信号与系统教案第三章

2023-03-25

作为一位兢兢业业的人民教师,就不得不需要编写教案,借助教案可以让教学工作更科学化。那么什么样的教案才是好的呢?以下是小编收集整理的《信号与系统教案第三章》的相关内容,希望能给你带来帮助!

第一篇:信号与系统教案第三章

信号与系统教学大纲_马金龙_信号与系统

信号与系统教学大纲

课程英文译名: Signals and Systems

课内总学时: 64/48 学分: 4/3

课程编号: A0401070/A0401080

课程类别:必修

面向专业:电子信息工程、电子信息科学与技术、电子科学与技术、通信工程、光信息科学与技术、计算机通信、信息对抗与技术

课程编号: B040108

课程类别:限选

面向专业:计算机科学与技术

一、课程的任务和目的

本课程是电子工程、通讯工程专业的一门主要专业基础课。其任务是以系统的观点研究信号传输的数学模型,通过适当的数学分析手段建立和求解描述系统的方程并对所得的结果给以物理解释,赋予物理意义。本课程主要讨论确定性信号经线性时不变系统传输后如何处理的基本理论,从时域分析到变换域分析,从连续时间系统到离散时间系统,从系统的输入 - 输出描述法到状态空间描述法,力求以统一的观点阐述信号分析及线性系统的基本要领及基本分析方法。通过本课程的完整理论体系的学习可以激发学生对信号与系统学科的学习兴趣和热情,对培养学生建立正确的思维方法、严谨的学习作风、提高分析问题和解决问题的能力等方面都有重要作用,为后续课程的学习及进一步的研究工作提供坚实的理论基础。

二、课程内容与基本要求

本课程要求学生掌握信号的概念及系统的基本要求,包括信号的时域模式和频谱理论;连续系统和离散系统数学模型的建立及几种分析方法,特别注意各种分析方法之间的相互关联。

(一)信号与系统的基本概念

信号传输系统概述,了解信号的描述及其分类,信号的分解,系统模型及其划分,理解线性时不变系统的基本特性,了解线性时不变系统的一般分析方法。

(二)连续时间信号的频域分析 掌握周期信号傅里叶级数,理解周期信号和非周期信号的频谱概念;了解傅里叶变换的引入过程,注意信号的奇偶性和频谱的奇谐、偶谐之间的关系和区别;理解频谱概念的物理意义;掌握常用基本信号的频谱和傅里叶变换的性质;掌握抽样信号的概念及抽样定理;理解频域分析求解系统响应的物理实质。

(三)LTI系统方程的建立与系统模拟

理解连续时间系统微分方程及离散系统差分方程的建立;掌握算子及传输算子;掌握因果信号的算子表示方法;掌握3种系统的模拟图和信号流图。

(四)卷积的计算

掌握卷积的定义及物理概念;掌握卷积的性质及计算方法计算技巧,尤其是算子法;并充分理解卷积的物理实质并了解卷积的应用。

(五)连续时间系统的时域分析

掌握经典法求解微分方程;掌握用冲激平衡法求系统响应;掌握零输入响应与零状态响应、冲激响应与阶跃响应的求解。

(六)连续时间系统的频域分析

了解周期和非周期信号作用下系统响应及频谱的计算方法;掌握频域系统函数的定义及计算;掌握无失真传输系统的概念及响应;掌握理想滤波器的响应计算;掌握幅度调制与解调的概念及信号的频谱变化。

(七)连续时间系统的复频域分析

了解拉普拉斯变换定义的引入及收敛域,掌握常用函数的拉氏变换、拉氏变换的基本性质以及拉氏反变换的计算方法;掌握线性系统的复频域分析法,注意 S 域等效模型的运用;;理解系统函数的零极点分布及其与时域特性、频域特性的关系;了解系统的稳定性概念及一般判据。

(八)离散时间系统的时域分析 掌握经典法求解差分方程;掌握零输入响应与零状态响应、冲激响应与阶跃响应的概念及求解。

(九)离散时间系统的z域分析

掌握z变换的定义及收敛域,掌握常用离散信号的z变换、z变换的基本性质以及z反变换的计算方法;掌握用z变换分析离散系统;理解系统函数的零极点分布及其与时域特性、频域特性的关系;建立离散系统频率响应和稳定性概念。

