连铸工艺流程

2024-04-25

连铸工艺流程(共6篇)

篇1:连铸工艺流程

连铸工艺流程介绍

将高温钢水浇注到一个个的钢锭模内,而是将高温钢水连续不断地浇到一个或几个用强制水冷带有“活底”(叫引锭头)的铜模内(叫结晶器),钢水很快与“活底”凝结在一起,待钢水凝固成一定厚度的坯壳后,就从铜模的下端拉出“活底”,这样已凝固成一定厚度的铸坯就会连续地从水冷结晶器内被拉出来,在二次冷却区继续喷水冷却。带有液芯的铸坯,一边走一边凝固,直到完全凝固。待铸坯完全凝固后,用氧气切割机或剪切机把铸坯切成一定尺寸的钢坯。这种把高温钢水直接浇注成钢坯的新工艺,就叫连续铸钢。

【导读】:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。本专题将详细介绍转炉(以及电炉)炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。

连铸的目的: 将钢水铸造成钢坯。

将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。连铸钢水的准备

一、连铸钢水的温度要求:

钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂 纹。

钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷; ③非金属夹杂不易上浮,影响铸坯内在质量。

二、钢水在钢包中的温度控制:

根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。

实际生产中需采取在钢包内调整钢水温度的措施:

1)钢包吹氩调温 2)加废钢调温

3)在钢包中加热钢水技术 4)钢水包的保温

中间包钢水温度的控制

一、浇铸温度的确定

浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。

浇铸温度的确定可由下式表示(也称目标浇铸温度):

T=TL+△T。

二、液相线温度:

即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:

T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo] +2.0[%V]+18[%Ti]}

三、钢水过热度的确定

钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。

钢种类别 过热度

非合金结构钢 10-20℃

铝镇静深冲钢 15-25℃

高碳、低合金钢 5-15℃

四、出钢温度的确定

钢水从出钢到进入中间包经历5个温降过程:

△T总=△T1+△T2+△T3+△T4+△T5

△T1出钢过程的温降;

△T2出完钢钢水在运输和静置期间的温降(1.0~1.5℃/min);

△T3钢包精炼过程的温降(6~10℃/min);

△T4精炼后钢水在静置和运往连铸平台的温降(5~1.2℃/min);

△T5钢水从钢包注入中间包的温降。

T出钢 = T浇+△T总

控制好出钢温度是保证目标浇铸温度的首要前提。具体的出钢温度要根据每个钢厂在自身温降规律调查的基础上,根据每个钢种所要经过的工艺路线来确定。

拉速的确定和控制

一、拉速控制作用: 拉速定义:拉坯速度是以每分钟从结晶器拉出的铸坯长度来表示。拉坯速度应和钢液的浇注速度相一致。拉速控制合理,不但可以保证连铸生产的顺利进行,而且可以提高连铸生产能力,改善铸坯的质量.现代连铸 追求高拉速。

二、拉速确定原则: 确保铸坯出结晶器时的能承受钢水的静压力而不破裂,对于参数一定的结晶器,拉速高时,坯壳薄;反之拉速低时则形成的坯壳厚。一般,拉速应确保出结晶器的坯壳厚度为12-14mm。

影响因素:钢种、钢水过热度、铸坯厚度等。

1)机身长度的限制

根据凝固的平方根定律,铸坯完全凝固时达到的厚度:

又机身长度:

得到拉速:

2)拉坯力的限制

拉速提高,铸坯中的未凝固长度变长,各相应位置上凝固壳厚度变薄,铸坯表面温度升高,铸坯在辊间的鼓肚量增多。拉坯时负荷增加。超过拉拔转矩就不能拉坯,所以限制了拉速的提高。

3)结晶器导热能力的限制

根据结晶器散热量计算出,最高浇注速度:

板坯为2.5米/分

方坯为3-4米/分

4)拉坯速度对铸坯质量的影响

(1)降低拉速可以阻止或减少铸坯内部裂纹和中心偏析

(2)提高拉速可以防止铸坯表面产生纵裂和横裂

(3)为防止矫直裂纹,拉速应使铸坯通过矫直点时表面温度避开钢的热脆区。

5)钢水过热度的影响

一般连铸规定允许最大的钢水过热度,在允许过热度下拉速随着过热度的降低而提高,如图1所示。

6)钢种影响:就含碳量而言,拉坯速度按低碳钢、中碳钢、高碳钢的顺序由高到低。就钢中合金含量而言,拉速按普碳钢、优质碳素钢、合金钢顺序降低。

第四节 铸坯冷却的控制

钢水在结晶器内的冷却即一冷确定,其冷却效果可以由通过结晶器壁传出的热流的大小来度量 1)一冷作用:一冷就是结晶器通水冷却。其作用是确保铸坯在结晶器内形成一定的初生坯壳。

2)一冷确定原则:一冷通水是根据经验,确定以在一定工艺条件下钢水在结晶器内能够形成足够的坯壳厚度和确保结晶器安全运行的前提。通常结晶器周边供水2L/mm·min。进出水温差不超过8℃,出水温度控制在45-500℃为宜,水压控制在0.4-0.6Mpa。

3)二冷作用:二次冷却是指出结晶器的铸坯在连铸机二冷段进行的冷却过程.其目的是对带有液芯的铸坯实施喷水冷却,使其完全凝固,以达到在拉坯过程中均匀冷却.4)二冷强度确定原则:二冷通常结合铸坯传热与铸坯冶金质量两个方面来考虑.铸坯刚离开结晶器,要采用大量水冷却以迅速增加坯壳厚度,随着铸坯在二冷区移动,坯壳厚度增加,喷水量逐渐降低.因此,二冷区可分若干冷却段,每个冷却段单独进行水量控制.同时考虑钢种对裂纹敏感性而有针对性的调整二冷喷水量.5)二冷水量与水压:对普碳钢低合金钢,冷却强度为:1.0-1.2L/Kg钢。对低碳钢、高碳钢,冷却强度为: 0.6-0.8L/Kg钢。对热裂纹敏感性强的钢种,冷却强度为:0.4-0.6L/Kg钢,水压为0.1-0.5MPa

二、连铸坯表面质量及控制

(一)连铸过程质量控制

1)提高钢纯净度的措施(1)无渣出钢

(2)选择合适的精炼处理方式

(3)采用无氧化浇注技术

(4)充分发挥中间罐冶金净化器的作用

(5)选用优质耐火材料

(6)充分发挥结晶器的作用

(7)采用电磁搅拌技术,控制注流运动

(二)连铸坯表面质量及控制

连铸坯表面质量的好坏决定了铸坯在热加工之前是否需要精整,也是影响金属收得率和成本的重要因素,还是铸坯热送和直接轧制的前提条件。

连铸坯表面缺陷形成的原因较为复杂,但总体来讲,主要是受结晶器内钢液凝固所控制,如图14所示。

图14 连铸坯表面缺陷示意图

(三)连铸坯内部质量及控制

铸坯的内部质量是指铸坯是否具有正确的凝固结构、偏析程度、内部裂纹、夹杂物含量及分布状况等。

凝固结构是铸坯的低倍组织,即钢液凝固过程中形成等轴晶和柱状晶的比例。铸坯的内部质量与二冷区的冷却及支撑系统密切相关,如图15,图16所示。

图15 铸坯内部缺陷示意图

图16 “V”形偏析

1)减少铸坯内部裂纹的措施

(1)采用压缩浇铸技术,或者应用多点矫直技术

(2)二冷区采用合适夹辊辊距,支撑辊准确对弧

(3)二冷水分配适当,保持铸坯表面温度均匀

(4)合适拉辊压下量,最好采用液压控制机构

2)夹杂物的控制

从炼钢 精炼 连铸生产洁净钢,主要控制对策是:

(1)控制炼钢炉下渣量

● 挡渣法(偏心炉底出钢、气动法、挡渣球)● 扒渣法:目标是钢包渣层厚<50mm,下渣2Kg/t(2)钢包渣氧化性控制

● 出钢渣中高(FeO+MnO)是渣子氧势量度。(FeO+MnO)↑板胚T[O]↑(3)钢包精炼渣成分控制

不管采用何种精炼方法(如RH、LF、VD),合理搅拌强度和合理精炼渣组成是获得洁净钢水的基础。

合适的钢包渣成分:CaO/ Al2O3=1.5~1.8,CaO/ SiO2=8~13,(FeO+MnO)<5%。高碱度、低熔点、低氧化铁、富CaO钙铝酸盐的精炼渣,能有效吸收大颗粒夹杂物,降低总氧。

(4)保护浇注

● 钢水保护是防止钢水再污染生产洁净钢重要操作

● 保护浇注好坏判断指标:-△[N]=[N]钢包-[N]中包;-△[Al]s=[Al]钢包-[Al]中包

● 保护方法:①中包密封充Ar;②钢包 中间包长水口,△[N]=1.5PPm甚至为零;③中间包 结 晶器浸入式水口(5)中间包控流装置

● 中间包不是简单的过渡容器,而是一个冶金反应容器,作为钢水进入结晶器之前进一步净化钢水 ● 中间包促进夹杂物上浮其方法:

a.增加钢水在中间包平均停留时间t:t=w/(a×b×ρ×v)。中间包向大容量深熔池方向发展。

b.改变钢水在中间包流动路径和方向,促进夹杂物上浮。

(6)中间包复盖剂

中间包是钢水去除夹杂物理想场所。钢水面上复盖剂要有效吸收夹杂物。● 碳化稻壳;

