生物分离新技术

2024-06-23

生物分离新技术(共6篇)

篇1:生物分离新技术

1.生物分离技术:指从动物与微生物的有机体或器官`生物工程产物(发酵液`培养液)及生物化学产品中提取`分离`纯化目标物质的技术过程.2.生物分离的一般工艺[理想化过程]:⑴动植物原料→细胞破碎→萃取与预处理→$$.⑵发酵液→预处理→分支为①②{①胞外产物→固-液分离.&②胞内产物→细胞破碎→固-液分离.$$}→初步纯化[沉淀分离`静态吸附`静态离子交换`膜分离]→精制[吸附层析`离子交换层析`凝胶层析`亲和层析`疏水层析`高效 ?? 色谱]→成品加工[脱盐`浓缩`结晶`干燥].不溶物的去除[过滤`离心`细胞破碎]→产物分离[吸附`萃取`泡沫`膜分离]→产物纯化[色谱`电泳`层析]→产品精致[结晶`脱盐].3.过滤:传统的化工单元操作,原理是使料液通过固态过滤介质时,固态悬浮物与ag分离.4.过滤前预处理:⑴加热:最简单经济的预处理,使液体粘度降低,加快过滤速率,同时可灭菌,前提是目标物为热稳定性产物.⑵加入电解质:①凝聚:原理:某些与胶粒带电性相反地电解质加入时,扩散双电层的排斥电位降低,电解质离子在水中的水化作用也会破坏胶粒周围的水化层,两者共同作用结果是,破坏胶体的分散状态,使胶体粒子聚集.②絮凝:原理:指在某些高分子絮凝剂存在下,在悬浮粒子之间产生架桥作用而使胶粒形成粗大的絮凝团的过程,作为絮凝剂的高分子聚合物必须有长链线状结构,易溶于水,长链节上含较多官能团,[根据带电不同,絮凝剂分为:阴离子型`阳离子型`非离子型].⑶加入助滤剂:助滤剂均为细粉或纤维,使难以过滤的物料变得易于过滤.硅藻土:几百年前水生植物沉淀的遗骸;;珍珠岩:处理过的膨胀火山岩.5.硅藻土使用方法:⑴作为深层过滤介质过滤悬浮液:硅藻土不规则的粉粒形状之间形成曲折的毛细孔道,借助筛分作用去除固体粒子;同时由于吸附,除去胶体粒子.⑵作为预涂层使用:以保护支撑介质的细孔不被堵塞.⑶预投后,预料液共同过滤,形成多孔性滤饼,降低滤饼可压缩性,以提高过滤效率.6.影响絮凝效果因素:⑴絮凝剂的分子量和种类:①分子量大`链长`

吸附架桥效果好;②分子过小`絮凝剂在水中溶解度小.⑵絮凝剂用量:①浓度较低时增加用量有助于架桥充当,絮凝效果提高;②絮凝剂浓度过多时,引起吸附饱和,胶粒上形成覆盖层,失去与其他胶粒架桥作用.⑶pH值:影响离子型絮凝剂官能团电离度,提高电离度`使分子链上同电荷间斥力增大,链伸展,提高架桥能力.⑷搅拌速率和时间:剪切力会打散絮凝团,要注意搅拌.7.过滤设备及其结构:按推动力的不同可分为以下四类:⑴重力过滤:

应用较少.⑵加压过滤:操作繁杂,拆装不便.⑶真空过滤:可实现连续化生产.⑷离心过滤:略 8.重力沉降:当静置悬浮液时,密度较大的固体颗粒在重力作用下逐渐

下沉.离心沉降见10 9.重力沉降受重力:Fg=πd3

ρ

s 固体颗粒介质密度[kg/m3g/6 d—微粒半径[m].2

ρ].g—微粒加速度[m/s].s—

10.离心沉降:基于固体颗粒和周围液体密度存在差异,在离心场中使不

同密度的固体颗粒加速沉降的分离过程.11.分离因数:Z=FC/g=4π2N2r/g.12.超离心技术分类:⑴制备型超离心.⑵分析型超离心.13.制备型离心:⑴离子差速离心法[分布离心法]:①逐渐增加离心速度.②高速与低速交替进行,使沉降粒子在不同离心速度及不同离心时间内分批分离出来.⑵一般密度梯度离心法[区带离心]:先将样品ag置于一个由梯度材料形成的密度梯度液体柱中,离心后被分离组分以区带层分布于梯度柱中,是粒子在完全沉降之前,液体梯度中形成不连续的分离区带,前提是要控制好粒子分离的时间.⑶等密度离心法:当不同离子存在密度差时,在离子力场作用下,粒子向上浮起,或向下沉降,一直移动到与它们密度正好相等的位置上,并形成区带.①预形成梯度等密度离心.②自形成梯度等密度离心.14.细胞破碎原理:动`植物及微生物长生的天然产物,有胞外型和胞内型两种.为回收胞内产物,需用利用外力破坏细胞膜和细胞壁,使细胞内含物释放出来,然后再进行分离纯化.15.选择细胞破碎方法所考虑因素:⑴细胞壁的坚韧长度.⑵产物的性质[承受剪切力`耐酸`耐热].16.化学破碎法: 渗透冲击法`增溶法`碱溶法`酶溶法`脂溶法.17.[化学破碎]渗透冲击法:适用范围:⑴细胞破碎难易程度决定于其类型,红血球细胞非常适合采用渗透冲击法溶破,快速改变介质中盐浓度,将十分有效地破碎红血球细胞.⑵①动物细胞只有当其组织被机械切碎或匀浆后才易溶破;②植物细胞很难溶破,因其细胞中含有大量木质成分,通过渗透流很难渗透.18.[化学破碎]增溶法:⑴方法:将2倍细胞体积的某浓度表面活性剂加入到细胞中,表面活性剂溶解细胞壁中的脂类成分,从而破碎细胞,胞内物释放.⑵表面活性剂通常是两性的,结构中含有亲水基团[离子及疏水基团[烃基],既能和水作用也能和脂作用.19.[化学破碎]碱溶法:⑴原理:细胞壁外层和浆膜上有Pro成分,利用Pro在碱性条件下溶解的特性,调节溶液pH值,实现Pro溶解,细胞壁破碎.⑵①优点:成本低廉,反应速度快;②缺点:反应剧烈,不具选择性,碱的加入,与细胞壁产生多种反应,包括磷脂皂化等.20.[化学破碎]酶溶法:⑴加酶法:将溶解细胞壁的酶加入体系中,细胞壁受到部分或完全破坏后,再利用渗透压冲击等方法破坏细胞壁,进一步增大胞内产物通透性.⑵自溶法:通过调节温度`pH值或添加有机溶剂,诱使细胞产生溶解自身的酶的方法.⑶①优点:条件温和`具有选择性,可催化细胞壁反应,而不破坏细胞内的其他物质;②缺点:价格昂贵,限制大规模生产中的使用.21.[化学破碎]脂溶法:⑴原理:选择适当溶剂,加入细胞悬浮液中,细胞壁脂质吸收后导致细胞壁膨胀`裂开,细胞质释放.⑵选择理想的溶剂应选和细胞壁脂溶解度相配,而与细胞质相差较大的.22.物理破碎法:匀浆法`超声法`研磨法`珠磨法.23.[物理破碎]匀浆法:影响高压破碎的主要因素:操作压力`破碎次数`

阀型设计`操作温度`细胞浓度.24.[物理破碎]超声:影响因素:⑴振幅:振幅直接声能有关,影响目标产

物的释放量.⑵细胞悬浮液的黏度:黏度过大会抑制空穴现象.⑶被处理悬浮液的体积:体积越大需要的能量也越大.⑷珠粒的体积和直径:添加细小的珠粒有助于形成空穴,同时可以辅助研磨效应.随着珠粒直径的变化,目标K有最大值出现.⑸超声条件:破碎时间`温度`细胞种类`pH值`料液比.25.[物理破碎]高速搅拌珠研磨法:过程:⑴研磨仓为一个密封系统,有

