的智能化离不开科学技术的支持, 因此, 国家要加强培养这方面的人才, 加大对交通控制系统的投入。在系统设计中, 应制订准确的策略, 针对实时性要求高、结构复杂的城市交通特性设计出合理的方案。智能信号控制系统的设计要做到具体问题具体分析, 根据不同的路段、人流量等情况, 采用相应的控制系统, 从而避免道路拥挤和交通事故的发生, 维护社会的共同利益, 营造和谐的大家园。

参考文献

[1]杨文臣, 张轮, 施弈骋, 等.智能体技术在城市交通信号控制系统中应用综述[J].武汉理工大学学报 (交通科学与工程版) , 2014 (4) :709-718.

[2]支俊, 赵文丽, 苏晓珂, 等.交通信号控制系统主控软件设计与实现[J].郑州轻工业学院学报 (自然科学版) , 2012 (3) :31-33.

[3]柴干, 赵倩, 蒋珉, 等.城市智能交通信号控制系统的设计与开发[J].浙江大学学报 (工学版) , 2010 (7) :1241-1246.

[4]赵润林, 朱铭琳.单点交通信号控制系统的优化设计[J].计算机工程与科学, 2012 (11) :158-162.

篇4:62、智能交通信号控制系统

关键词:城市交通;交通枢纽;智能管理;交通信号;控制系统 文献标识码:A

中图分类号:TP273 文章编号:1009-2374(2015)06-0115-02 DOI:10.13535/j.cnki.11-4406/n.2015.0485

随着信息智能化技术的不断发展,其应用的范围领域正逐渐扩大。其中,交通智能化管理领域就是重要的应用方式之一,应用了智能化管理系统的交通运输,能够实现一体化和综合化管理。而实现这一管理模式的技术基础,则是充分智能化的交通信号控制系统。由于目前我国城市化程度不断提高,城市内的机动车通行量和出行率始终处于上升趋势,因而使交通需求变得越来越复杂,对交通信号控制能力提出了更高要求,必须具备足够的智能化水平,才能保证交通运输秩序的正常运行,维护交通运输的安全。因此,必须结合城市交通规划的实际情况,设计出科学合理的交通信号控制系统。

1 智能交通信号控制系统概述

在我国经济得到了高速发展的今天,随着我国城市化进程的加快,我国交通压力越来越大,交通堵塞现象日益严重,解决城市交通问题已经成了城市建设中首要任务。如何解决交通问题,已经成为社会关注的焦点。交通信号在解决交通堵塞、规范交通秩序中起着积极作用。但传统交通信号已经无法完全满足新时代交通情况,现代交通车流量远远大于从前,在经济水平不断提高的今天,城市家庭几乎家家都有车,而车辆数目的增多,改变了我国的交通状况和交通发展,改革创新交通信号迫在眉睫。随着时代的进步,科技的发展,信息技术、网络技术、计算机技术、通信技术、智能技术的高度普及,智能交通信号概念被提出。通过不断实践和改革,智能交通信号控制系统已初步成型,虽然暂时无法大规模推广,但是智能交通信号系统也已经给我国交通带来了质的改变。智能交通信号实现了智能监控车流量,自动变化信号,智能指挥、规范交通,优化交通状况。下面通过两点来分析智能交通信号系统的特点。

1.1 采用高新技术

智能交通信号系统离不开先进的计算机技术、通信技术、信息技术和智能技术及感应技术,可以说智能交通信号是集各大高新技术于一身的强大智能系统,随着未来交通情况的不断变化,智能交通信号对技术的要求也会越来越高。

1.2 智能化

通过不断的实践和改革创新,智能交通系统越来越完善,现代交通信号智能系统所采用的技术、设备都能达到了城市交通所应满足的需求,不仅能够有效完成信号控制工作,更加实现了根据交通实际情况及时间段进行自动变化和科学指挥交通,并且智能交通信号系统的车流量测试功能实现了对我国街道车流量的记录,为我国交通改革提供了科学依据。

2 智能交通信号的系统设计

2.1 智能交通信号子系统

智能交通信号系统既复杂又系统,有多个子系统协调来完成对交通的引导和规范,交通信号控制只是其中的一个组成部分。

想要构建一个完整、可靠、科学的智能交通信号系统,就需要无数个子系统,这些信号子系统多分布在交通事故多发点及车流量较大路段。其中车流量计算子系统是智能交通信号的核心内容,智能交通信号系统,通过对车流量的精确的监测和计算,预判绿信号可变比率,使交通信号达到了一种动态控制。智能交通信号子系统应用的关键在于,一个区域内路段要保持状态一致,避免造成交通混乱及堵塞。不同区域路段可以根据实际情况,应用不同的方案来设计智能交通信号子系统,确保交通信号子系统的实用性。为了使交通信号在同一路段保持高度一致,可将相邻子系统互相连接,形成更大的整体系统,且内部以统一的周期运转。连接方案可以根据交通实际需求来判断,可进行永久连接或暂时连接。