● 中性渣:(CaO/SiO2=0.9~1.0)● 碱性渣:(CaO+MgO/SiO2≥3)● 双层渣

渣中(SiO2)增加,钢水中T[O]增加。生产洁净钢应用碱性复盖剂。

(7)碱性包衬

钢水与中间包长期接触,钢水与包衬的热力学性能必须是稳定的,这是生产洁净钢的一个重要条件。包衬材质中SiO2增加,铸坯中总氧T[O]是增加,因此生产洁净钢应用碱性包衬。

对低碳Al-K钢,中间包衬用Mg-Ca质涂料(Al2O3→0),包衬反应层中Al2O3可达21%,说明能有效 吸附夹杂物。(8)钢种微细夹杂物去除

● 大颗粒夹杂(>50μm)去除,采用中间包控流技术 ● 小颗粒夹杂(<50μm)去除:

-中间包钙质过滤器

-中间包电磁旋转

(9)防止浇注过程下渣和卷渣

● 加入示踪剂追踪铸坯中夹杂物来源 ● 结晶器渣中示踪剂变化

● 铸坯中夹杂物来源,初步估算外来夹杂物占41.6%二次氧化占 39%,脱氧产物为20%

(10)防止Ar气泡吸附夹杂物

对Al-K钢,采用浸入式水口吹Ar防止水口堵塞,但吹Ar会造成:

● 水口堵塞物破碎进入铸胚,大颗粒Al2O3轧制延伸会形成表面成条状缺陷

● <1mmAr气泡上浮困难,它是Al2O3和渣粒的聚合地,当气泡尺寸>200μm易在冷轧板表面形成条状缺陷。为解决水口堵塞问题,可采用:

-钙处理改善钢水可浇性

-钙质水口

-无C质水口

目前还是广泛采用吹Ar来防止堵塞。生产洁净钢总的原则是:钢水进入结晶器之前尽可能排除Al2O3。

(11)结晶器钢水流动控制

三、连铸坯形状缺陷及控制

(一)鼓肚变形

带液心的铸坯在运行过程中,于两支撑辊之间,高温坯壳中钢液静压力作用下,发生鼓胀成凸面的现象,称之为鼓肚变形。板坯宽面中心凸起的厚度与边缘厚度之差叫鼓肚量,用以衡量铸坯彭肚变形程度。

减少鼓肚应采取措施 :

(1)降低连铸机的高度

(2)二冷区采用小辊距密排列;铸机从上到下辊距应由密到疏布置

(3)支撑辊要严格对中

(4)加大二冷区冷却强度

(5)防止支撑辊的变形,板坯的支撑辊最好选用多节辊

图17 铸坯鼓肚示意图

(二)菱形变形

菱形变形也叫脱方。是大、小方坯的缺陷。是指铸坯的一对角小于90°,另一对角大于90°;两对角线长 度之差称为脱方量。

应对菱变的措施 :

(1)选用合适锥度的结晶器

(2)结晶器最好用软水冷却

(3)保持结晶器内腔正方形,以使凝固坯壳为规正正的形状

(4)结晶器以下的600mm距离要严格对弧;并确保二冷区的均匀冷却

(5)控制好钢液成分

(三)圆铸坯变形

圆坯变形成椭圆形或不规则多边形。圆坯直径越大,变成随圆的倾向越严重。形成椭圆变形的原因有:

(1)圆形结晶器内腔变形

(2)二冷区冷却不均匀

(3)连铸机下部对弧不准

(4)拉矫辊的夹紧力调整不当,过分压下

可采取相应措施:

(1)及时更换变形的结晶器

(2)连铸机要严格对弧

(3)二冷区均匀冷却

(4)可适当降低拉速

(四)夹杂物的控制

提高钢纯净度的措施:

(1)无渣出钢

(2)选择合适的精炼处理方式

(3)采用无氧化浇注技术

(4)充分发挥中间罐冶金净化器的作用

(5)选用优质耐火材料

(6)充分发挥结晶器的作用

(7)采用电磁搅拌技术,控制注流运动

(五)间包冶金

当前对钢产品质量的要求变得更加严格。中间包不仅仅只是生产中的一个容器,而且在纯净钢的生产中发 挥着重要作用。

70年代认识到改变中间包形状和加大中间包容积可以达到延长钢液的停留时间,提高夹杂物去除率的目的;安装挡渣墙,控制钢液的流动,实现夹杂物有效碰撞、长大和上浮。80年代发明了多孔导流挡墙和中间 包过滤器。

在防止钢水被污染的技术开发中,最近已有实质性的进展。借助先进的中间包设计和操作如中间包加热,热周转操作,惰性气氛喷吹,预熔型中间包渣,活性钙内壁,中间包喂丝,以及中间包夹杂物行为的数学模拟等,中间包在纯净钢生产中的作用体现得越来越重要。

在现代连铸的应用和发展过程中,中间包的作用显得越来越重要,其内涵在被不断扩大,从而形成一个独 特的领域——中间包冶金。

中间包冶金的最新技术:

(1)H型中间包

(2)离心流中间包

(3)中间包吹氩

(4)去夹杂的陶瓷过滤器

(5)电磁流控制

篇2:连铸工艺流程

----冶金自动化系列专题

【导读】:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。本专题将详细介绍转炉(以及电炉)炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】

连铸的目的: 将钢水铸造成钢坯。

连铸的工艺流程:

将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。【查看全文】

连铸自动化控制工艺流程图

连铸自动化控制主要有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等控制技术。【查看全文】

连铸的主要工艺设备介绍:

钢包回转台

钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。【查看全文】

中间包

中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。【查看全文】

结晶器

在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。【查看全文】

拉矫机

在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。【查看全文】

电磁搅拌器

电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。【查看全文】

冷却喷嘴

冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。【查看全文】

火焰切割机

火焰切割机也叫氧气切割。根据切割钢板的厚度安装适当孔径的割嘴;【查看全文】 

连铸系统也是一个比较复杂的系统,用到的自动化产品比较多,下面列举部分产品出来:

常用到的自动化设备:PLC、组态软件、变频器、工控机、工业以太网交换机等等。

连铸自动化控制工艺流程图

图片:

连铸自动化控制工艺流程图:

将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。

有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等主要控制技术。

图片:

水平连铸控制工艺流程图: 图片:

图片:

图片:

图片:

图片:

生产线实景图:

连铸工艺详解

连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。

连铸钢水的准备

一、连铸钢水的温度要求:

钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。

钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。

二、钢水在钢包中的温度控制:

根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。

实际生产中需采取在钢包内调整钢水温度的措施: 1)钢包吹氩调温

2)加废钢调温

3)在钢包中加热钢水技术

4)钢水包的保温

中间包钢水温度的控制

一、浇铸温度的确定

浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。

浇铸温度的确定可由下式表示(也称目标浇铸温度):

T=TL+△T。

二、液相线温度:

即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:

T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]}

三、钢水过热度的确定

钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。

钢种类别

过热度

非合金结构钢

10-20℃

铝镇静深冲钢

15-25℃

高碳、低合金钢

5-15℃

四、出钢温度的确定

钢水从出钢到进入中间包经历5个温降过程:

△T总=△T1+△T2+△T3+△T4+△T5 △T1出钢过程的温降;

△T2出完钢钢水在运输和静置期间的温降(1.0~1.5℃/min);

△T3钢包精炼过程的温降(6~10℃/min);

△T4精炼后钢水在静置和运往连铸平台的温降(5~1.2℃/min);

△T5钢水从钢包注入中间包的温降。

T出钢 = T浇+△T总

控制好出钢温度是保证目标浇铸温度的首要前提。具体的出钢温度要根据每个钢厂在自身温降规律调查的基础上,根据每个钢种所要经过的工艺路线来确定。

拉速的确定和控制

一、拉速控制作用:

拉速定义:拉坯速度是以每分钟从结晶器拉出的铸坯长度来表示。拉坯速度应和钢液的浇注速度相一致。拉速控制合理,不但可以保证连铸生产的顺利进行,而且可以提高连铸生产能力,改善铸坯的质量.现代连铸追求高拉速。

二、拉速确定原则:

确保铸坯出结晶器时的能承受钢水的静压力而不破裂,对于参数一定的结晶器,拉速高时,坯壳薄;反之拉速低时则形成的坯壳厚。一般,拉速应确保出结晶器的坯壳厚度为12-14mm。

影响因素:钢种、钢水过热度、铸坯厚度等。

1)机身长度的限制

根据凝固的平方根定律,铸坯完全凝固时达到的厚度: 又机身长度:

得到拉速:

2)拉坯力的限制

拉速提高,铸坯中的未凝固长度变长,各相应位置上凝固壳厚度变薄,铸坯表面温度升高,铸坯在辊间的鼓肚量增多。拉坯时负荷增加。超过拉拔转矩就不能拉坯,所以限制了拉速的提高。3)结晶器导热能力的限制

根据结晶器散热量计算出,最高浇注速度:

板坯为2.5米/分

方坯为3-4米/分

4)拉坯速度对铸坯质量的影响

(1)降低拉速可以阻止或减少铸坯内部裂纹和中心偏析

(2)提高拉速可以防止铸坯表面产生纵裂和横裂

(3)为防止矫直裂纹,拉速应使铸坯通过矫直点时表面温度避开钢的热脆区。

5)钢水过热度的影响

一般连铸规定允许最大的钢水过热度,在允许过热度下拉速随着过热度的降低而提高,如图1所示。

6)钢种影响:就含碳量而言,拉坯速度按低碳钢、中碳钢、高碳钢的顺序由高到低。就钢中合金含量而言,拉速按普碳钢、优质碳素钢、合金钢顺序降低。

图1 拉速与温度对应表

第四节 铸坯冷却的控制

钢水在结晶器内的冷却即一冷确定,其冷却效果可以由通过结晶器壁传出的热流的大小来度量,如图2所示。

图2 钢水在结晶器内的冷却

1)一冷作用:一冷就是结晶器通水冷却。其作用是确保铸坯在结晶器内形成一定的初生坯壳。

2)一冷确定原则:一冷通水是根据经验,确定以在一定工艺条件下钢水在结晶器内能够形成足够的坯壳厚度和确保结晶器安全运行的前提。通常结晶器周边供水2L/mm·min。进出水温差不超过8℃,出水温度控制在45-500℃为宜,水压控制在0.4-0.6Mpa。

3)二冷作用:二次冷却是指出结晶器的铸坯在连铸机二冷段进行的冷却过程.其目的是对带有液芯的铸坯实施喷水冷却,使其完全凝固,以达到在拉坯过程中均匀冷却.4)二冷强度确定原则:二冷通常结合铸坯传热与铸坯冶金质量两个方面来考虑.铸坯刚离开结晶器,要采用大量水冷却以迅速增加坯壳厚度,随着铸坯在二冷区移动,坯壳厚度增加,喷水量逐渐降低.因此,二冷区可分若干冷却段,每个冷却段单独进行水量控制.同时考虑钢种对裂纹敏感性而有针对性的调整二冷喷水量.5)二冷水量与水压:对普碳钢低合金钢,冷却强度为:1.0-1.2L/Kg钢。对低碳钢、高碳钢,冷却强度为:0.6-0.8L/Kg钢。对热裂纹敏感性强的钢种,冷却强度为:0.4-0.6L/Kg钢,水压为0.1-0.5MPa,如图3所示。

图3 凝固系数与二冷水量关系

连铸过程检测与自动控制

一、连铸过程自动检测

(一)中间包钢液温度测定

1)中间包钢液温度的点测

用快速测温头及数字显示二次仪测量温度,如图4所示。

图4 二次温度测量仪

2)中间包钢液温度的连续测定

采用连续测温热电偶对中间包钢液温度进行连续测量,如图5所示。

图5 连续测温热电偶

(二)结晶器液面控制

1)放射性同位素测量法如图6所示:

图6 放射性同位素测量法

2)红外线结晶器液面测量法如图7所示:

图7 红外线结晶器液面测量法

3)热电偶结晶器液面测量法如图8所示:

图8 热电偶结晶器液面测量法

4)激光结晶器液面测量法如图9所示:

图9 激光结晶器液面测量法

(三)连铸机漏钢预报装置如图10所示:

图10 连铸机漏钢预报装置

(四)连铸二次冷却水控制如图11所示:

图11 连铸二次冷却水控制

(五)铸坯表面缺陷在线检测

1)工业电视摄象法如图12所示:

图12 工业电视摄象法

2)涡流检测法如图13所示:

图13 涡流检测法

二、连铸坯表面质量及控制

(一)连铸过程质量控制

1)提高钢纯净度的措施

(1)无渣出钢

(2)选择合适的精炼处理方式

(3)采用无氧化浇注技术

(4)充分发挥中间罐冶金净化器的作用

(5)选用优质耐火材料

(6)充分发挥结晶器的作用

(7)采用电磁搅拌技术,控制注流运动

(二)连铸坯表面质量及控制

连铸坯表面质量的好坏决定了铸坯在热加工之前是否需要精整,也是影响金属收得率和成本的重要因素,还是铸坯热送和直接轧制的前提条件。

连铸坯表面缺陷形成的原因较为复杂,但总体来讲,主要是受结晶器内钢液凝固所控制,如图14所示。

图14 连铸坯表面缺陷示意图

(三)连铸坯内部质量及控制

铸坯的内部质量是指铸坯是否具有正确的凝固结构、偏析程度、内部裂纹、夹杂物含量及分布状况等。

凝固结构是铸坯的低倍组织,即钢液凝固过程中形成等轴晶和柱状晶的比例。铸坯的内部质量与二冷区的冷却及支撑系统密切相关,如图15,图16所示。

图15 铸坯内部缺陷示意图

图16 “V”形偏析

1)减少铸坯内部裂纹的措施

(1)采用压缩浇铸技术,或者应用多点矫直技术

(2)二冷区采用合适夹辊辊距,支撑辊准确对弧

(3)二冷水分配适当,保持铸坯表面温度均匀

(4)合适拉辊压下量,最好采用液压控制机构

2)夹杂物的控制

从炼钢

精炼 连铸生产洁净钢,主要控制对策是:

(1)控制炼钢炉下渣量

● 挡渣法(偏心炉底出钢、气动法、挡渣球)

● 扒渣法:目标是钢包渣层厚<50mm,下渣2Kg/t

(2)钢包渣氧化性控制

● 出钢渣中高(FeO+MnO)是渣子氧势量度。(FeO+MnO)↑板胚T[O]↑

(3)钢包精炼渣成分控制

不管采用何种精炼方法(如RH、LF、VD),合理搅拌强度和合理精炼渣组成是获得洁净钢水的基础。

合适的钢包渣成分:CaO/ Al2O3=1.5~1.8,CaO/ SiO2=8~13,(FeO+MnO)<5%。高碱度、低熔点、低氧化铁、富CaO钙铝酸盐的精炼渣,能有效吸收大颗粒夹杂物,降低总氧。

(4)保护浇注

● 钢水保护是防止钢水再污染生产洁净钢重要操作

● 保护浇注好坏判断指标:-△[N]=[N]钢包-[N]中包;-△[Al]s=[Al]钢包-[Al]中包

● 保护方法:①中包密封充Ar;②钢包

中间包长水口,△[N]=1.5PPm甚至为零;③中间包

结晶器浸入式水口

(5)中间包控流装置

● 中间包不是简单的过渡容器,而是一个冶金反应容器,作为钢水进入结晶器之前进一步净化钢水

● 中间包促进夹杂物上浮其方法:

a.增加钢水在中间包平均停留时间t:t=w/(a×b×ρ×v)。中间包向大容量深熔池方向发展。

b.改变钢水在中间包流动路径和方向,促进夹杂物上浮。

(6)中间包复盖剂

中间包是钢水去除夹杂物理想场所。钢水面上复盖剂要有效吸收夹杂物。

● 碳化稻壳;

● 中性渣:(CaO/SiO2=0.9~1.0)

● 碱性渣:(CaO+MgO/SiO2≥3)

● 双层渣

渣中(SiO2)增加,钢水中T[O]增加。生产洁净钢应用碱性复盖剂。

(7)碱性包衬

钢水与中间包长期接触,钢水与包衬的热力学性能必须是稳定的,这是生产洁净钢的一个重要条件。包衬材质中SiO2增加,铸坯中总氧T[O]是增加,因此生产洁净钢应用碱性包衬。

对低碳Al-K钢,中间包衬用Mg-Ca质涂料(Al2O3→0),包衬反应层中Al2O3可达21%,说明能有效吸附夹杂物。

(8)钢种微细夹杂物去除

● 大颗粒夹杂(>50μm)去除,采用中间包控流技术

● 小颗粒夹杂(<50μm)去除:

-中间包钙质过滤器

-中间包电磁旋转

(9)防止浇注过程下渣和卷渣

● 加入示踪剂追踪铸坯中夹杂物来源

● 结晶器渣中示踪剂变化

● 铸坯中夹杂物来源,初步估算外来夹杂物占41.6%二次氧化占 39%,脱氧产物为20%

(10)防止Ar气泡吸附夹杂物

对Al-K钢,采用浸入式水口吹Ar防止水口堵塞,但吹Ar会造成:

● 水口堵塞物破碎进入铸胚,大颗粒Al2O3轧制延伸会形成表面成条状缺陷

● <1mmAr气泡上浮困难,它是Al2O3和渣粒的聚合地,当气泡尺寸>200μm易在冷轧板表面形成条状缺陷。

为解决水口堵塞问题,可采用:

-钙处理改善钢水可浇性

-钙质水口

-无C质水口

目前还是广泛采用吹Ar来防止堵塞。生产洁净钢总的原则是:钢水进入结晶器之前尽可能排除Al2O3。

(11)结晶器钢水流动控制

三、连铸坯形状缺陷及控制

(一)鼓肚变形

带液心的铸坯在运行过程中,于两支撑辊之间,高温坯壳中钢液静压力作用下,发生鼓胀成凸面的现象,称之为鼓肚变形。板坯宽面中心凸起的厚度与边缘厚度之差叫鼓肚量,用以衡量铸坯彭肚变形程度。

减少鼓肚应采取措施 :

(1)降低连铸机的高度

(2)二冷区采用小辊距密排列;铸机从上到下辊距应由密到疏布置

(3)支撑辊要严格对中

(4)加大二冷区冷却强度

(5)防止支撑辊的变形,板坯的支撑辊最好选用多节辊

图17 铸坯鼓肚示意图

(二)菱形变形

菱形变形也叫脱方。是大、小方坯的缺陷。是指铸坯的一对角小于90°,另一对角大于90°;两对角线长度之差称为脱方量。

应对菱变的措施 :