垂直和水平两种设计:①垂直仓的研磨介质载量为50-60%,可减少珠的磨损,但效率低.②水平仓的研磨介质装载量80-85%,研磨效率高,但磨损大.⑵搅拌设计:主要是给研磨珠的推动力,搅拌盘与驱动轴有同心的,也有偏心的,有垂直的,也有倾斜的.⑶研磨珠:有无铅玻璃`钢珠`陶瓷珠等,直径在0.1-1.5mm范围内.①使用研磨珠的大小主要由细胞的大小决定:细菌菌体--用小的研磨珠,直径0.1mm;;酵母菌菌体--用大的研磨珠,直径0.5mm.②另外目标产物在细胞内的位置也影响研磨珠的选择:用大直径可以有效释放游离在细胞之中的目标产物,在细胞质中的产物,不必把细胞完全破碎;;在细胞核中的目标产物须完全破碎,用小直径的珠.⑷研磨珠的装载量:一般在80-90%之间.①太低,提供的碰撞率和剪切力不够,增加装载量提高细胞破碎率.②过大,研磨珠之间产生相互干扰,研磨珠会过度磨损,同时产生的温度会很高,能量消耗大,对目标产物也有影响.细胞破碎率与流速成反比关系.26.吸附:利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程.27.吸附过程[四过程]:料液与吸附剂混合→吸附质被吸附→料液流出

→吸附质解吸附吸附剂再生.28.吸附剂种类:⑴活性炭:活性炭粉末[效力强`需带压];颗粒活性碳[效力中`效率高];棉纶活性炭[效力弱`易洗脱].⑵大孔网状吸附剂:①吸附机理:大孔树脂属属非离子型共聚物,借助范德华力从ag中吸附各种有机物,其吸附能力与树脂的化学结构`物理性能以及与溶质`ag性质有关.②遵循规律:非极性吸附剂可从极性溶剂中吸附非极性溶质;;极性吸附剂可从非极性溶剂中吸附极性物质;;中等极性吸附剂兼有以上两种能力.29.影响吸附的主要因素:⑴吸附剂的性质:①比表面积大,吸附容积大:因此,颗粒度越小,微孔越发达,吸附速率越快,吸附能力越强.②孔结构:孔径太大,比表面积小,吸附能力差;;孔径太小,不利于吸附质向空隙中扩散.⑵吸附质的性质:①表面张力越小,液体被固体吸附越多;②在ag中溶解度大时,吸附量少;③相似相吸;④相对分子量大易吸附.⑶操作条件:①温度:吸附是放热过程,还要兼顾吸附质的稳定性.②溶液pH值:影响吸附质的解离,进而影响吸附量.最佳pH值需通过实验来确定.③盐浓度:有影响,或阻止或促进吸附,依情而定.30.亲和吸附:利用溶质和吸附剂之间特殊的可你亲合作用[静电`氢键`疏水`金属配位],从而实现分离.31.离子交换:利用离子交换树脂树脂作为吸附剂,将ag中的待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适的洗脱剂将吸附质从树脂上洗脱下来,达到分离目的.32.主要的多糖基离子交换树脂:⑴离子交换纤维素:①树脂骨架为纤维素,根据活性基团的性质可分为阳离子交换纤维素和阴离子交换纤维素两类.②特点:骨架松散`亲水性强`表面积大`交换容量大`吸附力弱`交换和洗脱条件温和`分辨率高.③常用的:甲基磺酸纤维素`羧甲基纤维素`二甲基氨基乙基纤维素.⑵葡聚糖凝胶离子交换树脂:①骨架为葡聚糖凝胶,根据功能集团的不同,亦可分为阳离子交换树脂和阴离子交换树脂.②命名方法:交换活性基团+骨架+(阳C/阴A)原骨架编号.③如:DEAE-sephadex A-25为二乙基氨基乙基葡聚糖阴离子树脂;CM-sephadex C-25为羧甲基葡聚糖阳离子树脂.33.离子交换树脂分类:⑴按活性基团性质:阳离子交换树脂[含酸性基

团]`阴离子交换树脂[含碱性基团].⑵具体分为:强阳`弱阳&强阴`弱阴.34.离子交换树脂的理化性能:⑴外观:球形浅色为宜,粒度大小16-60

目>90%.⑵机械强度:>90%.⑶含水量:0.3-0.7g/g树脂.⑷交换容量:重量交换容量`体积交换容量`工作交换容量`表观交换容量.⑸稳定性:化学稳定性`热稳定性.⑹膨胀度:交联度`活性基团的性质与数量`活性离子的性质`介质的性质和浓度`骨架结构.⑺湿真密度:单位体积湿树脂的重量.⑻吸附性能指标:孔度`孔径`比表面积.⑼滴定曲线:表征树脂官能团.35.离子交换机理:⑴A+自ag中扩散到树脂表面.⑵A+从树脂表面进入

树脂内部的活性中心.⑶A+与R-B在活性中心上发生复分解反应.⑷解吸附离子B+自树脂内部扩散至数值表面.⑸B+离子从树脂表面扩散到ag中.36.扩散控制步骤:⑴内部扩散:液相浓度越快,搅拌越激烈,浓度越浓,颗

粒越大,吸附越弱.⑵外部扩散:液体流动慢,浓度稀,颗粒细,吸附强.37.离子交换速度方程:⑴外部扩散控制:ln(1-F)=-K1t

K1--外扩散速

度常数;F—时间为t时,树脂的饱和度.⑵内部扩散控制:F=1-6/π2

*∑[1/n2×e(-Din2π2t/r02)].38.影响交换速度的因素:⑴颗粒大小:愈小愈快,无论对内`外扩散.⑵

交联度:交联度小,树脂易膨胀,交换速度快.⑶温度:越高越快.⑷离子化合价:化合价越高`越快.⑸离子大小:越小越快,大分子阻力大,与骨架碰撞.⑹搅拌速度:在一定程度上`越大越快.⑺ag浓度:当交换速度为外扩散控制时,浓度越大,交换速度越快.39.应用实例—硬水软化:如果水质要求高,不仅要去除阳离子,还要出去阴离子.一般采用阳离子树脂和阴离子树脂.利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子[如Na+`Ca2+`Al3+].同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到各种阴离子[如Cl-].从阳离子交换树脂释出的氢氧根离子相结合后生成纯水.40.蛋白质离交分离的基本步骤:⑴平衡:以平衡缓冲液冲洗装填好的分离柱,目的是使离子交换树脂表面的碱性[或酸性]配基完全被平衡缓冲液中的反离子所饱和,确保分离柱处于稳定的状态.⑵吸附:样品ag进入分离柱,各组分依据离子交换亲和力大小与离子交换剂作用,目标物分子吸附于树脂上,并释放出反离子.⑶洗脱:媳妇完成后,以洗脱剂洗脱.洗脱剂含有高浓度反离子,通过竞争性吸附实现目标物洗脱.⑷再生:通过高浓度洗脱剂使离子交换树脂重新获得吸附能力.41.泡沫分离定义:以通气鼓泡在液相中形成的气泡为载体,液相中的溶质或颗粒在表面活性的作用下吸附于气泡上进行的分离,人们通常把凡是利用气体在ag中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫吸附分离技术.42.泡沫分离技术须在低于CMC浓度下进行.见48的⑶

43.泡沫分离效率的衡量指标:富集比`回收率.富集比=消泡液中的表面活性物质浓度/液相中初始料液浓度.回收率=(初始液浓度*初始液体积--剩余液浓度*剩余液体积)/(初始液浓度*初始液体积).44.泡沫的形成:⑴当气体在含表面活性剂的水ag中发泡时,首先在液体内部形成被气裹的气泡,与此同时,ag表面活性剂分子立即在气泡表面排成单分子膜,亲油基指向气泡内部,亲水基指向ag.⑵气泡借助浮力上升,冲击ag表面的单分子膜.⑶某些情况下,气泡可以跳出液体表面,此时,该气泡表面的水膜外层上,形成与液体内部单分子膜的分子排列完全相反的单分子膜,从而构成了较为稳定的双分子层气泡体,形成接近于球体的单个气泡.45.泡沫分离法的分类:⑴泡沫分离:按分离对象是ag还是含有固体粒