2.2 智能交通信号对饱和度的控制

为了使制定出的交通信号控制战略方案更加科学,需事先将交通信号控制系统应用于交通枢纽区域中心自适应协调区域,从而对不同入口车道的饱和流量加以检測并得到准确数据信息,智能交通信号系统必须进行科学的交通饱和度监测,交通饱和度是规划交通的重要依据。饱和度测试和控制系统,应在交通主要线路设置,在这个检测和控制的系统数据库中以战略检测器的形式存在,在绿灯时段范围内,战略检测器将对车流经过时的交通流量及占有率数据信息进行采集并自动处理,最后将处理结果以数据表格的形式直观呈现,通过表格交通“饱和度”一目了然。饱和度检测和控制可利用实际的绿灯时间与绿灯时间比率进行计算。有效利用绿灯时间指的是饱和交通流情况下,恰好通过以最优车间距运行的同等车流量所用的绿灯时间。

2.3 交通信号控制相位差

智能交通信号系统设计,可以规划每个系统间控制规模,避免一个系统出现故障,给多路段交通造成严重影响,降低多方向相位差变化导致的相互作用力。智能交通信号控制系统设计应全面考虑,进行科学规划和实现,其控制范围,要根据交通实际情况,对不同流量进行不同规划,避免造成资源浪费。但设计过程中不仅要考虑到控制相位差,更应该估计到相互呼应,如某路段出现故障,可通过其他路段启动应急线路,进行暂时性的交通引导,避免交通事故,系统相互运作正常时可断开连接,避免造成干扰,实现真正的智能交通信号

系统。

3 智能交通信号控制策略

控制策略指的是在特定区域制定相关的信号控制策略,规划智能交通信号,最大程度地适应各个路口交通需求的变化。当某一相位的绿灯时段需求位于平均需求的下限时,可对该相位进行早断处理,如果没有需求甚至可直接略过该相位,或引入条件相位来代替。控制器处理的参照标准是检测器测得的交通数据决策,可以采用策略检测器来担负这项工作。控制策略主要针对的是控制器的运行问题,其在实施策略控制时所采取的技术与路口孤立运行时所采取的技术完全一致。策略控制实现的载体是区域计算机,因而能够对信号运行的强度加以调整。当然,策略控制与孤立控制在本质上并非相同。策略控制无法应用车间距计时器和损失时间计时器来提前终端或略过某个相位,这是因为处于同一连接上的控制器必须以相同周期的形式来运行,这样才能达到最优化的协调效果。另外,由于相位早断或略过而节省的时间,也必须追加至本地控制器的下一个相位或主相位上,从而维持相同的周期时长。策略控制的作用在于控制绿信比、周期及相位差,对变化幅度不明显的城市区域的交通流趋势进行把握;而策略控制则适用于处理各路口不同周期中速度快但程度较小的变化。为了能够制定出更加科学合理的交通控制战略,应力求将二者进行结合,从而构建更为完善的、全方位的交通控制

系统。

4 结语

本文通过对城市交通枢纽智能交通信号控制系统设计进行探究和分析,指出为了使交通运输领域得到更快的发展,提高交通运输的安全性和可靠性,必须积极应用智能化技术来实现智能交通信号,以此来改善我国目前的交通现状,智能交通将成为未来交通的发展方向。本文从多方面对智能交通信号系统进行了分析和阐述,对其具备的优势加以分析,并对交通枢纽区域交通信号控制的控制战略提出了一些看法,强调应制定科学战略来有效维护交通安全。

参考文献

[1] 尹贻林,王垚.基于利益相关者需求的城市交通枢纽设施优化设计研究[J].北京理工大学学报(社会科学版),2012,20(3).

[2] 李群祖,夏清国,巴明春,潘万鹏.城市交通信号控制系统现状与发展[J].科学技术与工程,2012,18(24).

[3] 秦渝.一体化交通系统下的城市交通枢纽及站场布局与结构研究[J].技术与市场,2014,12(3).

作者简介:宋顶利(1971-),男,河北沧州人,供职于河北联合大学,工程师,博士,研究方向:教育;张昕(1979-),女,山西襄垣人,供职于河北联合大学,会计师,研究方向:教育。

篇5:62、智能交通信号控制系统

求:

(1)系统函数H(s),这一问考查系统的一个性质,即,如果不知道系统的零状态响应,但知道两个不同信号作用于系统的全响应,那么e1(t)-e2(t)作用于系统的零状态响应就是r1(t)-r2(t),从而由拉氏变换求出H(s)

(2)记不太清了,不过不难

(3)使得输出为冲激响应的(零输入响应的)初始状态,这一问考查对于系统的初始状态,r(0-),r(0+),和跳变量rzs(0+)= r(0+)-r(0-),之间的关系,和冲激函数作用于系统的实质,这一部分胡光锐的习题集上有类似习题,大家要把这部分掌握住 x(t)乘以sinwt,coswt后,频域的移位 还有一道有点难的题,记不太清了,这个题的一个难点是:如果x(n)的z变换是X(z),则a^n*x(n)(a的n次方和x(n)相乘,a是已知数),的傅里叶变换 等于X(z)在半径等于1/a的圆上等间隔抽样 就是问你两个序列进行循环卷积后,有哪些点上循环卷积等于线性卷积,大家根据:两个序列的N点循环卷积,等于两个序列的线性卷积的N点循环移位再截取,就不难做出。(-1)^n,通过滤波器后,再乘以(-1)^n,则就等效于这个序列通过了一个高通滤波器 最后一题是问用脉冲响应不变法,已知H(s),求H(z),当然是先由H(s)求其反变换h(t),再用h(n)=h(nT),求得离散序列,然后再对h(n)求z变换,还有一问就是当求出H(z)后,画出框图,这一部分大家要弄明白