(1)选用合适锥度的结晶器

(2)结晶器最好用软水冷却

(3)保持结晶器内腔正方形,以使凝固坯壳为规正正的形状

(4)结晶器以下的600mm距离要严格对弧;并确保二冷区的均匀冷却

(5)控制好钢液成分

(三)圆铸坯变形

圆坯变形成椭圆形或不规则多边形。圆坯直径越大,变成随圆的倾向越严重。形成椭圆变形的原因有:

(1)圆形结晶器内腔变形

(2)二冷区冷却不均匀

(3)连铸机下部对弧不准

(4)拉矫辊的夹紧力调整不当,过分压下

可采取相应措施:

(1)及时更换变形的结晶器

(2)连铸机要严格对弧

(3)二冷区均匀冷却

(4)可适当降低拉速

(四)夹杂物的控制

提高钢纯净度的措施:

(1)无渣出钢

(2)选择合适的精炼处理方式

(3)采用无氧化浇注技术

(4)充分发挥中间罐冶金净化器的作用

(5)选用优质耐火材料

(6)充分发挥结晶器的作用

(7)采用电磁搅拌技术,控制注流运动

(五)间包冶金

当前对钢产品质量的要求变得更加严格。中间包不仅仅只是生产中的一个容器,而且在纯净钢的生产中发挥着重要作用。

70年代认识到改变中间包形状和加大中间包容积可以达到延长钢液的停留时间,提高夹杂物去除率的目的;安装挡渣墙,控制钢液的流动,实现夹杂物有效碰撞、长大和上浮。80年代发明了多孔导流挡墙和中间包过滤器。

在防止钢水被污染的技术开发中,最近已有实质性的进展。借助先进的中间包设计和操作如中间包加热,热周转操作,惰性气氛喷吹,预熔型中间包渣,活性钙内壁,中间包喂丝,以及中间包夹杂物行为的数学模拟等,中间包在纯净钢生产中的作用体现得越来越重要。

在现代连铸的应用和发展过程中,中间包的作用显得越来越重要,其内涵在被不断扩大,从而形成一个独特的领域——中间包冶金。

中间包冶金的最新技术:

(1)H型中间包

(2)离心流中间包

(3)中间包吹氩

(4)去夹杂的陶瓷过滤器

(5)电磁流控制

图18 H型中间包 [连铸设备]钢包回转台

钢包回转台

钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。

钢包回转台的作用是将位于受包位置的满载钢包回转至浇钢位置,准备进行浇注,同时将浇完钢水的空包转至受包位置,准备运走。钢包回转台大致有3种类型:

单臂钢包回转台:由底座、立柱、上转臂、上转臂驱动装置、下转臂、下转臂驱动装置组成。蝶形钢包回转台:由底座、升降液压缸、回转架、钢包支座、回转臂、平行连杆、驱动装置、防护板组成。

钢包回转台是连铸机的关键设备之一,起着连接上下两道工序的重要作用。钢包回转台的回转情况基本上包括两侧无钢包、单侧有钢包、两侧有钢包三种情况,而单个钢包重量已超过140吨。三种情况下,钢包回转台受力有很大不同,但无论在何种情况下,都要保证钢包回转台的旋转平稳,定位准确,起停时要尽可能减小对机械部分的冲击,为减少中间包液面波动和温降,要缩短旋转时间。因此,我们在变频器的容量选择上,留有余地,即比电机功率加大一级。同时利用变频器的s曲线加速功能,通过调整s曲线保证加、减速曲线平滑快速,减少对减速机的冲击,再通过PLC判断变速限位、停止限位实现旋转过程中高、低速自动变换及到位停车,同时满足了对旋转时间和平稳运行的要求。

[连铸设备]中间包

中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。

连铸机钢水包和结晶器之间钢水过渡的装置,用来稳定钢流,减小钢流对坯壳的冲刷,以利于非金属夹杂物上浮,从而提高铸坯质量。

[连铸设备]结晶器

在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。

结晶器包括:

直型结晶器、弧形结晶器 curved mold:用于弧型和超低头型(椭圆型)连铸机上。

组合式结晶器 composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。

多级结晶器 multi stage mold

调宽结晶器 adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。

结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。

另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频器过压故障的可能性。

[连铸设备]拉矫机

拉矫机

在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。

三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。

拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f:

计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。

[连铸设备]电磁搅拌器

电磁搅拌器 electromagnetic stirring, EMS:连续铸钢时,利用电磁力控制钢液凝固过程,改善铸坯质量的工艺。也称EMS技术。

电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。

电磁搅拌器的安装位置和搅拌器模式

根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式

结晶器电磁搅拌:Mold Electromagnetic stirring: MEMS 搅拌器安装在结晶器铜管外面 二冷区电磁搅拌:Strand Electromagnetic Stirring: SEMS 搅拌器安装在铸坯外面 凝固末端电磁搅拌:Final Electromagnetic stirring:FEMS 用于方坯连铸 搅拌器安装在铸坯外面

电磁搅拌器的冶金效果

搅拌位置

冶金效果

适用钢种

MEMS

增加等轴晶率

低合金钢

减少表面和皮下的气孔和针孔

弹簧钢

减少表面和皮下的夹杂物

冷轧钢

坯壳均匀化

中高碳钢等

稍稍改善中心偏析

SEMS

扩大等轴晶率

不锈钢

减少内裂

改善中心偏析

工具钢

减少中心疏松

FEMS

细化等轴晶

弹簧钢

有效地改善中心偏析

轴承钢

有效地改善中心缩孔和疏松

特殊高碳钢

[连铸工艺]火焰切割的工艺

厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:

(1)根据切割钢板的厚度安装适当孔径的割嘴; 

(2)将氧气和燃气压力调至规定值;

(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点; 

(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;

(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;

(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割; 

(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。

定尺切割

定尺方式有碰球定尺和非在线定尺切割:

(1)碰球定尺

即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。

(2)非在线定尺切割

利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。

氧气切割的基本原理及过程。

氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。气割过程有三个阶段:

⑴预热 气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。

⑵燃烧 喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。

⑶吹渣 金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。

氧气切割的三条件:

金属材料要进行氧气切割应满足以下三个条件:

1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。

2)金属的燃点应比熔点低。

3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。

符合上述气割条件的金属有纯铁、低碳钢、中碳钢、低合金钢以及钛。其它常用的金属材料如铸铁、不锈钢、铝和铜等由于不满足此三条件,所以不能应用氧气切割,这些材料目前常用的切割方法是等离子弧切割。

[连铸设备]冷却喷嘴

连铸二次冷却的目的是对离开结晶器后的铸坯进行连续冷却 ,使之逐渐凝固 ,到切割机前完全凝固。凝固过程受铸坯的导热性、喷雾介质的冷却效果、以及铸坯质量等的限制。凝固过程应控制铸坯表面温度在浇注方向均匀下降。所以连铸坯二次冷却喷嘴的冷态特性 ,对连铸生产和保证连铸坯质量是非常重要的。对喷嘴生产厂家生产的喷嘴喷头的材质 ,要求有足够的强度 ,否则在运输、安装和检修中一旦有磕碰、紧固等现象 ,会造成喷嘴的水流量、喷射角度和水流密度分布变化 ,对连铸生产有不良影响。

冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。

连铸二冷喷嘴的类型、喷雾方法对铸坯冷却的影响 ,各类喷嘴冷却的优缺点 ,以及环型喷嘴嘴头的材质在检修中出现的问题。对包钢引进大方坯和大圆坯的汽雾喷嘴和国产喷嘴的冷态特性进行测试研究 ,测试结果表明 ,国产喷嘴的水流密度分布在中心的左右 ,分布均匀 ,对大方坯和大圆坯的横向均匀降温有益 ,但是国产喷嘴的喷射角度在测试的五种喷嘴中 ,有四种喷嘴符合国家黑色冶金对喷嘴喷射角度的要求 ,只有D40 197-1喷嘴在高压测试时超国家要求的 +4° ,有少量国产喷嘴在同压力条件下的流量误差在 1%~ 10 %之间。

[连铸设备]火焰切割机

图片:

厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:

(1)根据切割钢板的厚度安装适当孔径的割嘴; 

(2)将氧气和燃气压力调至规定值;

(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点; 

(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;

(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;

(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割; 

(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。

[连铸设备]钢包烘烤器

钢包在新砌后和盛装钢水前一般都需要烘烤,用来烘烤钢包的装置就称为钢包烘烤器,又称烤包器。

篇3:兴澄特钢方坯连铸机改造工艺分析

关键词:连铸机,改造,生产实践

引 言

兴澄特钢二炼分厂现有公称容量100 t转炉1座, 2005年投产至今相继进行了铁水脱硫、脱磷、脱硅预处理、转炉复吹、LF钢包精炼、RH真空处理等先进工艺升级顶目, 年生产能力达到100万t。为进一步开发新品, 提高市场竞争力, 对1#方坯铸机进行升级改造, 将只能生产180方和300方两种断面的连铸机, 升级为具备生产多种大规格圆坯能力的连铸机。

1 连铸机改造分析

1.1 技术参数

连铸机改造后主要技术参数如下:

连铸机型:5机5流全弧型方、圆坯铸机;

铸机半径:方坯:R12 m、圆坯R12.05 m, 流间距1 500 mm;