子的悬浮液`胶体ag,泡沫分离可分成:①泡沫分离:用于分离溶解物质,他们可以是表面活性剂,或者可与表面活性剂结合的物质,当料液鼓泡时,能进入液层上方泡沫层,从而与液相主体分开.②泡沫浮选:用于分离不溶解物质,按被分离对象是分子/胶体,是大颗粒/小颗粒.又被称作分子浮选`粒子浮选`胶体浮选等.应用较多的是对于Pro`酶的分离,目前还处于实验室阶段,最初用于胆酸和胆酸钠混合物中分离胆酸,泡沫中胆酸浓度为料液的3-6倍,活性增加65%,还有大豆蛋白质的分离也在实验室阶段成功提取.⑵无泡沫分离:用鼓泡进行分离,但不一定形成泡沫层,按是否存在萃取层,可分为:①鼓泡分离:从设备底部通气鼓泡,表面活性物质被气泡富集并上升至塔顶,和液相主题分离,使溶质得到浓缩,液相主体被净化.②萃取浮选:在ag顶部设置有一种与其互不相容的溶剂,用它来萃取或富集有塔底鼓出的气泡所吸附的表面活性物质.应用与贵重金属的分离辅机,如采用乙基二甲二硫代氨基甲酸酯将尾矿中的黄金由每吨5g左右提高到每吨2250g以上.46.气泡间当膜间夹角为120°时,压力差最小,泡沫稳定.47.泡沫的稳定性影响因素:⑴泡径大小:泡径小,利于稳定,合成大气泡的历程长,且泡膜中含液量相对较大,较能经受液体流失造成的稳定性损失.另方面,泡径小,在液相中的上升速度慢,为表面活性剂的吸附提供充足的时间,增加了稳定性.⑵起泡液粘度:一定的黏度有利于泡沫稳定,某些ag,[如Pro溶液,虽然表面张力较高,但因粘度大,对于外力的冲击起到缓冲作用,所以产生的泡沫稳定].⑶温度:基本条件是应达到表面活性剂的气泡温度,但随温度升高,ag粘度降低,表面弹性降低,排液速度加快,泡沫稳定性下降.⑷离子强度:表面电荷离子型表面活性剂,水解后带电荷,泡沫的定向吸附层为双电层结构,由于离子间延缓泡沫变薄过程,使泡沫稳定.48.泡沫分离操作的影响因素:⑴待分离物质的种类:不同分离物质其理化性质不同,表面活性也不同,因此是对分离影响最大的因素.⑵pH值:不同的pH值对分离效果有影响,对于天然表面活性物质,[如:Pro的泡沫分离,在等电点时,Pro在泡沫表面的吸附量最大]这些条件下进行分离,分离效率最高.⑶表面活性剂浓度:一般要在CMC以下,过高引起排液阻力大;;太低,泡沫层不稳定,太高,分离效率下降.⑷温度:温度应达到表面活性剂的气泡温度,保持泡沫稳定性;还要根据吸附平衡类型来选择分度高低.⑸气流速度[气体流量]:上升,泡沫形成速度↑,单位时间的去除率也↑,泡沫停留时间短,影响分离选择性;;过低时,泡沫又停留时间过长,效率低,且物质易变性.⑹泡沫柱高度:足够高的柱体才能保证泡沫层高度,使泡沫在柱中有适当的停留时间,满足目标分离需求.49.萃取分类:⑴按萃取对象分:①液-液:用选定的溶剂分离液体混合物中的某种组分.溶剂与被萃取混合液体不相溶具有选择性的溶解能力,有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性.②固-液:也叫浸取,用溶剂分离固液混合物中组分,如用水浸取甜菜中的糖类;用正乙烷浸取黄豆中的豆油;用水从药中浸取有效成分叫做”渗沥”或”浸沥”.⑵按萃取机理分:①物理萃取:利用溶剂对欲分离组分有较高溶解能力,分离过程为物理过程.②化学:溶剂首先在选择性与溶质化合或络合,从而在两相中重新分配而达到分离目的.50.有机溶剂萃取法:[溶剂萃取]利用样品中不同组分分配在两种互不相容的溶剂中的溶解度或分配比不同来达到分离`提纯或纯化的目的.51.萃取分离原理:分配定律:在一定T`P下,溶质在两个互不相溶的溶剂中分配,平衡时,如果在两相中的相对分子质量相等,溶质在两相中平衡浓度之比为成熟,成为分配系数K,表征平衡的两个共存相中溶质浓度的关系.k=y/x;;y—平衡时溶质在萃取相中的浓度.x—平衡时溶质在萃余相中的浓度.52.萃取步骤方法:⑴单机萃取.⑵多级萃取:①错流接触.②逆流接触[多用].53.多级萃取设备流程:待分离液经去杂后进入第一级萃取罐,在此与第二级沉降器来的萃取相[含目标物]混合接触,然后流入第一级沉降器分成上`下两液层,上层萃取相富含目的产物送去蒸馏回收溶剂及产物进一步精制;下层萃余相,含目的产物浓度较低,送第二级萃取.54.有机溶剂萃取的影响因素:⑴有机溶剂的选择.⑵乳化与去乳化.⑶

萃取操作的因素.55.萃取操作的因素:⑴pH值:①对弱酸随pH值降低,分配系数增大.②

对弱碱随pH值降低,分配系数减少..pH值低有利于酸性物质分配在有机相;碱性物质分配在水相.⑵温度:①温度高,分子扩散速度快,萃取速度快.②温度低,使分配系数增加.⑶盐析:生化物质在水中溶解度低,有利于溶质向有机相中分配.56.常用表面活性剂及其相应的有机溶剂:⑴AOT—烃类`异辛烷`环己

烷`四氯化碳`苯.⑵CTAB—己醇/异辛烷`己醇/辛烷`三氯甲烷/辛烷.⑶TOMAC—环己烷.⑷TritonX—己醇/环己烷.⑸磷脂酰胆碱—苯`庚烷.⑹磷脂酰乙醇胺—苯`庚烷.57.水壳模型:大分子蛋白质被封闭在”水池”中,表面存在一层水化层与

胶束内表面分隔开,从而使蛋白质不与有机溶剂直接接触.依据:⑴从似弹性光散射的研究证实在Pro分子周围存在一个单分子水层.⑵反胶束中酶动力学特征与水中接近.⑶某蛋白酶在胶束中的荧光特性与主题水中相像.58.Pro溶入反胶束的推动力:⑴静电引力作用:Pro的表面电荷与表面

活性剂反胶束内表面电荷[离子型表面活性剂]之间的静电引力作用.对于阳离子表面活性剂形成的反胶束体系,萃取只发生在水溶液的pH>pI.⑵空间位阻作用:反胶束”水池”的物理性能[包括其大小`形状及其中水的活度]会影响Pro的增溶或排斥.59.反相微胶束分离过程分为3步:⑴选择有利于形成油包水和适当