(十)状态变量分析法

了解状态、状态变量的基本概念;掌握状态变量的选取、系统方程的建立方法;了解状态变量方程求解过程;了解状态矢量的线性变换和系统的优化。

三、与各课程的联系

先修课程:高等数学、线性代数、复变函数与数理方程、电路分析。

四、对学生能力培养的要求

使学生初步掌握信号理论的概念以及信号与系统的关系,较熟练掌握各种系统方程的建立和求解,了解信号传输的物理过程,为进一步具有信息理论方面的研究能力培养基本技巧和手段。

五、学时分配

总学时 64/48 ,分配如下:

(一)信号与系统的基本概念 4/3 学时

(二)连续时间信号的频域分析 10/8 学时

(三)LTI系统方程的建立与系统模拟 6/4 学时

(四)卷积的计算 4/3 学时

(五)连续时间系统的时域分析 6/5 学时

(六)连续时间系统的频域分析 4/4 学时

(七)连续时间系统的复频域分析 10/9 学时

(八)离散时间系统的时域分析 4/2 学时

(九)离散时间系统的z域分析 8/4 学时

(十)状态变量分析法 8/6 学时

六、教材与参考书

1. 信号与系统, 马金龙等,科学出版社, 2006 。

2. 信号与系统学习与考研辅导,马金龙等,科学出版社, 2006 。

七、说明

1. 可安排适当上机练习,辅助理解系统响应求解过程的物理意义。 2. 与《数字信号处理》课程的衔接。注重建立系统方程的过程和求解响应的各种数学方法,具体物理概念及应用由后续课程详细扩展。

第二篇:信号与系统总结

信号与系统题型:

一,选择题(20分) 总共10道,每道2分

二,填空题(18分) 总共6道,每道3分

三,判断题(10分) 总共10道,每道1分

四,计算题(30分) 总共3道,每道10分

五,综合题(22分) 总共1道,5或6小问

(一) 在选择、填空、判断题中,大家着重注意各章作业题与例题

(二) 在计算题中,

(1)离散时间系统卷积和的计算(记下公式), 连续时间系统卷积和的计算(记下公式)

大家重点看看例2.1,习题2.4和2.5

(2)计算线性时不变系统的输入输出

大家重点看看例4.25,习题4.33,4.36

(3)离散时间傅里叶变换

大家重点看看例5.10

(三) 在综合题中,有可能会考采样

(1) 公式7.1——7.6

(2) 公式7.11理想低通傅里叶反变换

(3) P390例7.2

(4) 此外重点看看习题4.16

有关第9章拉普拉斯变换和第10章Z变换的题,应该会出几道小题,大家多看看变换的性质即可。

本次信号总结是我根据老师答疑时讲的重点内容自己列出的几道典型例题,仅供参考,希望大家考试时要全答上,不要留空白。最后祝大家考试顺利,加油!

第三篇:信号与系统实验总结

信号与系统实验心得体会

为期四周的信号与系统测试实验结束了,细细品味起来每一次在顺利完成实验任务的同时,又都伴随着开心与愉快的心情,赵老师的幽默给整个原本会乏味的实验课带来了许多生机与欢乐。

现对这四周的实验做一下总结: 统观来说,信号与系统是通信工程、电子工程、自动控制、空间技术等专业的一门重要的基础课,由于该课程核心的基本概念、基本理论和分析方法都很重要,为了使我们加深理解深入掌握基本理论和分析方法以及使抽象的概念和理论形象化,具体化,在信号与系统课开设不久后又开设了信号与系统实验课。

这四次实验的实验目的及具体内容如下:

实验一:信号的分类与观察。本次实验的目的是观察常用信号的波形特点及产生方法,学会使用示波器对常用信号波形的参数的测量。实验过程中我们对正弦信号、指数信号及指数衰减信号进行了观察和测量。示波器是测量信号参数的重要元件,之前各种试验中我们对示波器也有一定接触,而这次赵老师详细的讲解使我更清楚的掌握了示波器的使用,同时也为以后其它工具的使用有了理论基础。

