数字故事的制作范文

2022-06-17

第一篇:数字故事的制作范文

素材的处理与加工之数字故事的制作的心得体会

数字故事是一种全新的讲故事的方法,是在教学活动中编写故事、并加入文字、图像、声音、音乐等多媒体元素,创造可视化故事的过程。它能够极大地激发和提高学习者的内在情感,给学生留下难忘的记忆。

我们都知道,传统的讲故事的方法要么是凭借书本,要么是凭借记忆将看过的故事通过语言的方式呈现出来,数字故事也是故事,但它的呈现方式却完全不同。它包含了一个故事的全部要素,时间、地点、人物,还有事件发生的起因、经过和结果,和传统故事不同的是,它不再局限于书本,不再局限于语言,而是结合了当今发达的多媒体技术,通过数字化的形式展现了出来。

这次培训,除了对数字故事有了进一步的了解之外,我感触最深的就是:

1、要相信事在人为,很多时候有些事看似没有希望了,但只要努力争取了,说不定就会峰回路转,柳暗花明!(由我们队数字故事展播过程一波三折所想到的)

2、多学习,多接触新鲜事物,不要局限于自己狭小的、固有的思维里,要时刻提醒自己人外有人,天外有天,要想不被淘汰,只能想办法让自己变得更优秀!

它带给我的震撼却还停留在我的心里,我相信,这种影响力还将继续下去,时刻激励着我努力学习,并且学有所得,学有所用!

信息的加工与表达的内容。主要内容是让学生了解制作多媒体作品的基本过程,培养学生制作作品时的整体规划能力和创作能力,因为这节课是在文本信息加工与表达这一章的最后一部分教学内容,在学习了日常文本、电子报报刊等内容后来学习这一部分,教学起来比较容易些。

《素材的处理与加工之数字故事的制作 》是一门操作性、实用性很强的课程,随着信息技术更多的应用于音乐教学,多媒体教学成为大势所趋,进而多媒体课件也成为必不可少的教学资源。制作多媒体素材采集和处理正是为了丰富多媒体课件,为提高教学效率而服务的。传统的教学模式已经被多媒体教学取代,教学素材的处理与加工已然成为了所有教师的必修课,很庆幸能够参加华中师范大学这次网络继续教育学习,不但使我进一步学习了解了多媒体素材的制作而且对于各种制作手段都已经很熟练了,不再担心不能轻松自如的掌握多媒体音乐课堂了。 我们是教育技术专业的学习者,制作课件是不在话下的,但如果不会自己制作、处理相应的素材,那么制作出高水平、高质量的课件也是空谈。因此《素材的处理与加工之多媒体素材采集和处理》这门课程的学习是很有必要也是非常实用的。今后不要再把学习当做一种形式而要自己落实先去,有计划有安排的学习,具体的去操作,不懂的多去与其他教师探讨,有计划多参加课件制作评比活动,要求每堂课都使用自己编辑,修改的ppt来操作,学会巧用他人优秀的课件以及其他素材,多从网络上搜集素材,只有不断的收集和操作练习,才能熟能生巧。相信只要有强烈的求知欲,就能够克服网络多媒体的学习的困难,我的努力将会给广大的学生带来福音。继续努力吧,一切的付出都是为了我们的学生。

第二篇:数字钟的设计与制作 课程设计4

淮阴师范学院电子与电气工程系

课程设计报告

学生姓名 班

级 专

业 题

指导教师

2009 年 6 月

谷鹏

学 号

240701051

07级2班 电子信息科学与技术 数字钟的设计与制作

陈华宝

电子技术课程设计报告

一、设计目的

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解在制作中用到的各种中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时序电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.

二、设计要求 ㈠设计指标

⑴时间以12小时为一个周期; ⑵显示时、分、秒;

⑶有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; *⑷计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; ⑸保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。 ㈡设计要求

⑴画出电路原理图;

⑵自行装配和调试,并能发现问题和解决问题。

⑶编写设计报告,写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图

1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

图1

电子技术课程设计报告

2.晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

图2

3.时间记数电路

一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降沿有效)与1HZ秒输入信号相连,QD可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图 2.4所示,其中QC可作为向上的进位信号与分个位的计数单元的CPA相连。

图3

电子技术课程设计报告

图4

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的QD作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的QC作为向上的进位信号应与时个位计数单元的CPA相连。

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为24进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行24进制转换。利用1片74HC390实现24进制计数功能的电路如图(d)所示。