W0值的表面活性剂[HLB为3-6].⑵含生物大分子的反相微胶团的形成.⑶反相微胶团的破乳及生物大分子的释放.60.反胶束萃取操作方法:⑴相转移法.⑵注入法.⑵溶解法.61.反萃取效果评估:一方面对Pro的回收率和分离度进行评估,还应对其分离过程中微观变化分子构象评估,即对其生物活性要有保证.62.双水相萃取:利用生物物质在互不相溶的两水相间分配系数的差异进行分离的过程.63.双水相体系的种类:⑴两种都是非离子型高聚物(PEG/DEX`聚丙二醇/DEX等).⑵其中一种是离子型高聚物(羧甲基纤维素钠/葡聚糖DEX).⑶两种都是离子型高聚物(羧甲基纤维素钠/羧甲基葡聚糖钠).⑷其中一种是无机盐(PEG/磷酸盐或硫酸盐).64.试差实验及放大:⑴双水相体系形成判定:将一定量的高聚物P浓溶液置于试管内,然后用已知浓度的高聚物Q溶液来滴定.随着高聚物Q的加入,试管内ag由均相突然变浑浊,记录Q加入量.然后在试管内加1ml水,ag又澄清,继续滴加高聚物Q,ag又变浑浊,此时系统形成.以高聚物P浓度对高聚物Q浓度作图,为一系列双节线上的系统组成点,即可得到双节线.⑵试差实验放大:采用10ml离心管进行试验,结果可直接放大生产.操作过程:①配置高浓度的聚合物和盐的备用液,配置一系列不同浓度`pH值的双水相,每个双水相只改变一个参数[pH的调节可采用磷酸盐缓冲液].②先加入料液,再加入配置好的备用高聚物及盐液,使整个系统质量达到5-10g,离心管封口后,充分混合.③在1800-2000g离心3-5min,使两相完全分离.④小心移取上下两相,分别测定目标物含量,并与加入总量作对比.65.膜分离技术的概念:利用天然的或人工合成的`具有选择透过性的薄膜,以外界能量差作为推动力,由于ag中各组分迁移率的不同而进行分离`分级`提纯`富集的一种技术.66.膜分离技术的优势&劣势:⑴优势:①能耗低,处理量大.②分离条件温和,使用热敏物质的分离.③操作方便结构紧凑,工作方式灵活,自动化程度高.⑵劣势:①操作工程化中膜面容易发生污染,膜性能呈衰减趋势.②膜的耐药性`耐热性和耐溶剂能力有限.③多数膜组件价格昂贵,投资高.67.膜分离分类依据:⑴膜的平均孔径.⑵膜的推动力.⑶膜的状态.⑷膜的结构.⑸膜的形状.⑹膜的材质.68.膜分离技术按孔径分类:⑴微滤[MF]:以多孔细小薄膜为过滤介质,主要用于DNA`病毒截留与浓缩,也多于膜分离的前处理,孔径分布范围约在0.02-10μm之间.⑵超滤[UF]:分离介质同上,但孔径更小,约为0.001-0.1μm,适合与分离酶`Pro等生物大分子物质.⑶纳滤:从ag中截留平均分子量300-5000的物质,孔径分布在0.2-2nm.⑷反渗透[RO]:孔径范围0.0001-0.001μm之间,主要应用于汗水脱盐`超净水设备等.69.截留分子量[MWCO]:又称为切割分子量,指截留率为90%时所对

应的分子量,与膜孔径大小有关.由于直接测定超滤膜的孔径相当困难,所以使用一直分子量的球状物质进行测定.如膜对被截留物质的截留率达到90%时,就用被截留物质的分子量表示膜的截留性能,称为膜的截留分子量.实际上,所用的物质并非绝对球形,膜孔径也绝非绝对均一,所测定的截留率不能绝对表示膜的分离性能.70.膜分离过程模型:⑴浓差极化:①在操作过程中,由于膜的选择透过

性,被截留组分在膜料液侧表面积累形成浓度边界层,其浓度大大高于料液的主体浓度,在膜表面与主体料液之间浓度差的作用下,将导致溶质从膜表面向主体的反向扩散.②危害:膜面处浓度Ci增加,使得渗透压↑:在一定操作压力下,溶剂的透过速率↓,Ci增加,导致溶质的透过↑,截留率↓.③避免:可通过提高操作温度`对膜定期清洗等措施来避免浓差极化.⑵凝胶极化:膜表面的浓度超过溶质的溶解度时,溶质析出,形成凝胶层.当料液中含有菌体`细胞或其他固形物时,也会形成凝胶层.71.模装置的工作形式-超滤膜装置:一般用来完成目标物的浓缩和目标

物脱出小分子杂质,分别称为浓缩和洗滤.浓缩:①开路循环:循环液中溶质浓度不断上升,若流量和压差不变,透过通量将随操作时间不断降低.②闭路循环:循环液中溶质浓度增加更快,通过通量小于开路循环.优点是膜组件内流速可不单纯依靠料液泵供应.③连续浓缩:容易实现自动化.但透过通量很低,为改善通量,一般设计成多段串联组合.72.乳状液膜制作过程:⑴首先把两种互不相容的液体在高剪切下制成油包水小液滴;⑵其次在温和搅拌下将油包水乳液分散在第三相[料液相即外相]中;⑶乳状液滴内被包裹的相为内相,内相外相之间为液膜.73.载体促进传递机制有不同表现形式:同相迁移[促进并流]`逆向迁移[促进逆流].74.盐析:De:在高浓度的中性盐存在下,Pro[酶]等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程.虽然方法经典,但主要用于Pro分离与回收.75.盐析过程:是对[生物大分子在水ag中存在状态:⑴两性电解质,由于静电力的作用,分子间相互排斥,形成稳定的分散系.⑵Pro周围形成水合膜,保护了Pro粒子,避免了相互碰撞.]破坏的过程:原因:⑴盐离子与Pro表面具有相反电性的离子基团形成离子对,部分中和了Pro电性,稳定的双电层被破坏,Pro分子间斥力减弱而相互聚拢.⑵中性盐亲水性比Pro大,盐离子在水中发生水合使Pro脱去水合膜,暴露疏水区域,疏水相互作用产生沉淀.76.盐溶液对Pro溶解度影响:中性盐加入Pro溶液时可能出现:⑴”盐溶”现象:较低盐浓度(0.15-0.2mol/kg)下,Pro溶解度随盐浓度增大而增大.⑵”盐析”现象:高盐浓度下,Pro溶解度随盐浓度增大而下降.77.盐析方法分类:⑴β盐析法:在一定离子强度下,改变pH和温度进行盐析[逐步向Pro溶液中加入预先调好pH的饱和硫酸铵ag,调节温度,Pro便沉淀出来].由于溶解度随温度变化缓慢,且变化幅度小,因此分辨率更高,常用于纯化.⑵KS盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法[粗制品中逐步加入固体硫酸铵,加到一定饱和度时,Pro便沉淀出来].由于Pro对离子强度的变化非常敏感,易产生共沉淀现象,因此常用于提取液的前处理.78.影响盐析的因素:⑴Pro浓度:①高浓度Pro可节约用盐量,但过高

会发生严重沉淀.②低浓度Pro用盐量较多,共沉作用少.⑵盐种类的影响:阳离子:NH4+>K+>Na+>Mg2+.阴离子:SO42+>CHCOO->Cl->NO2->ClO3-.⑶温度:①低离子强度/纯水中:蛋白质溶解度随温度↑而↑.②高浓度:随温度↑而↓.⑷pH的影响:等电点附近Pro溶解度小,是盐析沉淀适合的pH.79.盐析沉淀操作:lg:硫酸铵步骤:

⑴取一部分料液,将其分成等体积的数份,冷却至0℃.⑵用W=[505(S2-S1)]/(1-0.285S2)式计算饱和度达到20%-100%时所需加入的硫酸铵量,并在搅拌条件下分别加到料液中,继续搅拌1h以上,使沉淀达到平衡.⑶3000g下离心40min后,将沉淀溶于2倍体积的缓冲ag中,测定其中Pro总浓度和目标Pro浓度[如有不溶物,可离心去除].⑷分别测定上清液中Pro的总浓度和目标Pro的浓度,比较沉淀前后Pro是否保持物料守恒,检验分析结果的可靠性.⑸以饱和度为横坐标,上清液中Pro总浓度和目标Pro浓度为纵坐标作图,图中纵坐标为上清液中Pro的相对浓度[与原料液浓度之比].80.@@沉淀生成过程:Pro分子通过接触而聚集,形成微细颗粒,微细颗

粒继续生长成为大颗粒沉淀.⑴扩散控制过程:生长出去,布朗粒子的扩散,推动粒子的生长.这一过程称为[异向生长].⑵剪切作用生长过程:在搅拌作用下,粒径1μm以上的粒子生长主要起因在于剪切作用引起的颗粒间互相碰撞,发生凝聚.这一过程称为[同向凝聚]…同向凝聚速率很低,是沉淀过程的控制步骤.因此,搅拌混合非常重要,沉淀放大设计时,单位体积的搅拌功率是放大的基准,一般在放大后不变.81.色谱分离法概念:是一种物理的分离方法,利用不同物质在两相[固