第一次做信号与系统的实验,让我明白了实验前的准备工作相当重要,预习是必不可少的,虽然我们都要求写预习报告,但是预习的目的并不简简单单是完成报告,真正的良好预习效果是让我们明确实验目的与实验内容,掌握实验步骤来达到在实验中得心应手的目的。而实验后的数据处理也并不是一件很轻松地事,通过实际的实验结果与理论值相比较,误差分析与实验总结,让我们及时明白实验中可能出现的错误以及减小实验误差的措施,减小了以后实验出现差错的可能性,提高了实验效率。第一次实验结束后,我比较形象直观的观察到了几种常见波形的特点并了解了计算它表达式的方法。更重要的是,知道了信号与系统实验的实验过程,为接下来的几次实验积累了更多经验。

实验二:非正弦周期信号的频谱分析。这次实验的目的是掌握频谱仪的基本工作原理与正确使用的方法;掌握非正弦周期信号的测试方法;观察非正弦周期信号频谱的离散型、谐波性、收敛性。频谱仪对于我们来说是一种全新的仪器,使用之前必要认真听它的使用讲解,才能够使接下来的实验顺利进行。实验过程中,我们画出了不同占空比的方波信号的波形及频谱显示图像,通过对这些非正弦周期信号频谱的图像分析,与理论值进行比较,更深刻的理解了方波信号频谱的离散型与谐波性,从而更好的理解傅里叶变换的意义,任何一个信号都可以分解为无数多个正弦信号的叠加,信号的频谱分析个正弦信号的幅度的相对大小,也即频谱密度的概念。

实验三:信号的抽样与恢复。本实验的主要目的是验证抽样定理。实验中先对正弦信号进行采样,然后用示波器比较恢复出的信号与原始信号的关系与差别。信号的抽样与恢复的实验让我更深入理解了信号从抽样到恢复的变化过程,和奈奎斯特抽样定理得以实现的现实意义。一个频域受限的信号m(t),如果它的最高频率是fh,则可以唯一的由频率等于或大于2fh的样值序列所决定,否则,频域发生重叠,信号将不能无失真恢复。而且,此次实验过程中,是非常需要耐心和细心的,信号的抽样与恢复过程中,抽样信号只在某一固定频率稳定,这就要求我们要有耐心和细心调节到这一频率来观察实验结果。实验是一个很细致的过程,实验中任一微小的变化,都可能引起实验结果的巨大变化,这就要求我们实验者要有严谨的态度和求实精神,最终能够很出色的完成实验,达到实验预期的目的,得到真实的结果。

实验四:模拟滤波器实验。滤波器实验的目的是了解巴特沃兹低通滤波器和切比雪夫低通滤波器的特点并学会用信号源于示波器测量滤波器的频响特性。由于我们并没有完全掌握滤波器的原理等知识,所以实验中我们仅仅测量了滤波器的频响特性,并画出了同类型的无源和有源滤波器的幅频特性。通过对图像的绘制以及分析,我们切实感受到了高通滤波器与低通滤波器的滤波特点。以前都是理论分析,一堆堆的公式堆积并不能让我形象地感受到它们实际工作的原理与特性等。而且通过实验分析,我更能感受到理论是源于实际的,任何新理论的发现都是以实践为基础的,我们应该重视实验重视理论与实验的结合,培养我们的创新精神。同时,培养严谨的实验作风和态度。任何一个方面的锻炼都可以培养我们的能力,塑造我们的品格,这对我们以后的学习和工作都有重要的意义。

信号与系统的实验不同于大物实验和电子电路实验,它是由多人合作完成的实验。在为数不多的几次实验中,我深深感受到了团队合作在实验中的重要性。两个人对实验的共同理解是实验高效误差小完成的基础。经过这些实验,我们对信号的性质、信号的调制解调、频谱等内容有了更加深刻直观的认识,实验中同学们互帮互助,增进了同学们之间的合作与交流,加深了同学们之间的友谊。而且,通过赵老师的风趣幽默深入浅出的讲解,我们巩固了信号与系统课上学习的基本知识。更浓厚了对信号与系统这一门学科的兴趣。实验后对实验报告的处理,我们完善了自己学习中知识的漏洞,而且也提高了绘图能力,了解了如何写一份完整的实验报告。老师的批改更能帮助自己更好地意识到自己的错误,让自己及时改正,从而得到提高。非常感谢信号与系统实验的老师——赵老师,带给我一份美好的实验回忆,教会了我很多,不简简单单的是实验方面的,在对待学习上也深有体会,我也会好好学习信号与系统这门学科的理论基础知识,为将来打好坚实的基础!!!