篇6:62、智能交通信号控制系统

城市的飞速发展,以及城市网的快速建立,汽车发挥着越来越重要的作用。但是日益突出的交通拥堵、路况恶化、事故频发等交通问题正在困扰着世界各国的政府及人民。其衍生的交通状况恶化也已经严重减慢了城市以及国家现代化发展的速度。通过对路段车辆通行规律的研究,对实时的交通状况进行研究分析,从而能正确指挥交通、缓解交通拥挤,具有非常重要的现实意义。交通信号灯作为保障车辆安全通行和顺畅通行的主要工具,在我国新的经济发展形势下,建立高效、智能的交通信号系统显得尤为重要。本文根据城市道路交通控制技术,通过对电子信息技术的应用,从而实现硬件成本的降低,通过硬件设施以及软件的设计来满足对交通灯的智能控制。交通信号灯依据控制的位置不同,可分为城市和高速公路的交通控制,本文重点讨论城市交通信号灯的智能控制。

1城市交通控制技术的发展历史

19世纪交通信号灯的诞生,学者们开始了对城市道路交通控制技术的研究。最初的交通信号灯诞生后,城市依靠红绿两色煤气灯来控制十字交叉路口马车的通行。1926年,英国安装了第一台城市交通信号控制器,这也标志着城市交通走入了自动控制的时代。城市车辆的急剧增加,城市交通复杂,应用的单一计时交通信号灯已经不能满足实际要求。1928年,美国设计出世界第一台交通信号感应控制器。这种控制器能够适应交通需求的变化,计时调整信号时间。1963年,加拿大首先采用计算机控制区域交通信号协调控制系统。这也是城市交通控制技术的又一里程碑。随着新世纪电子信息技术的飞速发展,电子信息技术表现出功能灵活、反应迅速、测量精准等优点,在城市交通控制系统中受到广泛应用。

2设计系统的基本原理

2.1智能系统特点

2.1.1智能系统多融入性及处理能力

智能系统能够融入包括复杂性、不完全性、模糊性、不确定性或不存在已知算法的过程,同时能够用已有知识进行推理,用智能算法和启发性策略引导求解过程

2.1.2智能系统含有分层信息处理以及决策功能

智能系统通过任务分块进行分散控制,对大型的复杂系统进行简化分析。智能系统在高层控制,对实际的环境进行组织以及最优化处理。然而实现高层控制任务,往往不可缺少的是低层控制,通过低层控制的采用符号处理信息,以实现高层控制需要的协同作用。

2.1.3智能系统具有突变特性

在智能系统的控制中,随时会出现信号突变的情况。控制这类突变就需要智能系统首先判断偏差以及偏差变化率,所需要的调整参数不能满足改善系统性能要求时,通过跃变方式改变控制器来实现。

2.1.4智能系统具有自优化处理特点

智能系统具有同步在线识别、参数记忆等特征,使得智能系统能够在获取参数的同时不断优化自身以及调整参数。在线的获取信息并且识别处理从而达到最优控制性能。

2.1.5智能系统具有非线性特点

通过对系统中硬件的设计整理,用来模拟人的思维模式,来满足非线性特征,从而实现人工智能。

2.2硬件原理及作用

2.2.1红外控制发射震荡电路

为了整体系统满足交叉路口不同方向信号灯变化的要求,在系统的结构设计中,要完美实现两个方向信号灯颜色的选择、控制的时间、应急调整等工作。红外发射器、外界陶瓷谐振器、电容器这三大部分组成了红外控制发射震荡电路,以达到产生额定脉冲的负载信号。

2.2.2解调模块在接收器中的作用

红外控制发射出信号之后,通过解调模块接收,经由内部集成电路进行调节和放大。在此之外,红外输出端在完成输出操作后,由放大三极管方式展开工作。接收终端解调模板编辑时,在发射终端按下相应的按键就能得到想要的译码,同时开启控制机,单片机中的终端程序能够及时跟进相应的终端服务。

2.2.3CAN接口总线的.作用

在控制模块中,CAN总线接口主要承接接口端与CAN总线接口协同控制上一级连通通信并控制交叉路口的交通信号灯,同时,CAN总线接口都配备抗干扰技术,通过抗干扰措施,达到完美的抗干扰能力,使得控制精准、高效。