定相和流动相]中具有不同的分配系数,并通过两相不断的相对运动而实现分离的方法.82.色谱过程:⑴物质分子在相对运动的两相间分配平衡的过程.在混合物中,若两个组分的分配系数不等,则被流动相携带移动的速率不等,即形成差速迁移而被分离.@⑵经色谱柱的分离,各组分将分别流过检测器,检测器将流动相中各组分浓度变化转变成电信号.随时间变化的曲线,称为色谱流出曲线,或称色谱图.83.[色谱术语]色谱图和色谱峰:⑴组分流经检测器时响应的连续信号产生的曲线为色谱图.⑵流出曲线上的突起部分为色谱峰.84.[色谱术语]⑴正常色谱峰近似于对称形正态分布曲线[高斯曲线].⑵不对称色谱峰有两种:前沿峰[较少]`和拖尾峰.⑶不对称峰的原因复杂:进样体积`浓度`柱温`柱污染`样品溶液离子强度`柱极性等.85.[色谱术语]对称因子[判断是否对称]:fS=W0.55h/2A=(A+B)/2A 完全对称:fS=1.00;对称峰: fS =0.95-1.05;前沿峰: fS <0.95;拖尾峰fS >1.05.86.[色谱术语]色谱基线:色谱操作条件下,仅有流动相通过检测器时,反应检测器噪声随时间变化的曲线.稳定的基线是一条直线.87.[色谱术语]基线噪音:与被测样无关的检测器输出信号引起的基线波动,基线波动的大小就是噪声的大小.基线漂移:基线随时间的增加朝单一方向的偏离.88.[色谱术语]峰高h:从色谱峰顶点到基线的距离.峰高一般用mm或检测器输出信号单位表示.峰高可作为定量测定的依据之一.89.[色谱术语]峰底宽度W:在色谱峰两边的转折点[也叫拐点,即E和F]所画的切线与基线相交的截距IJ.两个拐点E和F之间的距离为EF=2σ,分别位于约0.607h处.峰宽直接体现出色谱条件的影响.90.[色谱术语]峰面积A:色谱峰与基线延长线所包围的面积.91.[色谱术语]保留指数:它是与被测物质具有相同调整保留时间的假想的正构烷烃的碳数乘以100.92.[色谱术语]分离度RS:相邻两个组分的色谱峰,其保留时间差与两

峰峰底宽平均值之商.93.[分配色谱]⑴正相色谱:极性固定相+非极性流动相

用于分离极

性化合物,极性小的组分先流出.⑵反相色谱:非极性固定相+极性流动相 用于分离非极性化合物,极性大的组分先流出.94.载体:载体是惰性的,无吸附能力,可吸留较大固定相液体.⑴硅胶:使

用前:酸洗—水洗—醇洗—干燥—水混—调浆[展开剂]—装柱.⑵硅藻土:是目前应用最多的载体.处理方法同上,浆态上柱,压平.⑶纤维素:也较为常用,酸洗+水洗.95.选择展开剂[流动相]时,首先应选择各组分溶解度相差较大的溶剂.展开剂必须先用固定相饱和,方法是过量固定相加展开剂中,分液漏

斗分层出展开剂.96.凝胶[排阻]色谱:原理:待分离物质分子量大小不同,在凝胶柱经过

时,停留时间的不同得以分离.97.三种凝胶:⑴葡聚糖凝胶:应用最广①国外商品名Sephadex,由葡聚

糖交联而成.葡聚糖是蔗糖发酵后,分级,选取分子质量在3×104-5

×104的部分,经交联后得到不溶于水的葡聚糖凝胶.②交联度:交联

剂占原料总质量的百分比称为交联度.③常用G类Sephadex商品,Sephadex G-250含义为每克干胶吸水体积可达到25ml.⑵聚苯烯酰胺凝胶:①一种全化学合成的人工凝胶,由苯烯酰胺[单体]以亚

甲基双苯烯酰胺[双体]为交联剂,经催化聚合而成再经干燥成型处

理得到颗粒状干粉商品.②商品名:Bio-Gel P, P后编号×1000大致

反应其排阻极限.③如: Bio-Gel P-100表示其分离相对分子质量大约为100000.⑶琼脂糖凝胶:①用氯化十六烷基吡啶/乙烯醇等将海藻多糖琼脂中带负电基团的琼脂胶沉淀除去,得到中性多糖成分即为琼脂糖.②商品名:Sepharose 2B`4B`6B.表示琼脂糖浓度

为2%`4%`6%.

篇2:生物分离新技术

文章来源: 发表日期: 2006-5-22 浏览次数: 202

菜籽油和甲醇在烧碱催化剂存在的条件下发生连续甲酯化。经过两级甲酯化反应后进入水洗工艺。

菜油加热后加入甲醇和催化剂进行第一级反应,脂肪酸部分被甲酯化。这一级菜籽油几乎完全被甲酯化,生成的甘油与甲醇 混合物被连续带出。用离心机来分离第一级反应部分甲酯化的物料。分离出菜油/甲酯与甘油/ 甲醇混合物.甲醇与甘油在后续工艺中被回收。

在第二级反应中进一步甲酯化,再次进入甲醇与催化剂。用离心机再次分出反应的两相。

菜油甲酯中的残余甲醇通过蒸发去除并用回工艺中。水洗步骤分两次进行在第一次水洗时使用普通水,第二次使用加酸水。用离心机来分离洗涤水。水洗过的菜籽油甲酯经过真空干燥再通过换热冷却。

交酯化反应诗平衡反应。平衡与反应温度、压力和催化剂有关。该工艺也适用于其他动植物油甲酯化。

篇3:生物分离新技术

关键词:生物分离技术,课堂教学,演示实验

《生物分离技术》理论课是我院的专业选修课, 开设迄今已有6个学年, 目前笔者承担并已主讲两次该课程, 获得学生好评, 同时主持相关科研项目, 力争将生物分离这门技术在教学、科研与生产实践上融会贯通。我校所设《生物分离技术》理论课服务于生物技术本科专业, 坚持理论与实践相结合, 并以应用为主, 指导学生如何将该技术应用于工农业生产, 而生物分离涉及的诸多原理性问题不是教学重点。为提高教学效率, 笔者曾从多方面综合考虑, 在前人基础上对该课程的教材选择、课件制作、考核导向等方面做了调整, 充分利用原有教学资源, 尽量改变过去陈旧的教学方法[1]。《生物分离技术》课程实践性强, 重在操作, 但由于条件所限, 目前该课程尚未开设实验课。而实验课的开设需要场地、仪器设备、人员配置、经费支持以及教学计划调整等多方面, 牵一发而动全身, 虽已在申请中, 但短期内难以实行。为提高学生学习兴趣, 活跃课堂气氛, 增强教学互动, 笔者拟在课堂上开展教学实验演示, 本文即对此展开详细探讨。

一、教学演示实验的分类

根据要达到的目的, 《生物分离技术》教学演示实验可简单分为以下几种:

1. 启发性的演示实验。

是由实验结果启发学生思考, 从而继续设计实验, 引出新的结果。例如在讲沉淀技术时, 首先指出沉淀技术是指在溶液中加入沉淀剂使溶质溶解度降低, 形成固相从溶液析出从而达到分离的一种技术。继而将预先准备的牛血清白蛋白溶液调至等电点, 结果表明等电点沉淀技术不能完全沉淀蛋白, 此时可启发学生思考原因, 并考虑其他沉淀方式, 并可当场选择若干加以验证。

2. 验证性的演示实验。

是对一些难以理解又不容易解释的问题, 设法简单验证。比如萃取技术, 它是指当含有生化物质的溶液与互不相溶的第二相接触时, 生化物质倾向于在两相之间进行分配, 集中到一相中, 而原来溶液中所混有的其它杂质分配在另一相中, 这样就能达到某种程度的提纯和浓缩。因此萃取的关键是配置互不相容的两相, 而这两项的形式在不断发展, 例如在讲传统萃取时, 可演示四氯化碳萃取碘水中的碘, 在讲双水相萃取时, 可配置聚乙二醇/磷酸盐体系, 演示用于从奶酪中分离β乳球蛋白, 在讲反胶束萃取时, 可向有机溶剂中加入表面活性剂配置反胶束溶液, 演示从棕色固氮菌培养液中直接萃取胞内酶, 在讲固相萃取时, 可直接将固相萃取装置做一介绍。使得学生对萃取技术的特点、操作方式、发展现状有较深入理解。