第四篇:信号与系统的课程感想

转眼间一学期已经过去了,我们也学习了一学期的《信号与系统》,虽然老师和同学们一致认为,学校给安排的学时实在是太少了,记得刚开学的时候董老师说的是课本建议学时是64学时。在有限的时间内,对信号与系统里的三大变换进行了系统的学习,收获和感触还是很多的。

之前就听学长学姐说这门课程比较难,是通信工程的重要课程之一,老师也告诉我们是“double e”专业的必修课,还是很有分量和难度的一门课,同时,在运输学院里也只有我们智能运输专业学这门课,感觉非常高大上也非常兴奋。信号与系统的头几节课是董老师给我们上的,记得开学前董老师叮嘱我们参加大创的几个人要好好学《信号与系统》,后来上课的时候樊老师也反复叮嘱我们下课一定要好好推导一遍上课讲过的东西,因为自己比较懒或者说没有养成下课及时巩固的好习惯,总是在做作业的时候才花上大半天研究作业涉及的内容,这样的习惯让我始终还是有点被动,到底还是有点辜负了老师的良苦用心。

《信号与系统》是一门通信和电子信息类专业的核心基础课,其中的概念和分析方法广泛应用于通信、自动控制、信号与信息处理、电路与系统等领域。这门课无论是从教学内容,还是从教学目的看,都是一门理论性与应用性并重的课程。它以高等数学、复变函数、电路分析等课程为基础,同时又是数字信号处理、通信原理等课程的基础,在课程体系中有着承上启下的作用。该课程的基本分析方法和原理广泛应用于通信、数字信号处理、数字语音处理、数字图像处理等领域。它讨论确定性信号经线性时不变系统传输与处理的基本概念和基本方法,从时域到变换域,从连续到离散,从输入输出描述到空间状态描述,以通信和控制工程作为主要应用背景,注重实例分析。这门课程是以《高等数学》为基础,但他又不是一门只拘泥于数学推导与数学运算的学科。他更侧重与数学与专业的有机融合与在创造。因为课时的限制,我们主要学习了第一章·绪论、第二章·连续时间系统的时域分析、第三章·傅里叶变换、第四章·拉普拉斯变换&连续时间系统的s域分析、第五章·傅里叶变换应用于通信系统——滤波、调制与抽样、第八章·z变换。其中,三大变换既是重中之重,又是核心。

所谓系统,是由若干相互联系、相互作用的单元组成的具有一定功能的有机整体。根据系统处理的信号形式的不同,系统可分为三大类:连续时间系统、离散时间系统和混合系统。而系统按其工作性质来说,可分为线性系统&非线性系统、时变系统&时不变系统、因果系统&非因果系统。信号分析的内容十分广泛,分析方法也有多种。目前最常用、最基本的两种方法是时域法与频域法。时域法是研究信号的时域特性,如波形的参数、波形的变化、出现时间的先后、持续时间的长短、重复周期的大小和信号的时域分解与合成等。频域法,是将信号变换为另一种形式研究其频域特性。信号与系统总是相伴存在的,信号经由系统才能传输。

傅里叶变换是第一个引入的重点学习的变换。傅里叶变换是数字信号处理领域一种很重要的算法。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是傅立叶逆变换算法。该逆变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。通过相关推导我们可以得到关于函数f(t)的傅里叶变换为

F(jw)limFnTdefTf(t)ejwtdt 函数F(jw)的傅里叶逆变换为

f(t)def12F(jw)ejwtdw

因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。

傅里叶变换的物理意义也非常有意义。傅里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可以类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一个元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少。