3交通信号灯智能系统设计

确保车辆有序通行,在十字交叉路口需要设置两个方向的交通信号灯来控制。当其中一组为红灯时,另一组对应显示绿灯亮,过度阶段显示黄灯亮,反之亦然。考虑到交通路口的实际路况以及潮汐车流的情况不同,红绿灯的变化就需要根据实际做出相应的调整。白天交通繁忙,控制灯的变化率就要快一些。相反,夜间交通压力小,相应的控制灯变化就可以慢一些。这一功能可以通过控制程序来改变交通灯的持续时间。同时,根据一些简单的传感器把信号灯的工作情况反馈给控制端,中心分析反馈信息可以对信号灯工作是否正常进行判断,从而实现在线监控交通信号灯工作状态的功能。通常情况下,检测车辆数据一般采用单片机感应式控制,上传至云客户端通过合理的科学计算法计算出在每一时刻的匹配方式,从而达到实时控制。但是这种实时控制会出现空现象,对程序要求比较严格,编程也比较复杂。基于此,应该制定出完整的控制灯模拟控制结构体系。以保证根据每个十字路口不同方向车辆的不同行驶状态达到实时调整。保证车辆顺畅通行,不出现堵车和超速情况。

4结语

在控制和疏导交通过程中,交通信号灯发挥着至关重要的作用。同时也是城市基础设施建设中重要的一环。根据我国交通网、城市网比较复杂的现状,匹配我国新科技发展的形式,应该不断完善智能交通信号灯的技术水平,从而确保道路安全通畅,为促进我国社会主义经济发展和基础设施建设而不断努力。

参考文献:

[1]宋依青,张润.自适应交通控制系统的设计与实现[J].计算机测量与控制,2014.16(4):497-499.

[2]蔡家明.交叉路口交通灯信号延时模糊控制研究[J].上海工程技术大学学报,2015,22(1);84-87.

[3]杨日容.基于PLC和组态技术的交通灯监控系统设计[J].荆门职业技术学院学报,2014,23(6):31-33.

[4]张源钊,王建新.预防车辆“绿灯跟进”的只能控制信号灯[J].青少年科技博览,2011(09).

篇7:第二章交通信号控制的基本理论

本章首先给出了交通信号控制的基本概念,包括:信号相位,周期时长,绿信比,相位差,绿灯间隔时间,有效绿灯时间等,然后介绍了常用的交叉口性能指标以及计算方法,最后给出了常用交叉口的信号配时方法。这些研究为后面的信号配时模型及优化方法的研究奠定了理论基础。2.1交通控制的基本概念

交叉路口信号配时参数优化,首先必须准确把握和理解交通控制中的一些基本概念。下面对信号配时设计中部分参数作一介绍。

(l)信号相位:在一个信号周期内,具有相同的信号灯色显示的一股或几股交通流的信号状态序列称作一个信号相位。信号相位是按车流获得信号显示的时序来划分的,有多少种不同的时序排列,就有多少个信号相位。每一个控制状态,对应显示一组不同的灯色组合,称为一个相位。简而言之,一个相位也被称作一个控制状态。以四相位为例如图所示:

相位1

相位2

相位3

相位4

图1 四相位信号相序控制示意图

(2)周期时长:信号灯发生变化,信号运行一个循环所需的时间,等于绿、黄、红灯时间之和;也等于全部相位所需的绿灯时间和黄灯时间(一般是固定的)的总和。周期过长时,等待的人容易产生急躁情绪,因此通常以180秒为最高界限。

图1 第一、三配时表

(3)绿信比:是指在一个周期内(对一指定相位),有效绿灯时间与信号周期长度之比。

(4)相位差(又叫绿时差或绿灯起步时距):相位差是针对两个信号交叉口而言,是指两个相邻交叉口它们同一相位绿灯(或红灯)开始时间之差。

它分为绝对相位差和相对相位差。相对相位差是指在各路口的周期时间均相同的联动信号系统中,相邻两个交叉路口协调相位的绿灯起始时间之差。绝对相位差是指在联动信号系统中选定一标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差叫绝对相位差。

(5)绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。绿灯间隔时间的长短主要取决于交叉口的几何尺寸,因此,要确定该时间的长度就必须首先考虑停止线和潜在冲突点之间的相关距离,以及车行驶这段距离所需的时间。

(6)有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯时间之和减去损失时间。损失时间包括两部分,一是绿灯信号开启时,车辆启动时的时间;还有绿灯关闭、黄灯开启时,只有越过停止线的车辆才能继续通行,所以也有一部分损失时间,即为绿灯时间减去启动时间加上结束滞后时间。结束滞后时间是黄灯时间中有效利用的那部分。每一相位的损失时间为启动延迟时间和结束滞后时间之差。

在实际工作中,损失时间的精确计算是非常困难的,也没有必要。通常取绿灯时间代替有效绿灯时间 2.2交通信号控制类型简述 2.2.1定时控制

(l)定义

依据交通量历史数据进行配时,交通信号按照配时方案运行,一天只按一个配时方案的配时方法。定时控制是单个交叉路口最基本的控制方法。

(2)适用条件及优点

定时控制适用于交通流量变化模式基本固定,并可以预测的情况,其因信号启动时间可取得一致而有利于同相交通信号协调。它的优点在于便于执行,对控制系统的硬件要求较为简单。由于路网上各个交叉路口的信号配时参数都是预先确定的,因此不必在执行中根据实时交通状况作任何调整,也不需要采集实时交通数据和反馈,使得各种费用使用较低。