3. 强化教学效果的演示实验。

是通过把一些深奥难懂的问题直观地反映出来, 使学生在获得感性认识的同时, 进一步加深对知识点的理解, 从而达到深入浅出的教学效果。例如在介绍色谱分类时, 学生不易理解, 可通过运用多媒体动画演示离子交换色谱、凝胶色谱和亲和色谱的原理, 接着展示纸色谱、薄层色谱和柱色谱等多种色谱形式。然后针对离子交换色谱做演示实验, 以羟基磷灰石为树脂, 预先处理、装柱、平衡好, 以红藻为原料, 预先破碎、离心、盐析、透析、过滤等处理得紫红色溶液, 在课堂上讲解理论知识的同时将溶液上羟基磷灰石柱, 并用离子强度不断增加的磷酸盐缓冲液洗脱, 可逐次洗下红色、蓝色等多种条带, 代表不同的蛋白组分。该实验简单直观地解释离子交换的原理和基本过程, 可激发学生兴趣, 能收到令人满意的教学效果。

4. 调节性的演示实验。

许多学生都认为生物分离技术课理论知识枯燥难学, 在课堂上, 可以打开生物教学工具箱, 或者带一些新颖的小型分离设备, 如超滤膜包、电动移液器、超滤离心管等, 先让学生识别, 然后逐个介绍功能和使用方法。

二、教学演示实验的注意点

1. 演示实验重在引导、启发学生。

引导学生质疑问难, 或创设若干个富有探究性的新问题, 这样课堂教学效果会更好。比如教师可提出如下问题诱导学生思考:鸭蛋蛋黄中脂肪的含量高达31%, 为什么看不到一点油?可是在咸蛋的蛋黄中, 却经常可以看到黄色的油滴往外流?从这两种不同的处理过程得到不同的结果, 又会引发怎样的结论?这些很有探究意义的问题, 可以激发学生的探究欲望, 使学生产生浓厚的学习兴趣。

2. 在演示实验中增加学生的参与。

演示实验是教师在课堂上为学生演示操作, 同时又引导学生对实验进行观察、思考和分析。以往的课堂教学, 后边的学生看不清演示实验过程, 影响教学效果。因此, 在演示实验中, 应积极引导学生观察、讨论、分析、归纳总结, 甚至在实验操作上让学生积极参与, 充分了解实验的内容。

3. 变验证性实验为探索性实验。

生物课堂演示实验可分为验证性实验和探索性实验, 前者占大部分。验证性实验是对知识的正确与否加以验证, 巩固和加深对基本规律和基本原理的认识。而探索性实验对培养学生思维能力、创造能力、自学能力、观察实验能力及解决实际问题的能力有独到的作用[2]。因此, 在教学中可把一些验证性的实验变为探索性的实验, 多让学生想, 启迪学生思路。例如前述从牛血清白蛋白溶液中分离蛋白, 除了沉淀方法, 还有浓缩, 干燥, 结晶, 电泳, 离心, 色谱, 萃取、膜分离等, 几乎每一种生物分离技术都能达到同样目的, 具体选择哪一类哪一种, 就是一个深入研究探讨的问题, 可以让学生展开讨论, 各抒己见, 同时分组设计实验方案做实验, 综合考虑实验效果和成本, 让学生由学知识变为主动探索自然规律, 对知识学得更扎实更牢固。

4. 合理运用多媒体, 优化演示实验教学。

教学演示实验可提高学生动手能力, 而结合利用多媒体教学, 可扩展教学视野, 是教学现代化的重要标志。如应用多媒体展示工业化的生物分离设备, 全自动分离的流程演示, 最新的生物分离技术, 从而突破时间和空间的束缚, 进行逼真地模拟, 灵活地放大或缩小生物分离场景, 将生物分离过程生动形象地展现于学生眼前, 使学生认识加强, 理解透彻。

总之, 教学演示实验是介于纯理论教学与实验课之间的过渡形式, 但对于《生物分离技术》这门重在操作的课程来说很有意义, 使学生的学习活动符合学科内容的认知规律, 并提高课堂教学的有效性, 实现素质教育决胜于课堂的教学战略转移。除了演示实验, 也可安排学生参观实验室中各种生物分离实验设备, 并安排对生物分离实验感兴趣的学生在实验室继续深造。通过这种课堂教学的延伸, 可提高学生的学习积极性和主动性, 激发学生对该专业课的兴趣, 达到全面提高素质教育质量的目标。

参考文献

[1]蔡春尔, 贾睿, 胡燕, 何培民《.生物分离技术》理论课教学体会[J].教育教学论坛, 2013, (43) :72-73.

篇4:生物分离新技术

摘 要:精品课程建设是提高高职教育教学质量的关键,文章结合《生物分离与纯化技术》精品课程的建设,从师资队伍建设、课程设计的理念与思路、教学内容、教学方法与手段、课程考核与评价等方面阐述了课程教学改革所作的探索,以期为同类课程建设起到抛砖引玉的作用。

关键词:生物分离与纯化技术;精品课程;教学

中图分类号:G434 文献标志码:B 文章编号:1673-8454(2015)14-0059-03

课程建设是教学质量的中心环节,是衡量学校办学水平与教学质量的重要标志,是实现人才培养目标的基本保证。[1]高职院校精品课程是高职院校教学改革工程的重要组成部分,是一项系统工程,是专业建设的基础,更是我国高职教育改革与发展的客观要求。[2]生物制药技术专业是湖北生物科技职业学院重点建设专业,《生物分离与纯化技术》是该专业的核心课程。本文拟对《生物分离与纯化技术》精品课程建设方面的探索和经验进行介绍,以期为同类课程建设起到抛砖引玉的作用。

一、师资队伍建设

师资队伍建设是精品课程建设的前提条件和根本保证,需要拥有一批高素质的教师,才能从根本上解决精品课程建设过程中所遇到的各种问题,完成精品课程建设任务,达到预期目标,真正实现精品课程的可持续发展。

课程组充分发挥校企合作的功能,逐步建立了一支“专兼结合、结构合理”的教师队伍。目前,课程教学队伍12人,其中6名专任教师直接从事《生物分离与纯化技术》教学及实训工作。学院还从企业聘请了6名具有丰富生产经验的兼职教师参与课程教学和建设,指导实训工作。所有任课教师均具备“双师素质”,具有丰富的教学经验和实践动手能力;6名主讲教师均来自华中科技大学、武汉大学等知名院校,博士1名,硕士4名,具有较强的科研项目开发能力。担任该课程教学的教师为老、中、青结合,平均年龄为40岁以下,是一支经验丰富、精力旺盛、学习和接受新知识能力强的队伍。

二、课程设计的理念与思路

课程建设理念与思路对课程设计、建设方案、教学内容选取、教学方法与手段、教学载体选择、教材建设等都具有很强的指导性。课程组教师与行业紧密结合,以制药企业真实工作任务为载体,以药品生产分离与纯化工艺流程为主线,以职业资格标准和岗位任职要求为依据,课程内容与职业标准对接,教学过程与生产过程对接,遵循教育教学规律和学生认知规律,校企合作,共同建设本课程。

①与行业企业合作,共建课程

利用校企合作平台,与武汉马应龙药业集团、武汉长联来福药业有限公司等企业合作,依据专业培养目标,对产品分离纯化岗位的典型工作任务及职业能力要求共同探讨,进行科学分析和归纳,共同明确本课程的教学目标,共同确定教学项目,重组和序化教学内容,确定教学模式,制定考核标准,确保本课程的整体设计突出职业能力培养。

②以分离与纯化工艺流程为主线,以岗位真实工作任务为载体设计教学项目

药品分离与纯化工艺流程是:原材料预处理→初步分离→高度纯化→成品制作。根据这一工艺流程,我们设计了相对应的4大学习情境,每一个学习情境以典型产品为载体,合理设计13个教学项目,每一个项目都是岗位真实的工作任务,充分体现了课程的实践性。