傅里叶变换有多种性质,分别为线性、奇偶性、对称性、尺度变换、时移特性、频移特性、卷积定理、时域微分与积分、频域微分与积分。

拉普拉斯变换更主要应用系统的分析。书上引入拉普拉斯变换提到,不稳定信号,也就是不可积信号,他们没有傅里叶变换(特殊的有除外),确实是这样的,但到最后很明显的是,拉普拉斯变换侧重与系统分析了。当然也会对信号进行拉斯变换,因为它毕竟也有很多性质的,可以分析输出信号的。

Z变换主要用于离散时间系统的分析。

在这一学期的学习中,老师上课讲的内容还是非常充实的,一句废话都没有,很重基础,每一个公式的来历都详细的推导,再用例题巩固之。很重数学方面的基础,但是我做的不好的地方是把好几节课的公式都堆在一块去理解记忆,导致了一定程度上有点晕以及不扎实,这也是我以后学习需要注意的,像第三章第四章这种每节课都有公式还有一定的相关性的,需要把每一步都踩实了才能熟练的应用。要在以后的学习中多注意不能再有类似的坏毛病。

原来一直听说《信号与系统》要布置大作业,需要用MATLAB来实现,这学期很不巧,每门课(除了毛概和选修),都是要考试也要做大作业,突然一块堆在期末让人有点喘不过气来,以前三个学期的课里做大作业的课就不考试了,让我们有点措手不及。班主任还是非常体谅我们期末比较辛苦,让我们好好准备考试,其实MATLAB是一个很有力的工具,我们下学期学自控的时候也要用到,虽然在期末没有时间研究,暑假还是要认真学习一下,不是为了考试,为了以后的发展。樊老师在上课期间后期采取了提问的形式,我个人觉得这是一个非常好的形式,我是上午的课全都会犯困的那种,但是自从老师开始提问之后,基本上瞌睡就一扫而光了,能集中注意力的听课,收获也多一些。

随着即将到来的考试,我们这学期的学习也接近尾声了,在网上看到一些对信号与系统的分析,都提到了奥本海姆那本高大上的教材,我感觉到信号与系统是信号这个大的领域的敲门砖,我们现在学习的只是一部分,我们真正掌握了的更是冰山一角而已,想要继续深入这个领域,还是要下很大的功夫去认真钻研的。在老师的带领下,我们已经初步窥探到这个领域之光,以后还要继续努力才能有所进阶。在这门课的学习中,我们同学之前互相沟通交流,互相帮助过得也很愉快,和樊老师相处的也非常融洽,过得非常充实。在以后的学习中,我也会继续探究信号与系统的奇妙,学无止境,争取在数据处理的道路上有更多筹码能够走的更远更踏实!请老师多多指教!

第五篇:信号与系统仿真实验报告

信号与系统

仿真

实 验 报 告

班级: 学号: 姓名: 学院:

实验一

一、实验者姓名:

二、实验时间:

三、实验地点:

四、实验题目:

5(s25s6)求三阶系统H(s)3的单位阶跃响应,并绘制响应波形图。

s6s210s8

五、解题分析:要知道求单位阶跃响应需知道所用函数,以及产生波形图所需要用到的函数。

六、试验程序:

num=[5 25 30]; den=[1 6 10 8]; step(num,den,10); title(‘Step response’)

七、实验结果:

实验所得波形图如下:

Step response4.543.53Amplitude2.521.510.50012345Time (sec)678910

八、实验心得体会:通过本次试验了解学会了一些新的函数的应用。了解到了N阶系统的单位阶跃响应的计算方法,和系统的响应波形图的函数应用和绘制方法。为后面的实验打下基础,并对信号仿真和《信号与系统》这门课程之间的联系有所增加,对《信号与系统》这门课里的问题也有了更加深入地了解。

九、实验改进想法:无。

实验二

一、实验者姓名:

二、实验时间:

三、实验地点:

四、实验题目:

一个因果线性移不变系统y(n)0.81y(n2)x(n)x(n2),求:(1)H(z);(2)冲激响应h(n);(3)单位阶跃响应u(n);(4)H(ej),并绘出幅频和相频特性。

