基于多岛遗传算法的多状态动力学模型并行修正方法论文

2024-06-09

基于多岛遗传算法的多状态动力学模型并行修正方法论文(精选1篇)

篇1:基于多岛遗传算法的多状态动力学模型并行修正方法论文

目前,工程中广泛采用以结构几何和材料参数为设计变量的参数型修正方法,该方法能够保证修正后模型质量、刚度矩阵保持带状对称特征,修正结果具有明确的物理意义。本文对传统的参数型修正方法进行扩展,提出了结构动力学模型并行修正方法。该方法包含系统级和子系统级两层系统,针对不同试验状态分别建立其数值分析模型,并行开展不同试验状态的动力学特性分析,形成子系统层;将各模型分析中需要的设计参数合并到系统级设计向量中,依据各模型需要分配设计参数,保证在修正过程中不同状态的模型参数一致。

2 多岛遗传算法

遗传算法是一类借鉴生物界的进化规律演化而来的非经典优化算法。与传统的优化算法相比,遗传算法不存在求导和目标函数连续性的限定,且具有全局寻优能力。但传统的遗传算法在优化过程中基因突变的概率较低,容易在进化几代后出现早熟现象,导致优化结果收敛于局部最优解。

3 数值算例

以某飞行器为例,依据其一级满油、一级空油、二级满油、二级空油 4 种典型飞行状态下的前两阶模态频率和振型试验结果,选取各舱段材料的弹性模量为优化变量,数值分析与试验结果差异为优化目标,采用本文方法进行动力学模型修正。

4 结 论

a)提出了基于多岛遗传算法的多状态结构动力学模型并行修正方法,改进了传统方法针对同一产品不同试验状态分别修正模型,导致同一产品模型参数不一致的不足,更符合工程实际;

b)动力学模型并行修正方法中各试验状态的残差之间相互独立,且对残差的物理意义没有约束,可以同时对动力学特性和动力学响应模型进行修正;

c)采用多岛遗传算法驱动优化流程,避免了经典优化算法需要对目标函数求导的限制,同时保证了设计参数收敛于全局最优解;

d)模型修正后模态频率和振型更接近实测值,可为工程设计采用。

上一篇:放飞梦想 迎接人生第一岗下一篇:12年二级机电实务真题(6月)