(3)缺点 首先,定时控制中的配时方案都是根据历史性交通资料,事先经过脱机计算建立起来的。然而,路网上交通状况如车流量的分布,流量大小及流向,不可能长期维持某一固定的模式。一旦变化,则原分配方案就不再适合变化了的交通状况。因此,固定配时系统的应用受到一定程度的局限,它只适用于交通状况变化不十分急剧的城镇。其次,控制对策的灵活性较差,固定配时方案一经建立并付诸执行,就不会自动调整和更改。因此,路网可能发生的一些意外事件,往往会导致严重的交通阻塞,甚至于瘫痪。再次,缺少实时交通信息反馈,除非设置专门用于采集交通数据的检测器,固定配时控制系统没有任何关于网路上实时交通状况信息的反馈,这就限制了它的灵活性。2.2.2潮汐控制

潮汐控制方法和定时控制方法相类似。区别在于若一天只用一个配时方案的称为定时控制;而一天按多个时段采用不同配时方案的称为潮汐控制。

潮汐控制比定时控制方法有一定的优越性,但是对于交通流量变化大的地区,控制效果仍不理想。2.2.3模糊控制

城市交通系统是一种非线性的、时变的大系统。传统的控制方法都要首先建立交通流的数学模型,在此基础上推导出某种控制算法。由于城市交通系统的复杂性和随机性,建立的数学模型一般难以准确地描述城市交通的实际状况,而且算法复杂,在线估算量大,控制实时性差,控制精度也不高。因此近年来,国内外专家学者致力于开发新的交通信号灯的控制方法,模糊控制是新的研究方向之一。

2.3相位、相序设计与信号配时

2.3.1相位、相序设计与信号配时的关系

无论采用哪种控制方法,都需要先了解交叉路口的几何状况,交通流状况,然后制定相应的相位,相序方案以及配时方案,只有选择合适的相位和配时方案,才能使交叉口的运行效果达到最优。交叉口相位方案和配时设计是信号控制方案设计的两个方面,属于定性和定量的关系。

相位方案设计是信号设计的第一步,它直接影响交叉口交通流的安全性,以及交叉口的延误、通行能力等各项运行效益。美国道路通行能力手册HCM早己提出:“信号设计中最为关键的问题是选择一个适当的信号相位方案”。

配时设计是在相位方案设计的基础上进行的,根据进口车道配置,交通流情况来求解最优配时方案,最终达到提高交叉口实际通行能力、减少车辆通过交叉口的延误的目的。只有在充分研究和采用最佳相位方案的前提下,利用配时参数优化模型,才能得到真正的最优控制方案,即最优解。否则,选用不适当的相位方案,再先进的配时模型也只能得到伪最优解。2.3.2相位设计

相位方案是相位的组合方式,有必要从多个组合中选出最佳的相位方案。一般来说,交叉口形状越复杂,相位方案也越复杂。

相位选择可分为相位初选和相位调整两步。相位初选时,只能运用经验判断,通过画出交通流线,合并部分交通流来缩小可选范围,初步确定相位相序,并作为信号配时的基础。当信号配时完成后,将会对各参数进行试算评价,对相位进行必要的修正和调整,并重新评估,直至满足设计要求,形成最终方案。

确定信号相位时需要考虑以下几点:(l)交通安全

交叉路口交通流之间的冲突是造成交通事故的一个重要原因,一般来说增加相位数,减少同一相位中冲突方向交通流的数量,可以提高安全性。

(2)交通效率

交叉口相位设计要提高交叉口的时间和空间资源的利用率。过多的相位数会导致相位交替次数增加,也即损失时间的增加,从而降低交叉口通行能力和交通效率。反之,太少的相位也会使交叉口因混乱而降低效率。

(3)交通状况

交通状况包括机动车交通量、左右转率、车道饱和率、大型车混入率、非机动车流量流向、横过行人数等。

(4)交叉口几何条件

交叉口的限制条件包括:交叉口的类型、进口道车道数、交叉口扩展车道的展宽长度、行人和自行车过街的组织形式。这些因素影响机动车左转专用相位的设置、车辆排队长度等。

(5)协调控制的要求

为了保证协调控制效果,相同子区内的信号要具有一致性,各交叉口的相位相序需相互匹配,否则不利于驾驶员适应。2.3.3相序安排

信号相位设计不但要考虑相位组合,还要考虑相位的衔接问题。通常需要考虑以下几点:

(l)对同一个交通流设置两个以上信号阶段时,在时间上应尽可能保证连续性,对于行人信号可不局限于此原则。

(2)对同一进口道车流中不同流向交通流在不同信号相位放行时,尽可能保证它们所在信号相位的连续显示。

(3)一向含直行车流的相位与另一向含直行车流的相位不宜连接。(4)一向含左转车流的相位与另一向含左转车流的相位不宜连接。(5)两向相位相序设计应尽量对称,便于驾驶员理解。