五、解题分析:离散卷积是数字信号处理中的一个基本运算,MTLAB提供的计算两个离散序列卷积的函数是conv,其调用方式为 y=conv(x,h) 。其中调用参数x,h为卷积运算所需的两个序列,返回值y是卷积结果。

MATLAB函数conv的返回值y中只有卷积的结果,没有y的取值范围。由离散序列卷积的性质可知,当序列x和h的起始点都为k=0时,y的取值范围为k=0至length(x)+length(h)-2。

许多离散LTI都可用如下的线性常系数的差分方程描述

ay[kn]bx[kn]

nnn0n0NN其中x[k]、y[k]分别系统的输入和输出。在已知差分方程的N个初始状态y[k],和输入x[k],就可由下式迭代计算出系统的输出

y[k](an/a0)y[kn](bn/b0)x[kn]

n1n0NM利用MATLAB提供的filter函数,可方便地计算出上述差分方程的零状态响应。filter函数调用形式为 y=filter(b,a,x) 。其中 a[a0,a1,...,aN],b[b0,b1,...,bM] ,分别表示差分方程系数。X表示输入序列,y表示输出序列。输出序列的长度和序列相同。

当序列的DTFT可写成ej的有理多项式时,可用MATLAB信号处理工具箱提供的freqz函数计算DTFT的抽样值。另外,可用MATLAB提供的abs、angle、real、imag等基本函数计算 DTFT的幅度、相位、实部、虚部。若X(ej)可表示为

b0b1ej...bMejMB(ej) X(e)jjjNA(e)a0a1e...aNe则freqz的调用形式为 X=freqz(b,a,w) ,其中的b和 a分别是表示前一个

j式子中分子多项式和分母多项式系数的向量,即a[a0,a1,...,aN] ,w为抽样的频率点,向量w的长度至少为2。返回值X就是DTFTb[b0,b1,...,bM]。在抽样点w上的值。注意一般情况下,函数freqz的返回值X是复数。

六、实验程序:

clc;clear;close; b=[1 0 -1]; a=[1 0 -0.81]; figure(1); subplot(2,1,1); dimpulse(b,a,20) subplot(2,1,2); dstep(b,a,50) w=[0:1:512]*pi/512; figure(2); freqz(b,a,w)

七、实验结果:

冲击响应图及阶跃响应图:

Impulse Response1Amplitude0.50-0.50246810Time (sec)Step Response12141618201Amplitude0.500510152025Time (sec)3035404550 100Magnitude (dB)0-100-200-30000.10.20.30.40.50.60.70.8Normalized Frequency ( rad/sample)0.91100Phase (degrees)500-50-10000.10.20.30.40.50.60.70.8Normalized Frequency ( rad/sample)0.91

八、实验心得体会:通过实验我们知道了使用Matlab来绘出出一个线性移不变系统的幅频和相频曲线。并知道了在《信号与系统》中得一些差分方程和各种响应,譬如零输入相应、零状态响应、全响应、自由响应、强迫响应、冲击响应、单位阶跃响应等等各种响应在Matlab中的函数表达方式和他们的求法,以及系统的幅频和相频曲线的绘制都有了一定深刻的认识。

九、实验改进想法:无。

实验三

一、实验者姓名:

二、实验时间:

三、实验地点:

四、实验题目:

模拟信号x(t)2sin(4t)5cos(8t),求N64的DFT的幅值谱和相位谱。

五、解题分析:在MATLAB信号处理工具箱中,MATLAB提供了4个内部函数用于计算DFT和IDFT,它们分别是:fft(x),fft(x,N),ifft(X),ifft(X,N)。

fft(x) 计算M点的DFT。M是序列x的长度,即M=length(x)。

fft(x,N) 计算N点的DFT。若M>N,则将原序列截短为N点序列,再计算其N点DFT;若M

ifft(X) 计算M点的IDFT。M是序列X的长度。

ifft(X,N) 计算N点IDFT。若M>N,则将原序列截短为N点序列,再计算其N点IDFT;若M

六、实验程序:

clc;clear;close; N=64; n=0:63; t=d*n; q=n*2*pi/N; x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N); subplot(3,1,1); plot(t,x); title(‘source signal’); subplot(3,1,2); plot(q,abs(y)); title(‘magnitude’); subplot(3,1,3); plot(q,angle(y)); title(‘phase’);