浇铸钢种:轴承钢, 合金结构钢, 管坯钢, 齿轮钢等;

转炉平均出钢量 110 t;

冶金长度:23.64 m;

定尺长度:6~12.00 m;

浇注方式:塞棒控制保护浇注;

结晶器:方坯结晶器改造成圆坯管式连续锥度结晶器, 带足辊;

振动装置:板簧导向短臂四连杆机构;

中间罐车:半悬挂式;

切割方式:火焰切割;

工作拉速:方坯 0.5~1.6 m/min;圆坯:0.2~1.5 m/min

1.2 浇注

原浇注断面为180 mm×180 mm、300 mm×300 mm, 改造后为200 mm×200 mm、Ø220、Ø250、Ø280、Ø350、Ø390、Ø450、Ø500。

钢包至中间罐采用长水口加氩密封保护浇注, 氩气流量50~80 L/min, 压力0.10~0.15 MPa。

中间罐至结晶器采用浸入式水口、结晶器保护渣浇注, 塞棒控制注流。

1.3 中间罐加高扩容改造

为延长钢液在中间罐内的滞留时间, 创造夹杂物上浮条件, 降低钢中夹杂物, 避免钢液涡流卷渣, 对中间罐进行加高扩容改造。保持原罐型不变, 将罐口向上加高155mm。工作液位由670 mm 增加到825 mm, 工作容量由18 t增加到22.5 t;溢流液位由750 mm增加到900 mm, 最大容量由20.5 t增加到27.5 t。钢液在中间罐内平均滞留时间12-14 min。

1.4 结晶器改造

浇注断面改为:200×200 mm、Ø220、Ø250、Ø280、Ø350、Ø390、Ø450、Ø500。

结晶器进行相应调整:铜管加长、锥度调整, 以提高铸坯的有效冷却时间, 保证结晶器下口坯壳厚度, 强化热冷却效果, 保证坯壳均匀生长。

200 mm×200 mm结晶器为管式连续锥度, 铜管由700 mm加长至800 mm, 结晶器下配加一对足辊, 每面设置两排喷嘴共4个, 铜管尺寸如表1所示。

1.5 结晶器电磁搅拌

结晶器电磁搅拌具有改善铸坯传热条件, 抑制柱状晶生长, 扩大等轴晶区, 提高铸坯表面、皮下及内部质量等优点。参数如下:

适用断面:200 mm×200 mm、Ø220、Ø250、Ø280、Ø350、Ø390、Ø450、Ø500。

形式:外置式结晶器电磁搅拌;

工作方式:频率2~4 Hz, 电流0~450 A;

冷却水系统:独立的冷却水系统;

冷却方式:线圈外水直冷, 冷却水闭路循环。

1.6 结晶器振动系统

结晶器振动平稳、振频随拉速自动调节, 是稳定生产操作、提高铸坯表面质量的保证。为增强振动的平稳性, 振动装置改为板簧导向短臂四连杆机构。增加振动变频器, 通过计算机检测拉矫机的转速, 经公式运算得到的结果控制变频器的输出频率, 实现变频调速。同时振频与拉速联锁。参数如下:

振频:40~240 r/min;

振幅:2~3 mm;

振频与拉速的关系

undefined

式中 f为振频, Vc为拉速。

1.7 二冷配水系统

原二冷水系统存在计量不准、流量不可调和二冷水水质波动大, 过滤器过滤效果不稳定、易堵塞喷嘴等问题, 无法满足生产优质钢的工艺要求。

改造后对二冷区重新分区, 计器仪表重新配置, 根据浇铸钢种设计不同的配水曲线。实现二冷配水静态自动控制, 提高铸坯的内部质量。

(1) 加冷却水过滤器工作状态下一备一用, 发生故障可自动切换, 确保过滤器的过滤作用, 提供优质水源避免堵塞喷嘴, 稳定冷却效果。

(2) 二冷分为三个区, 均采用喷水冷却。改造后采用汽水冷却。二冷段喷嘴分布如表2所示。

(3) 二冷系统计器仪表重新配置计器仪表显示准确、灵敏可靠、调整精度高, 是实现浇注过程自动配水的基本保障。为此, 改造中流量计、流量调节阀、压力调节阀等均重新选型。

(4) 二冷配水静态自动控制根据浇注断面和钢种选取不同的配水曲线, 冷却强度随拉速的变化自动调节。

根据钢种断面可分别选用10个不同水表。

(5) 二冷配水系统计算机监控增加一台PLC计算机监控系统 (型号为西门子S7-400) , 对二冷配水系统各项参数进行实时监控。

1.8 拉矫机系统

拉矫机进行相应调整;拉矫机由原来的三台增加到现在的五台, 由原来的二点矫直变为现在的三点矫直, 以减少铸坯过拉矫机的压下量, 减少应力裂纹的产生。

2 改造后的生产与质量状况

2.1 改造后主要生产钢种

生产的钢种以轴承钢、管坯钢、油井管和合结钢为主。主要钢种为轴承钢Gr15、SKF、管坯钢12CrMoVG、20G、P11、P22、油井管36Mn2V、37Mn5、合结钢20CrMo、30CrMo、20CrMnTi、弹簧钢60Si2Mn、60Si2CrVAT。

2.2 改造后生产的连铸圆管坯的质量

2.2.1 低倍试验如图1、2所示

从低倍片上看, 无严重的一般疏松、中心疏松和偏析, 且没有裂纹、缩孔、夹杂等缺陷, 等轴晶区达到60%, 柱状晶不发达, 边部有激冷层, 完全能满足用户的使用要求。

2.2.2 表面质量

连铸坯的表面质量较好, 主要缺陷是不影响使用的小凹坑和部分划伤, 经精整后能够达到用户的要求。

2.3 使用情况

改造后, 先后生产了Ø350、Ø390、Ø450、Ø500、Ø600等大规格圆管坯, 铸坯质量完全能满足用户需要, 部分产品已能替代轧材使用。

3 结 论

通过对连铸结晶器、中间罐对中装置、结晶器振动系统、二冷喷淋系统、铸坯拉矫系统进行改造, 1#方坯铸机具备了生产圆坯的能力;通过中间罐加高扩容, 增加钢包和中间罐底吹氩, 实施全程保护浇注, 结晶器优化, 结晶器振动系统改造, 二冷自动配水, 增加结晶器电磁搅拌等措施, 1#方坯铸机具备了生产高技术含量和高附加值品种的能力。

参考文献

[1]殷瑞钰.钢的质量现代进展 (特殊钢) [M].北京:冶金工业出版社, 1995.

[2]倪满森.我国连铸技术的进步及连铸技术发展动向[J].连铸, 2002, (1) :1—5.

篇4:连铸工艺流程

关键词:连铸坯 角部裂纹 手工清理

中图分类号:TF341.6 文献标识码:A 文章编号:1007—3973(2012)009—038—02

目前,国内外通常将碳含量在0.08%~0.18%范围内的钢称之为裂纹敏感性钢,宝钢生产的JU68系列钢种,就是这种典型的角部裂纹敏感钢之一。由于这类钢凝固过程中发生包晶反应,产生相变,导致连铸坯角部易产生裂纹缺陷,从而恶化铸坯表面质量,引起轧材的裂纹产生。这类裂纹缺陷主要包括角裂、横裂、角部纵裂及侧面裂纹。

1 人工火焰清理工艺

连铸坯人工火焰清理工艺是指使用火焰清理枪将连铸坯表层缺陷清理干净,并对连铸板坯角部进行火焰拉枪检查,若发现裂纹等缺陷则扩大清理面积或清理深度,以提高连铸坯轧制收得率。

JU68系列钢种传统手清工艺要求首先对连铸坯角部进行拉枪清理(见图1),视铸坯裂纹缺陷情况确定清理的面积与深度。

2 JU38钢种连铸坯角部裂纹缺陷的分布规律

对连续几月出现JU68系列钢种连铸坯进行拉枪清理缺陷检查,通过423块连铸坯的实绩进行统计分析,发现当拉枪深度1—3mm的连铸坯出现角部裂纹缺陷占33.6%,3—10mm占41.6%,10—20mm占20.6%,20—30mm占1.2%,见表1。由此得出结论,连铸坯角部裂纹缺陷主要集中发生在1—20mm深度位置。

Brian G.Thomas等人认为,连铸坯材的角部裂纹与角部区域的沟槽(gutter)有关,沟槽问题是普遍存在的,而沟槽是结晶器液相穴夹杂物上浮使一部分夹杂物被正在凝固的树枝晶捕集形成,常常在铸坯内弧0~20mm处居多。上述角部裂纹缺陷主要集中的深度正好与此观点一致。

3 宝钢JU68系列钢种生产实绩

从投产至今,JU68连铸坯轧制封锁率一直在较高水平徘徊(见表2)。从表2中可以看出轧制边裂块数占封锁总量的34.5%和42.8%,单一缺陷封锁率较高。而连铸坯角部裂纹缺陷,是导致轧制边裂的主要原因。

4 手工清理JU68系列缺陷新工艺

(1)拉枪清理检查:JU68角部裂纹敏感钢种板坯上线进行手清作业时,采取每流的第一块板坯进行拉抢检查,使清理深度控制在1—2mm内,宽度控制在30—50mm。拉抢结束后,清除熔渣进行仔细检查,确认缺陷部位、严重程度。