③以职业资格和岗位任职要求为依据选取教学内容,实现课程内容与职业标准的对接

根据岗位任职要求,参照职业资格标准,以职业能力培养为核心,选取教学内容。通过实施项目化教学,有效培养和提高学生在药品分离纯化方面知识、能力和素质,使学生养成良好的职业态度。

三、教学内容设计

高职精品课程教学内容建设的思路应该是以就业为导向,以职业能力培养为重点 ,以典型工作任务分析为前提,以理论知识“必需、够用”为原则,以工作过程为依据 ,进行科学的选择和序化。[3]

本课程教学内容的确定是从课程培养目标出发,围绕区域内生物产品分离纯化生产,与区域内生物产品生产企业合作,针对生物材料的预处理、提取、纯化、精制、干燥等典型工作任务及职业岗位的任职要求,参照生化产品分离纯化工职业资格标准,同时遵循教育规律和学生认知规律,重构基于生物产品分离纯化工作过程为导向的课程教学内容。

①根据生物产品分离纯化的工作过程设计学习情境

本课程围绕学生毕业后在生物制药行业从事分离纯化生产操作及组织管理工作,满足生物产品分离纯化典型工作任务的要求,以生物产品分离纯化中的工作过程(即预处理→初步分离→高度纯化→成品制作)为主线设计4个学习情境。

②针对完成工作任务需要的岗位能力来设计教学项目

对原有学科体系课程内容进行解构与重构,针对完成工作任务需要的岗位能力来选取和设计若干教学项目。将生物产品分离纯化的单元技术整合到有形产品的生产工艺中,学生通过教学项目知识和技能的学习,可以轻松掌握生物产品分离纯化各工序的操作并拓展到该类技术的其他应用操作,具有很强的产品典型性和技术通用性。

③依据课程教学目标,以够用、适度为原则选取教学内容

根据职业工作任务分析和行动领域分析,形成本课程职业岗位,对本课程职业岗位进行能力分解,本着够用、适度的原则,参照生化产品分离纯化工等职业标准,根据生物产品分离纯化工作所需的知识、能力、素质要求,确定本课程的教学目标。然后基于生物分离纯化岗位实际工作过程设计学习情境,再根据岗位实际工作任务选取学习性工作任务,同时考虑学生可持续发展的需求,选取教学内容。

④根据生物产品分离纯化岗位任职要求及学生认知规律序化教学内容

根据专业和课程的培养目标,课程组成员在行业企业调研的基础上,根据岗位群的任职要求,分析生物产品分离纯化工作应具备的知识、技能和素质,结合生产实际及学生认知规律,对选取的教学内容进行序化。具体内容见图1。

⑤以学生为主体、以项目为导向、以任务为驱动,组织与安排教学内容实施教学

教学过程在集教学区、讨论区与实训区三位一体的实训室进行。首先将学生进行分组,每个项目组指定一个负责人,项目组类似制药企业的生产部,项目组负责人扮演生产部经理的职责,负责组内纪律、安全生产、任务分配、工具设备和学习资料的管理等工作。

课程开始时,教师首先通过案例或提问等方法,提出项目并引导学生制定方案。然后各小组按照原料组织、工艺方案制定、设备调试、生产、评估反馈、问题纠正讨论等实际生产流程开展项目操作。

四、教学方法与手段

《生物分离与纯化技术》课程组教师一直积极开展教学方法的改革,不断推广先进的教学方法,有效地培养了学生的创新能力和技术应用能力。为了强化职业能力的培养,本课程组在遵循基本教学规律和职业教育规律的前提下,根据课程内容和学生特点,因材施教,灵活运用了案例教学、分组讨论教学、项目引导教学、示范教学等多种方法,引导学生积极思考、乐于实践,有力地促进了课程培养目标的实现。特别是依据基于工作过程的内在要求设计了“项目导向”教学模式,采用开放、互动、教学做一体化等多种教学方式,使学习内容任务化、学习过程情境化、课程教学导向化、课程考核过程化,让学生在真实“情境”下进行学习,以完成学习性工作任务为目标,充分发挥教师在教学中的主导作用,真正体现学生在教学中的主体地位,培养了学生实践动手能力、主动学习能力、创新能力和利用信息资源能力,提高了学生的沟通能力、协调能力及团队协作能力等社会能力。

在教学活动中,充分利用现代教育技术开展多媒体教学。课程组教师制作电子课件、技术视频、工厂实训视频、图片等丰富的教学资源,将文字、图片、声音、视频、动画完美融合,使课堂教学形式发生了巨大变化,内容形象、直观。在教学过程中,我们还注重信息技术的应用,通过“虚拟”与“现实”相结合,开发虚拟实验,进行仿真操作。此外,本课程开发了大量基本教学资源和特色学习资源,制作了一个资源丰富、特色鲜明、实用性强的课程网站,全面实现了资源共享。

五、课程考核与评价

课程考核与评价是对教学结果的验收与检测,考核与评价方式对教学活动开展和教学目标的实现具有很强的导向作用。在精品课程建设期间 ,我们改革原有的单一的教学评价制度,建立了多维度 、立体化的教学评价体系。

根据药品分离与纯化岗位标准和任职要求 ,形成了以学生自评、小组互评、教师点评三方评价相结合的考评机制。在学、做、评中通过“过程性”考核,达到反馈和强化的目的,最终使学生有效地掌握了关键知识和技能。同时,通过“做与评结合”、三方“过程性”评价结合,既培养了学生的职业能力,又提高了学生的职业素养。

总之,精品课程建设是一个综合性的建设过程,是一个艰辛又持久的过程。随着时代的进步、科学的发展,精品课程建设内涵也要与时俱进,不断充实、不断发展,其教学理念、教学内容和教学方法才能始终保持先进性。[4]“一分耕耘一分收获”,只要坚持不懈不断进取,课程改革和建设一定会取得长足的进展。

参考文献:

[1]余永龙.关于高职院校精品课程建设的思考[J].职业教育研究,2007(8):18-19.

[2]蔡健,王薇,刘海明等.高职院校精品课程建设研究与实践[J].职业教育研究,2011(8):40-41.

[3]童乃诚.谈高职精品课程教学内容的选取与组织策略[J].广东技术师范学院学报(职业教育),2010(2):7-9.

[4]王芳亮.高校精品课程后续建设存在的问题及对策[J].现代教育科学(高教研究),2011(1):166-168.

篇5:生物分离新技术

实验报告书

实验课程名称: 实验指导教师: 学

院: 专业及类别: 学

号: 姓

名: 实验日期: 成绩:

重庆大学研究生院制

一、实验目的

1、了解分离与纯化微生物的基本原理及方法;

2、了解倒平板配制土豆培养基的方法与平板划线分离的基本操作技术;;

3、学习习近平板菌落计数的基本原理和方法,并掌握其基本技能;

4、初步观察来自土壤中的几类微生物的菌落形态特征,并能判断菌的类型。

二、实验原理

1、培养基的种类

培养基是人工配制的适合微生物生长繁殖或积累代谢产物的营养基质,用以培养、分离、鉴别、保存各种微生物或积累代谢产物。一般的培养基应包含适合微生物生长的6大营养素即水分、碳源、氮源、能源、无机盐和生长因子。培养基的种类很多,根据培养成分的不同可分为天然培养基、合成培养基与半合成培养基;根据物理状态的不同又可分为液体培养基和固体培养基。微生物的分离、纯化、记数等方面的研究常常使用的就是固体培养基。本实验就是使用的固体培养基。

已配制好的培养基必须立即灭菌,如来不及灭菌,应暂存冰箱,以防止其中微生物生长繁殖而消耗养分和改变培养基酸碱度所带来不利影响。

培养基的原材料来源十分广泛,本实验采用的原材料为土豆。

2、接种方法与无菌接种

将微生物的培养物或含有微生物的样品移植到培养基上的操作技术称之为接种。接种是微生物实验及科学研究中的一项最基本的操作技术。接种的关键是要严格的进行无菌操作。微生物的接种方法很多,划线接种、三点接种、穿刺接种、混浇接种与涂布接种是几种常用的接种方法。