七、实验结果:

180160140120100806040200|F(k)|05101520Frequency253035

180160140120100806040200|F(k)|05101520Frequency253035 4321|jW|0-1-2-3-405101520Frequency253035Step Response400020000-2000 Amplitude-4000-6000-8000-10000-12000-1400001234n (samples)5678

八、实验心得体会:通过本次试验我知道了求取模拟信号在N等于一定值时的的DFT的幅值谱和相位谱的求法。通过本次实验,对幅值谱和相位谱有了更深的了解,并与课程《信号与系统》里的一些相关知识连接到了一起,使得学到的只是更加深刻、有意义。

九、实验改进想法:无。

实验四

一、实验者姓名:

二、实验时间:

三、实验地点:

四、实验题目:

将信号x(t)sin(240t)做离散序列,比较原序列与经过FFT和IFFT变换后的序列,并做出说明。

五、解题分析:此题需要对信号做离散序列,还要做FFT和IFFT变换,然后得到图像进行比较。连续时间函数与离散时间函数在编程中的区别主要体现在如下两个方面:第一,自变量的取值范围不同,离散时间函数的自变量是整数,而连续时间函数的自变量为一定范围内的实数;第二,绘图所用的函数不同,连续函数图形的绘制不止一个。本实验中要求绘制离散时间信号图,可以应用MATLAB中的函数来实现。用MATLAB表示一离散序列,可用两个向量来表示。其中一个向量表示自变量的取值范围,另一个向量表示序列的值。之后画出序列波形。当序列是从0开始时,可以只用一个向量x来表示序列。由于计算机内寸的限制,MATLAB无法表示一个无穷长的序列。对于典型的离散时间信号,可用逻辑表达式来实现不同自变量时的取值。

六、实验程序:

t=0:1/255:1; x=sin(2*pi*120*t); y=real(ifft(fft(x))); subplot(2,1,1); plot(t,x); title(‘原波形’); subplot(2,1,2); plot(t,y);

七、实验结果:

原波形10.50-0.5-100.10.20.30.40.50.60.70.80.91恢复的波形10.50-0.5-100.10.20.30.40.50.60.70.80.91

八、实验心得体会:通过对做信号的离散序列以及经FFT和IFFT的变换,了解了相关特性。通过计算机做出的信号波形图,我们能够很直白的看出原波形和经过变换后的波形的差别。

九、实验改进想法:无。

实验五

一、实验者姓名:

二、实验时间:

三、实验地点:

四、实验题目:

2s,激励信号22(s1)100x(t)(1cot)sco1s0(t)0,求(1)带通滤波器的频率响应;(2)输出稳态响应并绘制图形。 已知带通滤波器的系统函数为H(s)

五、解题分析:需要知道求频率响应的方法,并绘制图形。

六、实验程序:

clear; t=linspace(0,2*pi,1001); w=[99,100,101]; U=[0.5,1,0.5]; b=[2,0]; a=[1,2,10001]; u1=U*cos(w’*t+angle(U’)*ones(1,1001)); H=polyval(b,j*w)./polyval(a,j*w); H=freqs(b,a,w); subplot(2,1,1),plot(w,abs(H)),grid; subplot(2,1,2),plot(w,angle(H)),grid; u21=abs(U(1)*H(1))*cos(99*t+angle(U(1)*H(1))); u22=abs(U(2)*H(2))*cos(100*t+angle(U(2)*H(2))); u23=abs(U(3)*H(3))*cos(101*t+angle(U(3)*H(3))); u2=u21+u22+23; figure(2); subplot(2,1,1),plot(t,u1); subplot(2,1,2),plot(t,u2);

七、实验结果:

10.90.80.79910.50-0.5-19999.299.499.699.8100100.2100.4100.6100.810199.299.499.699.8100100.2100.4100.6100.8101

210-1-201234567252423222101234567

八、实验心得体会:通过本次试验,了解了频率响应求法,加深了对输出稳态响应的印象。

九、实验改进想法:无。

上一篇:小学生作文集模板免费下一篇:消化系统疾病概述讲稿