(6)于直行与左转机动车,应考虑左转车道可停放的车辆数。若到达的左转车辆超出该车道可停放的左转车辆数时,需先放行左转车。反之,则先放行直行车。在一般路口和有左转待候区的路口多是先放直行车,后放左转车。

(7)有特殊方案相位,其前后应尽可能衔接与特殊方案相容的基本方案。本文主要研究信号配时参数的优化设计,所以不对相位,相序的设计方法进行深入的研究。

2.4交叉路口常用性能指标及计算方法

一般来说,信号交叉口的控制效果是由延误、停车次数、通行能力和饱和度等四个基本参数来衡量的。这些参数不仅反映车辆通过交叉口时的动态特性,同时它们也作为交叉口信号配时参数优化的依据,用于建立优化模型和目标函数。也就是说,信号配时参数优化的目标就是在一定的道路条件下,对配时参数选择合适的值,让通行能力稍高于交通需求,并且使得通过交叉口的全部车辆总延误

时间最短或停车次数最少。

当然,除了上述四项基本评价指标以外,还有一些其它评价指标,例如:车辆运营费用(包括燃油消耗、轮胎和机械磨损)、废气排放量、噪声污染、运营成本(计入乘客旅程时间折合的经济价值等)以及安全舒适程度的差异等等。但这些都是由上述四项基本评价指标派生出来的次级参数,即以延误时间和停车次数为自变量的函数,常称作“辅助参数”。

下面具体介绍车辆延误、停车率、通行能力、饱和度、平均排队长度和通行权转移度。2.4.1车辆延误

延误是由于交通干扰、交通管理和控制设施等因素引起的车辆运行时间损失。由于延误能反映了司机不舒适、受阻的程度以及油耗和行驶时间损失,所以是最常用的评价信号交叉口运行状况的指标。

车辆平均延误是评价交叉口服务水平的最重要的指标,因此,本文选择它作为比较各种信号灯控制方法优劣的依据。车辆的排队长度是延误时间增加的主要诱导因素,车辆滞留时间又是延误时间的构成元素。某车道的车辆排队长度如果过长,易引起车辆堵塞和平均延误时间增加;而某车道的车辆滞留时间如果过长,不仅增加了平均延误时间,而且易引起通行权资源分配失衡。大多数情况下,排队长度与滞留时间是正相关的,反之亦反。但也有例外,例如,当出现很短时间内连续到来多辆车和很长时间没有车辆到来这两种情况时,排队长度与滞留时间就不具备正相关关系,排队最长的车道,平均滞留时间不一定也最长,反之亦反。可见,两者是相互关联,互为补充,不可相互替代的,它们是影响交叉口通行能力的两个关键因素。2.4.2停车率

停车率:指每个周期停驶的车辆数占整个周期所到达车辆数的比例,它是一项信号交叉口评价的综合指标之一,停车率的大小不仅反映了交叉口的服务水平,同时从车辆耗油、环境及出行费用等几方面反映了信号控制的合理性。2.4.3通行能力

信号交叉路口的通行能力是针对每一引道规定的,它是在现行的交通、车道和信号设计条件下,交叉口某一引道所能通过的最大流量。单位:辆/小时。整个交叉口的通行能力并不重要。

饱和流量:在通常的道路、交通条件下,在整个小时都是绿灯的条件下,连续通过交叉口指定引道的最大流量。

所以,可见影响信号交叉口的通行能力的主要因素有三个:

(l)车行道条件,即交叉口的几何条件。包括:车道类型,车道数,交叉口几何形状。

(2)信号设计条件。即信号灯配时的各个参数及相序、相位设计。(3)交通流条件。每条引道的交通量,流向,流向内车型的分布。美国HCM给出的饱和流量(率)计算公式为:

S=S0NfwfHVfgfpfbbfafRTfLT

(2.1)其中,S为在通常条件下,车道组的饱和流量,S0为每车道理想条件下的饱和流量,一般取1800/绿灯小时,N为每车道组的车道数。fw为车道宽度校正系

数,fHV为交通流中重型车辆校正系数,fg为引道坡度校正系数,fp为临近车道停车情况及该车道停车次数校正系数,fbb为公共汽车停在交叉口范围内阻塞影响作用校正系数,fa为地区类型校正系数,fRT为车道组中右转车校正系数,fLT为车道组中左转车校正系数。

通行能力是以饱和流量为基础进行分析的。交叉口的总通行能力是通过各进口车道组(引道)的通行能力之和。每一车道组的通行能力根据其车道功能不同按下式(2.2)计算:

CiSii

(2.2)

igT0 i其中,Ci为车道组的通行能力,Si为车道组i的饱和流量(辆/绿灯小时),i为绿信比。2.4.4饱和度

饱和度是针对每一车道(车道组)而言的。计算公式(2.3)如下:

XiVCiViSigTCiViSii

(2.3)其中,Xi为第i个车道组的饱和度,Vi为第i个车道组的交通流量。相位饱和度是指该相位上各个车道组的饱和度之和。交叉口的饱和度是饱和程度最高的相位所达到的饱和度值,而并非各相位饱和度之和,用X表示。从理论上说,交叉口饱和度只要小于1就应该满足各方向车流的通行要求。然而,实践表明,当交叉口的饱和度接近于1时,交叉口的实际通行条件将迅速恶化,更不必说等于或大于1了。因此,我们必须规定一个可以接受的最大饱和度限制,即饱和度的“实用限值”。研究结果表明,反映车辆通过一个交叉口时的一些特性参数,如车辆平均延误时间、平均停车次数以及排队长度等等,均与饱和度实用限值的大小有关。实践证明,饱和度实用限值定在0.8——0.9之间,交叉口可以获得较好的运行条件。在特定条件下,例如交通量很大,而交叉口周围的环境条件较差,为减少交叉口的投资,可以采用更高的实用限值——饱和度实用限值为0.95。

关键进口道到达交通量与通行能力之比,而交叉口饱和度是相位饱和度中的最大值。在设计时,交叉口各个相位的饱和度小于1。2.4.5平均排队长度

信号一个周期内各条车道排队的最长长度的平均值。各条车道最长排队长度一般是指该车道的绿灯相位起始时长度。2.4.6通行权转移度

通行权转移度反应了不同方向的车流对绿灯需求的迫切程度。它依赖于各入口的交通情况,而车流在红灯信号和绿灯信号相位下,有不同的状态。在绿灯相

位下,车辆可以自由通过停车线,在停车线检测器上可以检测出驶过停车线车辆的数量,上游检测器可以检测车辆的到达数,这些车辆经过若干秒后可能会到达停车线或通过停车线或排队等待:在红灯相位下,检测器可以检测车辆的到来情况和排队长度。因此红灯相位和绿灯相位的通行权转移度就有不同的输入和推导规则。

2.5车辆检测器

一个完整的交通控制系统需要有一个准确、可靠的信息采集和监控系统,它将来自底层的实时数据收集起来,准确、迅速地通过高速信息传输网送交后台进行分析和处理。交通控制系统的交通信息采集是由车辆检测器来实现的。

篇8:62、智能交通信号控制系统

交通管理, 是一个范围很广的概念。它包括道路管理, 车辆信息, 交通环境, 轨道交通, 公共交通等多方面管理关系。交通管理者的使命是尽可能高效的根据现有交通条件为车辆及其他交通工具提供服务。信号灯管理作为智能交通管理系统效率化的一环, 追求的是车辆驶过路口时间的缩短和交通信号配置更加合理化。同时追求有效控制信号必将对路口管理方式的选择产生较大的影响。通过调研天津市各关键交通路口、路段的交通流量, 红绿灯指挥、道路设置等状况, 建立合理的数学模型, 使模型具有合理分配信号灯变化时间, 以及推测下一时段车辆通过路口的情况的功能, 实现智能管理。从成本上来看, 它远远优于其他的解决方案。所以, 合理的控制信号灯可以大大改善道路拥堵状况。

2 通过流量控制信号灯的基本理论和环节

2.1 信号灯管理的定义

信号灯管理系统是由汽车、道路基础设施运输基础设施、信息和人组成的一个共同完成交通管理的综合服务系统。这个系统由各种不同系统的形态所组成, 它包括自然与人造、实体与概念、静态和动态及控制和行为等系统, 这个系统中渗透着上述系统的各种形态。信号灯管理系统是实现道路交通管理系统最优化, 并获取最佳经济效益、社会效益和生态效益的组织管理方法。

2.2 通过流量合理管理信号灯的意义

过去, 由于我国交通行业智能化程度低, 所以要集中采集交通信号并加以处理是难以实现的, 尽管有不少部分地区应用了一些交通信息广播电台, 它不断通过广播告诉司机哪些路段堵车, 哪些路段通畅。这种靠广播加上司机对整个城市的熟悉情况共同组成的系统也就是智能交通的雏形。由于技术手段相对落后, 不能达到高效率、低成本以及柔性化的要求, 以上手段随着日益增长交通的需求已经不能满足当前的要求, 因此, 选择合理的信号灯管理方案具有十分重大的意义。建立现代化的智能交通管理系统, 不仅要解决观念等方面的问题, 更要做好信息采集和应用工作。交通信号灯管理的灵魂是方案选择, 因此, 对它的研究有重要的理论和实际意义。

3 通过流量管理信号灯的基本环节

3.1 信号采集

信号采集是信号灯管理过程中的基础环节。严格说来, 信号采集应叫做交通流量采集, 在不同的技术支持下, 信号采集的来源不同, 这里有的是用电子车牌技术来采集需要的流量信号。这里的车流量信号采集是在车辆未进入路口时采集的, 也就是车行驶在相应道路上时采集的流量信号和车辆信息信号。