(2)捣角清理:第一枪应在连铸坯上表面离角部10mm处捣角清理,深度10—15mm,清理实绩如图2所示。

第二枪在铸坯上表面离角部60mm处拉枪捣角清理,清理深度为5 mm。第三枪在铸坯侧面距角部30mm处拉枪,清理深度为5mm。清理实绩如图3所示。

(3)清理毛刺:分别在铸坯的上表面和侧面对手清作业中产生的毛刺和熔渣进行清除。

(4)在捣角清理时应注意掌握清理枪的角度,在捣角第二枪时,枪嘴和板坯表面水平面成25度左右夹角,和板坯角部长度方向成10~15度左右的夹角。这样既确保了清理时高温氧化渣和毛刺不往里翻,同时避免清理者烫伤,保障了板坯清理质量。在捣角清理第三枪时,要保持枪嘴和水平方向成10~15度左右夹角(枪嘴向下),和板坯侧面成25度左右夹角。最后在清理毛刺时,应保持枪嘴向上,枪头和水平方向成10~15度左右的夹角,同时调低高压氧确保将粘附在表面的毛刺及熔渣清除干净,保障板坯表面光洁。

捣角清理工艺完毕后,每流应取一块铸坯重新上线检查,确认角部裂纹已经清除干净,如发现仍有角裂纹,应及时返回视情况作重手工清理或纵向切割处理。

5 改进后的效果比较

JU68钢种捣角清理工艺自2011年2月实施以来,该钢种临时封锁率得到了显著的降低(见表3),临时封锁率由原来平均4.0%,降低到2.88%,降低幅度达到28%。

6 结语

(1)新手工火焰清理工艺可以有效清除JU68系列连铸坯角部裂纹缺陷。

(2)采用手工火焰清理工艺,在不影响物流平衡的基础上,JU68系列连铸坯角部裂纹缺陷轧制封锁率比普通清理方法下降了28%,企业经济效益显著。

参考文献:

[1] 赵晗,任一峰.连铸坯角部横向裂纹的形成机理与定量评估[J].理化检验(物理分册),2006(42):11.

[2] 郑文清,国富兴.改进工艺参数减少铸坯角部纵裂[J].承钢技术,1999(2):17.

篇5:连铸工艺及设备复习

1.钢和生铁是铁碳合金,其界定是:W[C]<2.11%为钢,W[C]≥2.11%为生铁。2.磷、硫一般为有害元素,磷含量过高会造成钢的“冷脆”性,硫含量高造成钢的热脆性,氧含量超过限度后会加剧钢的热脆性,并形成氧化物夹杂和气泡,因而冶炼终了要脱氧;钢中氢使钢产生氢脆(白脆),氮会导致蓝脆和时效性。

3.炼钢的基本任务是:脱碳、脱磷、脱硫、脱氧;去除有害气体和夹杂物;提高温度;调整成分。炼钢过程通过供氧、造渣、升温、加合金、搅拌等手段完成上述任务。4.铁水预处理的脱硫剂有:钝化金属镁和石灰。

5.炉外精炼系统在提高钢水质量的同时,调整钢水成分和温度达到目标值,精确控制成分和温度满足连铸的要求;精炼设备还起到缓冲、协调炼钢-连铸生产的作用。6.炉外精炼的目的是:在真空或常压条件下对钢水进行深脱碳、脱硫、脱氧、去气、调整成分(微合金化)和温度并使其均匀化,去除夹杂物,改变夹杂物形态和组成等。7.吹氩搅拌分为强搅拌和弱搅拌,加合金、加造渣剂渣洗用强搅拌,利于加速反应,均匀成分、温度;弱搅拌利于夹杂上浮,减少二次氧化。8.转炉炼钢工艺制度包括装入制度(装入铁水量和废钢量)、供氧制度(氧流量、氧压、枪位)、造渣制度、温度制度、终点控制(成分、温度达到要求)与脱氧合金化制度。9.溅渣护炉:转炉钢水出尽后检查炉衬损坏情况,根据情况实施溅渣护炉操作。

10.炉外精炼:根据的需要选择钢水精炼方式。在精炼过程中可以精确地调整温度和成分,继续深脱硫、脱氧、脱气、提高钢液纯净度,改善夹杂物形态等。11.根据转炉吹炼过程中金属成分、熔渣成分、熔池温度的变化规律,吹炼过程大致分为三个阶段:

A、吹炼前期。也称硅锰氧化期。任务是早化渣、多去磷、均匀升温。[Si]+{O2}=(SiO2)

[Si]+2(FeO)={SiO2}+2[Fe] [Mn]+1/2{O2}=(MnO)[Mn]+(FeO)=(MnO)+ [Fe] [Mn]+[O]=(MnO)B、吹炼中期。主要是脱碳、脱磷、脱硫反应 [C]+1/2{O2}={CO} [C]+(FeO)={CO}+ [Fe] [C]+[O]={CO}

2[P]+5(FeO)+4(CaO)=(4CaO.P2O5)+5[Fe]

2[P]+5(FeO)+3(CaO)=(4CaO.P2O5)+5[Fe] [FeS]+(CaO)=(CaS)+(FeO)[FeS]+(MnO)=(MnS)+(FeO)[FeS]+(MgO)=(MgS)+(FeO)C、吹炼终点。12.钢水脱氧:

A、沉淀脱氧:基本原理——向钢液中加入与氧亲和力大于铁的脱氧元素,用来夺取钢液中的氧,并生成不溶于钢液的氧化物排至炉渣中,从而降低钢中含氧量

B、扩散脱氧:基本原理:在炼钢过程中,根据氧在金属液与炉渣间的分配定律,通过不断降低炉渣中氧化铁含量来相应地降低钢液中氧含量的方法。真空脱氧属于扩散脱氧。13.根据脱氧的程度,钢分为沸腾钢和镇静钢。脱氧不完全的钢为沸腾钢;脱氧完全的钢是镇静钢。14.模铸方法有上注法和下注法。

15.弧形连铸机的特点是:铸机的高度基本上等于圆弧半径,铸机高度低,仅为立式铸机高度的三分之一;设备较轻,安装和维护方便,基建投资低。铸坯在被矫直前没有附加的弯曲变形,坯壳承受钢水静压力小,不易产生鼓肚和内裂,但钢水中非金属夹杂物的上浮条件不好,有向内弧侧聚集的倾向。

16.立弯式连铸机的特点: 立弯式连铸机与立式相比,机身高度降低,节省投资;水平方向出坯,加长机身比较容易,可实现高速浇注;铸坯内未凝固钢液中的夹杂物容易上浮,夹杂物分布均匀。缺点是因铸坯要经过一次弯曲一次矫直,容易产生内部裂纹;基建费用仍然较高。

17.立式连铸机的特点: 立式连铸机从中间包到切割站车主要设备都排列在一条垂直线上。这种铸机占地面积小,设备紧凑;高温铸坯无弯曲变形,铸坯表面和内部裂纹少;钢液中夹杂物易于上浮;二次冷却装置和夹辊等结构简单,便于维护。但这种铸机的基建费用昂贵;只能低速浇注,生产率低;钢水静压力大,容易使铸坯鼓肚。18.低头或超低头连铸机的机型是根据连铸机高度与铸坯厚之比确定的。

19.弧形连铸机规格表示方法:aRb-C

a表示机数R表示弧形或椭圆形连铸机b表示圆弧半径,若为椭圆形铸机为多个半径之乘积C表示铸机拉坯辊辊身长度。20.坯壳厚度计算公式:KLvc

21.液芯长度计算公式:

DL2K2v

22.钢包内衬由保温层、永久层和工作层组成。

23.长水口用于钢包与中间包之间流注保护,避免钢水二次氧化和流注的飞溅、保温,还可消除敞开浇注的卷渣。其材质有熔融石英和铝碳质两种。24.中间包的作用:减小钢水静压力,使注流稳定;中间包利于夹杂物上浮,净化钢水;实现多炉连浇;在一机多流上起分流浇注作用;中包冶金功能。25.倒锥度:由于钢水在结晶器内凝固形成一定厚度的坯壳使铸坯收缩,在结晶器壁和坯壳之间产生一定的气隙,影响铸坯与结晶器壁之间进行传热,因此需要设定倒锥度来支撑坯壳和增加传热。26.过长的结晶器无益于坯壳的增厚,是没有必要 的。

27.结晶器振动的目的:铸坯得以强制脱模;利于铸坯的润滑,消除粘连;万一坯壳发生粘连拉裂,由于结晶器的振动可以得到愈合;能够改善铸坯表面质量。28.二冷区的作用:

1、使铸坯快速完全凝固;

2、对铸坯起支撑、导向作用,防止鼓肚;

3、对引锭杆起支撑导向作用;

4、对直结晶器的弧形连铸机要完成弯曲作用;

5、对多拉矫机而言,起到拉坯作用;

6、对于椭圆形连铸机又是分段矫直区。29.喷嘴类型:压力喷嘴、气水雾化喷嘴。30.矫直方式:一点矫直,多点矫直,连续矫直。

31.压缩浇铸基本原理:在矫直点前设一组驱动辊,给铸坯一定推力;在矫直点后面布置一组制动辊,给铸坯一定的反推力,铸坯在受压力状态下矫直。作用是可使铸坯内弧侧的拉应力减小,实现带液芯铸坯的矫直,达到铸机的高拉速、提高铸机生产能力。32.轻压下有机械应力轻压下和热应力轻压下。33.引锭装置的作用:引锭杆是结晶器的活底,开浇前用它堵住结晶器的下口,开浇后结晶器内的钢水与引锭头凝结在一起,经拉矫机的牵引,铸坯随引锭杆连续地从结晶器下口拉出,直到铸坯通过拉矫机,与脱钩为止,引锭装置完成任务,铸机进入正常拉坯状态。34.引锭杆装入结晶器的方式有上装式和下装式。