划线接种是最常用的接种方法,即在固体培养基表面作来回直线形的移动,就可以达到接种的目的。常用的接种工具为接种环、针等。在斜面接种和平板划线中就常用此法。三点接种是把少量的微生物接种在平板表面,成等边三角形的三点,让它各自独立形成菌落后,来观察研究它们的形态。研究霉菌形态时就常用此法。

穿刺接种是用针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺。该法常用于厌氧菌种的保藏或微生物的动力研究。

混浇接种是先将待接的微生物放入培养皿中再倒入冷却至45℃左右的固体培养基,迅速轻轻摇匀,这样菌液就被稀释了。待平板凝固后,置于适宜温度下培养,就可以长出单个菌落的微生物。

涂布接种是将菌液倒入平板上,再用涂布棒在表面迅速的作来回左右的涂布,让菌液均匀分布,就可以长出单个菌落的微生物。

本实验采用的是划线接种。为了防止接种时引入其它微生物,整个操作过程均需在无菌操作台上进行,还需对操作员的双手进行酒精消毒,每次划线前都需灼烧接种环,接种时才打开培养皿且不能全部打开,接种完马上关上。

三、实验器材

1、仪器

培养皿、量筒、滴管、吸水纸、烧杯、三角瓶、酒精灯、玻璃棒、接种环、15ml离心管、试管架、镊子、电磁炉、锅、恒温培养箱、高温灭菌锅、无菌操作台、酒精灯、天平、滤纸等。

2、材料

土豆、琼脂、蒸馏水、酒精、土壤样品

四、实验步骤

1、土壤稀释液的配制

① 在菜地用九点取样法取适量土壤样品,具体操作为:在菜地选取九个取样点,在每个取样点取相同量的表层土壤(10cm左右),然后将其混合均匀;

② 称取1g土壤样品与99ml蒸馏水,将其配制成100ml的土壤溶液; ③ 用移液管取9ml蒸馏水于15ml离心管中,再用移液枪取1ml前一步已配制的土壤溶液于离心管中,摇匀,即为10-3的土壤溶液;

④ 重复前一步,将土壤溶液稀释为10-

4、10-

5、10-

6、10-

7、10-8一系列稀释液。

2、土豆培养基的制备

① 用天平称取200g土豆,清洗干净后去皮切丁;

② 用量筒量取1000ml蒸馏水与电磁炉锅中,再加入已准备好的土豆,将其煮烂;

③ 从锅中取出已煮烂的土豆,用纱布过滤,滤液待用; ④ 称取20g琼脂与滤液中,再用蒸馏水定容至1000ml;

⑤ 在制备好的滤液中加入0.1ml菌液,然后放入高温灭菌锅中,在121℃下灭菌20min;

⑥ 取出已灭菌的土豆培养基,待其熔化后冷却至60℃,倒入每付平板约15-20ml,待其凝固后便可使用。

3、微生物的接种与分离

① 将接种需要的所有器材均放置于无菌操作台上;

② 用浸泡在酒精里棉花给双手灭菌,点燃酒精灯,右手拿接种环,左手拿培养基;

③ 将接种环放在火焰上烧灼,待其冷却后在10-6土壤稀释液中蘸取少量液体,打开培养基的一部分,采用划线接种,使之形成单菌落,一共划线3-4次,每划线一次就需在火焰上烧灼一次;

④ 重复上步,接种10-

7、10-8的土壤稀释液的微生物;

⑤ 接种完的培养基放在恒温培养箱中倒置培养48h,取出观察。

五、结果与思考

1、实验结果

图1 实验结果如图1所示。由图1可知,采用划线接种土壤微生物的培养皿里有单菌落出现,这说明划线接种能达到分离培养的目的。

学习过微生物这门课程的同学都知道,真菌的菌落较大且疏松,菌丝细长,呈绒毛状、蜘蛛网状、棉絮状,无固定大小,多有光泽,不易挑,孢子会呈现红色、褐色、绿色、黑色、黄色等不同的颜色;细菌的菌落较小,形状表面或光滑黏稠,或粗糙干燥,易挑起,多为白色。由此可知土壤里既含有真菌又含有细菌。

2、思考题

⑴在平板划线法中,为什么每次都需要将接种环上的剩余物烧掉?

答:这么做的主要目的是杀死上次划线后接种环上残留的菌种,以使下次划线的菌种直接来自于上次划线的末端,使每次划线菌种数目减少,从而达到分离菌株的目的。

⑵为什么要把培养皿倒置培养?

答:①操作时培养皿盖上可能粘有水珠或者细菌,倒着培养可以避免培养皿盖上的水珠或者微生物落在培养皿上;

②培养过程中,细菌在代谢繁殖过程中会产生一些有害于细菌生长繁殖的代谢物,释放热量及有水排出,如果不倒着培养会有水珠滴落到培养基中,影响菌落的生长;③如果培养目标是收集细菌代谢物,而且代谢物易溶于水,倒着培养可能会方便收集。

六、实验总结 我本科所学专业是材料科学与工程,本次实验是我高中后第一次接触微生物方面的知识。在本次实验课里,段老师先给我们详细讲解了微生物分离培养方面的许多理论知识,然后才进入了理论环节。在实验操作过程中段老师一直在我们旁边观察我们的实验操作过程,一旦出现错误,会立即指出并耐心的给我们讲解应该怎么做,我担心自己从来没做过微生物培养方面的实验会做不好,段老师还一直在旁边鼓励我,并给我讲解了许多微生物分离培养方面的知识,最后我独立完成了本次实验。此次实验课,我真的是受益匪浅,学到了许多微生物分离培养方面的知识,十分感谢段老师。

篇6:生物分离新技术

·沉淀法

将碱水液用酸调ph弱酸性,加生物碱的沉淀试剂,使水溶性生物碱与试剂生成不溶于水的复合物或盐而析出,滤取沉淀,净化、分解即得水溶性生物碱。实验室常用的雷氏铵盐沉淀法,具体操作是将碱水液加盐酸调至ph 2 左右,加入新鲜配制的雷氏铵盐饱和水溶液,滤集生成的生物碱雷氏盐沉淀,用少量水洗涤1~2次,抽干。将沉淀溶于丙酮(或乙醇),滤除不溶物,再将此丙酮液通过氧化铝柱净化,并用丙酮洗脱,收集丙酮洗脱液,向其中加入硫酸银饱和水溶液。也可不经过氧化铝柱净化直接向生物碱雷氏盐丙酮溶液中加入硫酸饱和水溶液,使生物碱雷氏盐分解,生成生物碱硫酸盐和雷氏银盐沉淀,过滤后再向滤液中加入计算量氯化钡溶液,生成生物碱盐酸盐和硫酸钡沉淀,过滤,滤液蒸干即得水溶性生物碱盐酸盐,整个反应过程以反应式表示如下。

b + nh [cr(scn) (nh ) ] b[cr(scn) (nh ) ]↓ + nh

2b[cr(scn) (nh ) ] + ag so2ag[cr(scn) (nh ) ]↓+b so

b so + bacl2bcl + baso ↓

b =季铵生物碱阳离子

也可将生物碱雷氏盐丙酮液通过氯离子型阴离子交换树脂柱,直接得到生物碱的盐酸盐。

r cl + b [cr(scn) (nh ) ]r [cr(scn) (nh ) ] + b cl

rcl=氯离子型阴离子交换树脂

如用磷钨酸、硅钨酸作沉淀剂时,所得的生物碱复合物沉淀用氢氧化钡或氢氧化钙分解。如用重金属盐作沉淀剂,则所得的生物碱沉淀物可通硫化氢气体分解。

·溶剂法

水溶性生物碱可溶于与水不相混溶的极性有机溶剂,可用这些溶剂从水中将水溶性生物碱萃取出来。

·离子交换树脂法

上一篇:信贷业务风险排查下一篇:幼儿园大班美术活动教案《小种子去旅行》及教学反思