3.2 信号传递

信号传递是指将道路上采集的车流量信息通过一定的硬件设备, 将信号传送至相应的计算机系统, 为以后的工作提供相应的数据, 当然, 数据传输的起点是相对固定的, 但数据传输的终端可以根据当地的实际情况, 确定为不同的计算机组织系统, 因此, 以后的工作既可以实现独立的路口的处理, 也可以实现多路口的协同处理。

3.3 信号存储

信号存储这一部分涉及到数据库中相应表的处理, 采集来的信号将被存入相应的表中, 以便用于不同的处理方式, 为此, 每一个路口都有自己独立的数据存储空间。

3.4 信号处理

信号处理是整个信号控制最为关键的一步, 它需要事先为系统建立合适的数学模型和相应的组织结构和算法。目前世界上有多种多样的处理方法。车辆信号流按照其控制的范围, 分为若干的层次, 在不同的层次上, 控制目标、实现方法和手段都有差异。信号控制的层次主要分为:孤立路口控制、主干道控制、区域控制。常见的控制方法主要有:离线优化方法, 在线的方案选择, 在线的方案生成。在几十年的交通控制实践中, 这些方法都有应用, 每种方法都各有其优点和不足之处。

4 流量问题的数学模型

流量控制问题的数学模型及其解决方法:

在信号灯管理过程中, 必将考虑到各个道路上的交通流量问题。因此考虑如何控制车流量就是考虑如何对信号灯分配合理的相位。在以下两个模型中, 对于交叉口的基础设施设置都是以只考虑汽车的情况, 对于行人和自行车的情况没有进行考虑。交叉口全部设置为十字交叉口, 共设置了四个相位, 如下图所示:

信号周期不能太短, 要有一个下限值。但也不能太长, 周期越长通行能力就越大, 但随着信号周期长度的增加, 路口延误时间也增加, 因此信号周期长度又一个上限值。

根据Webster公式:

其中, C0表示信号周期, 单位为s;

L表示总损失时间, 单位为s;

这里的L=∑D0+∑I;

D0表示车辆启动的延误时间, 根据现场观测, 一般取2S;

I表示绿灯间隔时间, 根据现场观测, 一般取2S;

因此四个相位的总时间损失为4*2+4*2=16秒, 即L=16秒。

这里的yi代表第i相信号临界车道的交通流量比, 所谓临界车道是指每一信号相位上, 交通流量比最大的那条车道, 即yi=max (实际的进口道交通流量S/进口道交通能力Q) 。

其中, 实际的进口道交通流量S, 由路口的检测系统自动测量实际的流量数。

进口道交通能力Q, 则是依据以下的分析得出的:

结合我国的情况, 汽车驾驶员“根据时速确定前后两车间距, 一般以时速公里数为间距米数……在晴雨天都比较适用”的原则, 若以v (km/h) 计车速, 一般车身长度以5m计, 则有如下关系式Q= (1000V) / (V+5) (4)

其中Q为每车道每小时的通行车辆数, 即进口道交通能力。

由d Q/dv=8000/ (v+8) 2>0 (对3式求导) , 说明车流的通过量确实是随车速的增大而增多的, 但按 (3) 式, 混合车辆数又以每小时通过1000辆为其极限值。

根据我国的车速、车况, 每车道混合车型流量每小时以900~1000辆为宜, 同时交叉口的理想通行能力只有路段通行能力的50%, 实际上只有路段通行能力的30~45%。

因而, 可以得到交叉口最大通行能力的一般计算公式: (对于每一进口道来说)

因此, 根据Webster公式:

我们已经得到了式 (1) 中的L, 又通过检测器得到Y, 因此可以对C0 (信号周期) 进行求解, 则式 (1) 可以变为:

Y=∑yi (i=1、2、3、4 (即分别对当前四个相位的流量求流通比)

在得到最佳周期以后, 按各相位车道的交通流量比进行比例分配, 第i相信号相位的绿灯间gi为:

从而得到各个相位的通行时间。

在由各个进道口所得到的实际流量分别求出, 四个相位中, 八组车道组中 (车道组11、12、21、22、31、32、41、42) 相对应同一相位中两个车道组的差值, 并由小到大排列, 取其最小差值得相位, 作为首先开通的相位, 并从小到大依次开通。

上述对模型的求解方法可归纳为: (1) 获得各个进入口道路上车流量Si (i=1、2、3、4) 和每车道每小时的通行车辆数Q。 (2) 求各出各个入口道路上的交通流量比yi (i=1、2、3、4) , 将它们相加, 得到总的流量比Y。 (3) 通过测量得到总的损失时间L。 (4) 根据Webster公式:C0= (1.5L+5) / (1-Y) , 得到最佳周期时间。 (5) 根据公式:gi=yi* (C0-L) /Y, 算出各个相位的绿灯时间。 (6) 根据车道组实际流量的差值, 依次得到开通相位的顺序。

参考文献

[1]徐中明, 贺岩松.国外智能交通系统研究动向[J].汽车工业研究, 2000 (1) :62~67.

[2]李灵犀, 高海军, 王飞跃.两相邻利口交通信号的协调控制[J].自动化学报, 2003.

上一篇:家乡山水作文下一篇:[小学英语]心理优势在小学英语教学中的应用