基础设计和结构设计分析

2022-09-10

1 工程概况

某工程由7栋高层组成, 地下有两个相互连通的一层地下室。其中1号栋地上27层, 地下1层, 由A、B、C三个单体组成, 单机之间设260mm宽的缝彼此脱开。1号栋1、2层为商业用房, 3层以上为住宅, 地下为一层的五级人防地下室, B座上部剪力墙不允许落地, 从而形成钢筋混凝土框支剪力墙结构体系。

2 基础设计

2.1 地基土构成与特征

勘察场地的地貌单元属湘江冲积阶地, 按其结构特征, 地层成因, 土性不同和物理力学的差异划分为8层。拟建场地浅部土层中的地下水属于潜水, 设计抗浮水位标高为-5.100m。

2.2 桩基设计

1号栋地下1层板面标高为-4.170m。由表1可以看出, 地下室板下土由层 (2) 、 (3) 、 (4) 构成, 其承载力不高, 变形模量较大, 作为1号栋的天然地基土承载显然不够。若采用人工挖孔灌注桩, 有两个制约因素:其一是桩端持力层落在层 (8) 上, 桩长达到将近3 0 m, 不经济;其二是层 (9) 中富含潜水, 将对人工挖孔桩的施工造成困难。在本工程中采用了水泥粉煤灰碎石桩复合地基 (CFG桩) 。1号桩CFG桩径500, 桩间距1500, 其他基承载力特征值fspk=620kPa, 完全可以作为主楼的持力层。地下室主楼以外车库部分荷载较小, 在控制好沉降的前提下采用层 (2) 、 (3) 、 (4) 作为持力层。

针对结构超长设置膨胀加强带, 在结构底板、侧壁、顶板中掺入适量的微膨胀剂, 加强带的间距20m-30m为宜, 由此加强整个地下室的整体抗裂能力。基础采用平板式筏板基础, 板厚1500m, 核心筒下板厚2.0m-2.2m。沉降的计算结果为:主楼核心筒最大沉降量19mm, 角柱沉降量4mm;主楼外车库部分沉降量2mm。其沉降量, 沉降差均能满足规范要求。根据近十年来对已建成的高层建筑主楼基础与相连的裙房基础沉降观测表明, 当主楼为筏形基础, 裙房为满堂筏形基础时, 主楼与裙房基础相连处设置施工后浇带, 在施工期间以及竣工以后, 此处基础沉降曲线是连续的, 没有突变现象。当后浇带封闭后, 只要底板具有足够的刚度, 可以认为该计算结果是符合实际工程情况的。

3 上部结构设计

工程抗震设防烈度为6度, 设计基本地震加速度值为0.05g, 设计地震分组为第一组, 场地土的类型为中硬场地土, 建筑场地类别为Ⅱ类, 设计地震特征周期值为0.35S。主楼上部结构A、C座采用现浇钢筋混凝土框架一剪力墙结构, B座为框支剪力墙结构。A、C座框架抗震等级为三级, 剪力墙抗震等级为三级;B座框支框架抗震等级为二级, 底部加强部位剪力墙抗震等级为二级, 非底部加强部位剪力墙抗震等级为三级。地下车库采用现浇钢筋混凝土框架结构, 抗震等级为三级。

3.1 结构转换

工程层3以上为剪力墙小户型住宅, 层1、2为商业、娱乐用房, 需要较大开间及空间, 上部的短肢剪力墙无法落地, 因此存在结构转换问题。针对工程实际情况, 并考虑到造价的因素, 在转换层设置转换大梁, 以承托上部短肢剪力墙。由于转换梁承托着上部24层的剪力墙, 受力很大, 因此需要很大的截面和配筋, 即需要转换层下层有较大的层高。经与建筑专业人员协商, 在转换层以下部分山墙两端及房间开间两侧设置剪力墙, 加大房屋的整体刚度及抗扭刚度。同时转换层以下不设管道层, 在3 m标高处设置管道通廊, 将设备管道由此引出室外, 从而将转换层下层的层高由5.4m降到4.8m。经过计算, 满足了侧向刚度规则的要求, 该转换层结构方案传力途径明确, 受力状况相对简单, 对框支构件另采用平面有限元的程序进行单独分析, 并与总体计算结果对比, 以保证关键构体的抗震安全。值得注意的是, 转换层大梁不是框支梁。框支梁上部承托完整的剪力墙需满足高规规定的条件, 框支梁整截面受拉。转换梁和普通梁一样单面受压或受拉, 在构造要求上与框支梁不同。高规对框支梁的构造有非常详细的要求, 对转换梁的规定很少。

3.2 结构抗扭

A、C座平面不规则, 中部楼电梯间凹进比较严重, 按照抗震规范3.4.2条的定义, 已属凹凸不规则、楼板局部不连续的平面不规则结构。在结构初步计算时, 没有对剪力墙的平面布置作出适当调整, 结构扭转为主的第一自振周期压与平动为主的第一自振周期下之比为0.96, 扭转周期偏大。由于实际条件的限制, 建筑专业能做的调整有限, 只能由结构专业采取措施:即通过加强结构的抗扭刚度, 从面提高结构的抗扭能力, 当结构出现扭转时也能保证安全。从力学基本概念可知, 构件离质心越远, 其抗扭刚度就越大。所以, 在建筑物外围尽可能布置抗侧力结构, 可以显著加大结构的抗扭刚度。在设计时将两端剪力墙、框架柱、框架梁刚盘适当提高, 端跨板加厚, 双层双向配筋, 以加强结构的连接。

3.3 对结构处理的总结

工程结构存在着以下不利因素:平面凹凸不规则, 竖向抗侧力构件不连续, 侧向刚度变异大。为了保证结构的抗震安全, 有必要采取措施, 一方面使结构计算符合实际情况, 力求能准确反映结构的抗震能力及薄弱环节;另一方面也要按照概念设计的原则, 在构造上采取措施, 进一步保证结构安全。具体措施: (1) 分别采用广厦SSW和SATWE两种程序进行结构的空间分析, 以求正确反映结构的内力与变形情况。两种程序分析出的结构反应特征、变化规律基本吻合, 各种指标均能满足规范要求。 (2) 对框支构件采用平面有限元分析程序FEQ验算配筋。需注意转换梁的构造要求。将转换层及其上下两层楼板加厚, 钢筋双层双向拉通配置。 (3) 针对平面不规则的情况, 在建筑物外围尽可能布置抗侧力结构, 外围及核心筒构件截面造当加大, 配筋适当加强。A、C座结构自振周期 (秒) 。

B座结构自振周期 (秒) 。

B座侧向刚度比。

(1) 侧向刚度比 (括符表示Y向) 。

4 结语

通过设置后浇带, 采取必要的构造措施, 高速结构构件刚度, 提高结构的抗扭承载力及采用空间有限元法和时程分析计算手段, 解决了设计中存在的结构超长、扭转效应明显等问题, 使结构满足抗震设防的要求。

摘要:本文通过一工程实例介绍了该项目的结构设计分析。

关键词:建筑工程,结构设计,桩基

上一篇:发挥实验优势,挖掘实验资源下一篇:82例改良持续负压封闭吸引技术应用在糖尿病合并坏死性筋膜炎治疗的效果