35.火焰切割原理是:预热氧与燃气混合燃烧的火焰,使切割缝处的金属熔化,然后利用高压切割氧的能量所熔化的金属熔掉,形成切缝,切断铸坯。36.燃气有乙炔、丙烷、天然气、焦炉煤气、氢气等。

37.割嘴分为内混式和外混式。38.电磁搅拌有助于纯净钢水、改善铸坯凝固结构、提高铸坯的质量和内部质量,扩大品种。39.电磁搅拌的原理:当磁场以一定速度相对钢水运动时,钢水中产生感应电流,载流钢水与磁场相互作用产生电磁力,从而驱动钢水运动。

40.电磁搅拌器在连铸安装的位置一般有三处:结晶器电磁搅拌、二冷区电磁搅拌、凝固末端电磁搅拌。

41.结晶器电磁搅拌能够均匀钢水温度、减少钢水过热、促进气体和夹杂上浮、增加等轴晶晶核。

42.二冷区电磁搅拌可以扩大中心等轴晶带,细化晶粒,也有利于减小中心疏松和中心偏析,夹杂物在横断面上分布均匀,从而改善铸坯内部质量。

43.凝固末端电磁搅拌可使铸坯获得中心宽大的等轴晶带,消除或减少中心疏松和中心偏析,对于高碳钢效果尤为明显。44.结晶器电磁制动:抑制液面波动防止卷渣,降低注流冲击,气泡、夹杂得以上浮排除,还有控制结晶器弯月面,改善结晶器纵向传热均匀性的功能。45.结晶器钢水液位检测有红外线法、热电偶法、磁感应法、涡流法、雷达法、激光法和同位素法。

46.液面控制(中包钢流控制)有:滑动水口控制,塞棒控制、复合控制。47.结晶器漏钢预报主要是检测粘结漏钢。

48.铸机长度是指从结晶器中心至出坯挡板之间的总长度。49.铸机高度是从拉矫机底座基础面至中间包顶面的距离。

50.结晶器、设备冷却供水为闭路供水系统。二冷水为开路系统。51.屈服强度:由弹性变形点转变为塑性变形时的应力。52.纯铁在912℃以下以体心立方晶格形式存在,标作;912-1394℃之间转化为面心立方晶格,标作;1394-1538℃之间又是以体心立方晶格形式存在,标作。53.同素异晶转变是晶格原子重新规则排列的过程,因此同素异晶转变是遵循形核、核长大的规律,称其为二次结晶,也称再结晶。

54.两种或两种以上的金属元素或金属元素与非金属元素组成的,并且有金属性质的材料叫合金。55.固溶体:一种金属或非金属元素均匀地溶于另一种金属中所形成的晶体相叫固溶体。根据溶质原子在溶剂晶格中的分布状况,分为置换固溶体和间隙固溶体。

56.奥氏体是碳溶于γ-Fe中的固溶体,属面心立方晶格。铁素体是面溶于α-Fe或δ-Fe中的固溶体,是体心立方晶格。57.铁碳合金状态图中,有三条横线,包晶线,共晶线,共析线。

58.碳含量在0.09%~0.53%的铁碳合金都会出现包晶反应,但在0.12%最易出现裂纹。59.淬火将钢的工件加热到临界点以上温度,保温一段时间,然后急剧冷却的工艺过程叫淬火。

60.回火处理是交淬火后的钢件加热到727℃以下的某一温度,保温一段时间,然后以一定的方式冷却,得到较稳定组织的工艺过程。

61.退火:钢件加热到临界温度,即铁碳合金状态图GSK线附近,保温一段时间后缓慢冷却(一般随炉冷却)的热处理工艺。

62.金属结晶需要两个条件:一定的过冷度,此为热力学条件;必要的晶核,此为动力学条件。63.晶体长大机构有两种形式:定向生长(形成单向的柱状晶);等轴晶生长。

64.液相线温度指钢水冷却开始凝固的温度;固相线温度指钢加热开始熔化的温度。65.选择结晶又称选分结晶。钢溶液中碳和其他元素含量较低,比较纯,熔点较高,最先凝固成晶体,杂质含量高,熔点也低些,后凝固,这种现象即称为选择结晶。66.工艺上控制偏析的措施:增加钢液凝固速度;合适的铸坯断面;控制钢液流动状态;采用电磁搅拌;降低钢水温度、防止鼓肚;降低S、P含量。

67.钢液的收缩随温降和相变可分为3个阶段:液态收缩;凝固收缩;固态收缩。68.连铸坯的凝固特征:

1、连铸坯的凝固过程实质是热量释放、传递的过程,也是强制快速冷却的过程

2、铸坯是边下行、边散热、边凝固,因而铸坯形成了很长的液相穴

3、连铸坯的凝固是分阶段完成的。

4、铸坯在连铸机内下行,铸坯的冷却可以看作是经历“形变热处理”过程。69.由于钢水与结晶器铜壁的润湿作用,钢水与铜壁相接触之处形成了一个半径很小的弯月面。70.铸坯凝固结构从边缘到中心是由细小的等轴晶带、柱状晶带、中心等轴晶带组成。71.小钢锭结构:由于冷却不均匀,柱状晶优先发展,当两边的柱状晶相接,出现搭桥现象,在凝固过程中形成疏松和疏孔,并伴随有严重的偏析。

72.连铸坯冷却过程中的应力:热应力;组织应力;机械应力。连铸坯表面与其内部温度不均匀、收缩不一致而产生的应力是热应力。热应力的大小主要取决于铸坯线收缩量。73.连铸对钢水温度的要求:高温、稳定、均匀。

74.浇注温度包括两部分:一是钢水的液相线温度,二是调出液相线温度的数值,即过热度。75.钢水的可浇性也是指钢水的流动性。

76.现代冶金生产两工艺流程:

长流程:高炉铁水—铁水预处理—转炉炼钢—精炼—连铸—连轧

短流程:废钢、生铁、金属化球团—电弧炉炼钢—精炼—连铸—连轧 77.从钢水注入结晶器开始到拉矫机构启动的时间为起步时间。

78.单位质量钢水从液态到固态到室温放出的热量包括:过热、潜热、显热。

79.铸机冷却分为三个冷却区:一冷即结晶器冷却、二冷即喷淋冷却、三冷即铸坯在空气中冷却。80.中包冶金功能:冶金净化功能、精炼功能。

81.铸坯中夹杂物按来源分:内生夹杂与外来夹杂。82.浇注过程中防止钢水二次氧化的措施:

1、钢包与中间包之间采用长水口

2、采用氩封

3、中包内使用中包覆盖剂

4、采用浸入式水口

5、结晶器液面使用保护渣

83.保护渣的三层结构:液渣层、烧结层、原渣层。

84.浸入式水口插入过深过浅都影响结晶器内钢水的正常流动,对铸坯质量均不利。85.结晶器冶金作用:

1、凝固坯壳生长的均匀性;

2、液相穴内夹杂物上浮;

3、结晶器内钢水的微合金化;4凝固结构的控制。

86.连铸坯质量主要是四方面:

1、铸坯纯净度;

2、铸坯的表面质量;

3、铸坯的内部质量;

4、铸坯的外观形状。

87.连铸机的机型对铸坯内的夹杂物的数量和分布有着重要影响。弧形结晶器的铸坯夹杂物分布很不均匀,偏 析于内弧侧。

88.影响纵裂的因素:

1、铸坯的宽度;

2、钢水成分(C、S、P);

3、浸入式水口插入深度;

4、保护渣性能等。89.纵裂预防措施:

1、合理的倒锥度;

2、结晶器、足辊、零段要准确对弧;

3、选用性能良好的保护渣;

4、浸入式水口的参数要合理;

5、合适的浇注温度;

6、保持结晶器液面平稳;

7、钢的成分在合适的范围;

8、采用热 顶式结晶器;

9、铸坯冷却均匀。90.铸坯矫直内弧侧受拉应力作用,由于振痕缺陷效应而产生应力集中,如果正值700~900℃脆化温度区,促成了振痕波谷形成横裂。91.钢水中氧、氢含量高是形成皮下气泡的重要原因。

92.板坯连铸机可采用压缩浇铸技术、或者应用多点矫直技术、连续矫直技术等;或者带直线段的多点弯曲、多点矫直连铸机,均能避免铸坯发生内部裂纹。

93.铸坯鼓肚量的大小与钢水静压力、夹辊间距、冷却强度等因素有密切关系。94.脱方也叫菱变,是小方坯特有的缺陷。

95.Q235指屈服强度值为235Mpa的碳素结构钢。

96.400℃为铸坯热装的最低温度线,铸坯在400℃以下节能效果不明显,不再称其为热装。97.连铸坯热送热装和直接轧制技术的优点:

1、节能;

2、缩短生产周期;

3、提高金属收得率;

4、降低生产成本。98.实现热送热装的条件:

1、提供无缺陷铸坯;

2、高温出坯;

3、在输送过程 中采用保温技术;

篇6:连铸工艺质量考核规定

为加强连铸工艺质量控制,减少生产环节中,因人为操作失误带来的质量废品,连铸车间今后要严格执行相关工艺要求:

(1)、镁质涂抹料中包烘烤时,机长要安排专人负责,必须确保烘干、烤透,一般要求控制在90分钟至120分钟之间,保证包衬耐材温度900℃以上,如果因烘烤不透和烘烤达不到温度而导致钢坯出现皮下气孔等质量问题时,每出现一次考核本班组200元。

(2)、每次大包开浇时,大包工要提前做好大包开浇的准备工作,所有的保温材料、引流管、长水口、液压缸、测温枪等工具要准备齐全,确保大包开浇后能正常有序地生产,如果因准备工作不完善而导致事故出现的,每次考核大包工100元,机长负连带责任考核50元/次。

(3)、大包长水口要与中包一同进行烘烤,中包烘烤温度控制在900℃左右,大包长水口温度要求和中包温度相同,严禁温度低于850℃以下开浇。否则,由于长水口温度偏低而导致水口不能正常工作,导致水口更换一次考核大包工100元。中间包浸入式水口在煤气炉上烘烤,每次开浇前烘烤4只,连续烘烤时间不得大于4小时,否则容易造成脱C报废,每烘烤报废1支考核机长50元。连铸长水口及浸入式水口在搬运过程、安装过程中人为损坏,每损坏1支考核责任人100元。

(4)、开浇时要严格按顺序开浇,当大包到位后大包工首先要检查开浇前的所有条件是否具备开浇条件,如果具备开浇条件后,操作工要把挂好长水口的机械手对准大包下把水口找正,检查水口安放的是否严密,然后再开动塞棒开浇,如果第一次开浇没有自流需引流时,操作工要先取下长水口,把长水口放到安全位置(不允许影响引流和钢水下流后飞溅到水口上)再引流。严禁由于操作不当导致水口损坏现象发生,否则每损坏一只水口考核操作人员50元。(5)、当引流成功后,必须要放大流量保证钢水流通顺畅后,再关闭滑板清理长水口。检查无粘钢和流钢附着在长水口表面后,要迅速地挂上长水口,再快速开启滑板机构,保证钢水流畅。开浇后保证钢水起到保护作用,即通氩气保护,防止钢水进入中间包后被氧化和造成钢水污染影响钢坯质量,否则由于长水口挂放不严密导致钢坯出现皮下气泡或表面针孔等现象时按照质量事故处理相关人员。

(6)、大包开浇后,操作工要及时观察中包的液面高度,当中包液位高度达到150mm时要及时加入中包覆盖剂,液面上升到400mm时要及时进行测温,当中包温度达到正常开浇温度时通知机长开浇拉钢。在正常拉钢过程中,液面必须保持稳定,稳定于500-600mm以上,转包换包过程钢液面不得低于300mm,否则考核大包工100元,机长50元。因操作不当造成事故的每次根据事故大小考核大包工50--200元,机长协调不力的,考核机长100元。

(7)、拉钢工在安装保护套管时,要详细检查浸入式水口的安装:是否在结晶器内对中;是否与中包下水口球体面接触严密。避免水口挂放不合理导致钢坯出现气孔或皮下气泡,以及初生坯壳不均匀造成漏钢事故和责任事故时。每次考核操作工50—200元,导致钢坯质量不合格或质量下降,根据质量事故大小处理相关人员。每支废品考核10--20元

(8)、浇铸过程中,浸入式水口必须从液面浸入钢水中90mm—100mm之间,否则钢坯容易出现夹渣及针孔和气孔。操作人员每次开浇正常拉钢后,要及时检查浸入式水口在结晶器内的深度是否在工艺范围内,如果达不到工艺要求,操作人员要及时调整中包温度,直至合理为准。如果检查不细或水口安放不合理,每发现一次考核操作人员50元。如果导致钢坯质量不合格或质量下降,根据质量事故大小和影响时间长短处理相关人员。

(9)、拉钢工开浇后必须检测浸入式水口在钢液中钢水对水口的侵蚀程度是否严重或侵蚀损坏,发现水口侵蚀严重时要及时更换,操作工由于检查不及时导致水口损坏而继续使用时,考核拉钢班长50元/次,考核操作者50元/次。如果导致钢坯质量事故的,按照事故大小处理责任人。

(10)、连铸工在更换浇次时,要及时认真检查各气流的气雾喷嘴运行是否均匀,对零段、足辊、二冷一段、二段的喷嘴进行详细检查,对汽化不流畅或损坏的喷嘴,要用换包时间进行及时更换,严禁带病生产和运行,否则开浇后发现喷嘴运行不正常时,每流每段出现有两个喷嘴不能正常运行时,考核每流操作工50元/次,拉钢带班长30元/次。

(11)、连铸生产过程的配水工作,由当班机长1人负责,并严格按工艺规定执行。在拉钢过程中,要根据钢水的温度及拉速,及时按照工艺规定做出调整,以防出现质量事故和生产事故。当机长因事请假时,要委托台上班长代管,并作好详细安排。出现配水不按工艺规定执行,或出现多人乱调配水阀门的现象,每次扣罚责任人100元,并承担出现的质量事故责任。

(12)、连铸机长要根据连铸生产的实际情况,及时与精炼炉长沟通,组织合适温度上台,控制好中间包过热度,正常情况下遵循工艺要求,以防出现中包过热度过高或过低,导致钢坯出现内在质量问题。由于勾通不及时,导致温度过低断浇或温度过高导致钢坯出现疏松等事故时,考核连铸机长和大包工各50元。

(13)、结晶器保护渣的加入,必须遵循少加、勤加、匀加的原则,加入厚度保证在15—25mm之间,渣面保持均匀平整无积堆现象。如果结晶器渣面不均匀,每发现一次考核操作者50元。

(14)、操作工在正常操作时,由于工艺是全过程保护浇铸,按照正常操作,在液面控制比较平稳没有太大波动时避免捞渣,如果发现液面波动太大时,才能检查渣圈,是否需要挑出渣圈。一般液面波动在1—3mm范围内,禁止捞渣,最大波动允许±3mm,如果遇上事故液面波动太大,或需要处理事故时,要检查是否需要采取捞渣措施,如果需要捞渣时也不能捞的太频繁,处理完事故后马上停止捞渣。否则在没有处理事故的情况子下,习惯性的捞渣操作人员,每发现一次考核操作者100元。

(15)、如果遇上事故需要捞渣时,捞渣工具必须要离开结晶器内壁40mm,从40mm外的位置插入钢水内,严禁使用的工具贴着结晶器内壁深入液面以下捞渣。深度控制在50mm深后再贴着铜管壁捞渣。防止液渣层破坏,造成渣疤渣圈废品,否则,发现捞渣不当,每次处罚操作者50元。

(16)、每流拉钢工开浇前,要详细检查喷淋架的对弧、引锭杆的对中,以及其它准备工作,防止出现漏钢、结壳、拉脱,杜绝开浇不成功,或中途停浇现象。每出现开浇不成功一次,考核该班150元/次;中途停浇一次考核50元/次。该项数据由调度负责统计,报调度室考核。

(17)、结晶器保持干净,有渣块和冷钢及时清除,严禁将冷钢或结晶器盖板上的渣块掉入结晶器内,操作人员如果对结晶器盖板清理不干净每发现一次考核操作工30元/次。

(18)、浇铸过程更换中包时,中间包液面小于300mm后,关掉两个或三个流,由两个或一个流拉净中包内所有剩余钢水,最后两支或一支钢坯由质检员按照检验标准统一处理。

(19)、机长与主控工做好铜管使用记录,通钢量达到2000吨必须下线更换,因未做记录或记录不明,造成结晶器使用混乱现象,考核机长200元/次,操作工50元/次。

(20)、台下班长和操作工每天必须与调度沟通,按照公司生产计划要求,切割成品钢坯,杜绝钢坯尺寸超出规定定尺长度,长、短每支考核有关责任人20元。

(21)、开浇前必须对每流切割枪、割嘴、切割小车、预热氧、燃气、各种介质的压力等进行检查,看其运行是否正常,对抱夹是否灵活、割枪冷却水是否畅通,否则由于检查不细致,维修整改不及时,导致生产受阻或造成设备损坏,以及影响产品质量时,每次考核该班长50元/次,班组50元/次。

(22)、连铸钳工在开浇前,必须详细检查各托辊、拉矫辊、足辊的对中、对弧工作,以及拉浇压力的调整,对于钢坯出现的划痕、压痕深度超出1.5mm时,考核跟班钳工每支钢坯20元。

(23)、连铸跟班钳工在开浇前必须检查滑动水口,中包升降、连铸沉淀池水泵及机械设备,液压站运行正常,开浇时发现不能正常工作考核跟班钳工100元/次。

(24)、连铸切割工,对钢坯出现椭圆、气孔、夹渣、划痕、短尺等现象,必须及时进行反馈、整改。否则,每只考核20元。

(25)、连铸全体人员要时刻注意批量事故的出现,批量事故定义为:所有钢坯同一缺陷在同一流上连续出现5支。每次出现批量事故,由连铸主任、机长、熟练工共同分析事故原因,落实责任,废品钢坯每支按20元考核责任人;连铸机长考核100元;连铸主任考核100元。

(26)、交接班及材料准备执行连铸车间《交接班制度》,月底由调度提供书面资料,兑现考核数额。

上一篇:雨之梦散文下一篇:分销渠道实习报告范文