图5二十四进制电路

另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。

4.译码驱动及显示单元电路

选择74LS47作为显示译码电路;选择LED数码管作为显示单元电路。由74LS47把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阳的方法连接的。

计数器实现了对时间的累计并以8421BCD码的形式输送到74LS47芯片,再由74LS47芯片把BCD码转变为十进制数码送到数码管中显示出来。

5.校时电路

数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,

电子技术课程设计报告

并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向上时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向下时,情况正好与上述相反,这时校时电路处于校时状态。

实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。

图6 带有消抖电路的校正电路

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分

图7 *6.整点报时电路

电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,发出报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,

电子技术课程设计报告

分别为

5、9和5,因此可将分计数器十位的QC和QA 、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。

报时电路可选74HC30来构成。74HC30为8输入与非门。

四、元器件

1.四连面包板1块 2.共阳七段数码管6个 3.网络线2米/人 4.74LS47集成块6块 5.CD4060集成块1块 6.74HC390集成块3块 7.74HC51集成块1块 8.74HC00集成块2块 9.74LS08集成块1块 10.10MΩ电阻5个 11.300Ω电阻6个 12.30p电容2个 13.32.768k时钟晶体1个 芯片连接图

1)74HC00D

图8 2)74LS08

图9

电子技术课程设计报告

3)74HC390D

4)74HC51D

4) CD4060

图10

图11

电子技术课程设计报告

图12 5)74LS74

图13

电子技术课程设计报告

6)74LS47

图14 2.面包板的介绍

面包板一块总共由五部分组成,一竖四横,面包板本身就是一种免焊电板。 面包板的样式是:

电子技术课程设计报告

图15 面包板的注意事项:

1.面包板旁一般附有香蕉插座,用来输入电压、信号及接地。 2.上图中连着的黑线表示插孔是相通的。

3.拉线时,尽量将线紧贴面包板,把线成直角,避免交叉,也不要跨越元件。 4.面包板使用久后,有时插孔间连接铜线会发生脱落现象,此时要将此排插孔做记号。并不再使用。

五、各功能块电路图

数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。

(一) 六进制电路

由74HC390、7400、数码管与74LS47组成,电路如图16。

U1A3123U2A12Com74HC00D74HC00DU5SEVEN_SEG_COM_KABCDEFGU3AIO1IO337126DADBDCDD513OAOBOCODOE121110915141QA1QB1QC567V1 32Hz 5V141INA1INB21CLRIO21QD74HC390D43~EL~BI~LTOFOGVCCIO45V74LS47将十进制计数器转换为六进制的连接方法

图16

电子技术课程设计报告

(二) 十进制电路

由74HC390、7400、数码管与74LS47组成,电路如图17。

ComU3SEVEN_SEG_COM_KU1AIO1141INA1INB21CLR31QA1QB1QC1QD5677126DADBDCDD513OAOBOCODOE12111091514ABCDEFGVCC5V74HC390D43~ELOF~BIOG~LT74LS47十进制接法测试仿真电路

图17

(三) 六十进制电路

由两个数码管、两74LS

47、一个74HC390与一个7400芯片组成,电路如图18。

74LS47

74LS47

图18

电子技术课程设计报告

(四) 双六十进制电路

由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位。

(五) 时间计数电路

由1个二十四进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与二十四进制电路相连即可,详细电路见图19。

VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12器分计数131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图19

2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告

(六) 校正电路

由74HC51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图20。

IO1VCC正常输入信号5V校正信号R1IO2U2C9108小时校正电路J110Mohm74HC00D注意:分校时时,不会进位到小时。U11111213910U2DKey = A12R210MohmIO313U2A8123时计数器IO574HC00D1123674HC00D正常输入信号校正信号R3U3A10Mohm12U2B456分计数器IO6IO44574HC00D74HC51D3J274HC00DKey = B分钟校正电路分校正时锁定小时信号输入R410MohmU3B456图中采用基本RS触发器构成开关消抖动电路,其中与非门选用74HC00;对J1和J2,因为校正信号与0相与为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态,当开关打向上时,情况正好与上述相反,这时电路处于校时状态。74HC00D数字钟设计-校时电路部分

图20

(七) 晶体振荡电路

由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图21。

图21

电子技术课程设计报告

(八) 整点报时电路

由74HC30D和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图22。

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分图22

六、总接线元件布局

整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。 其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。

电路的信号输入由晶振电路产生,并输入各电路。

七、电路原理总图

在原有的简图的基础上,按实际布局画了这张按实际芯片布局的接线图,如图23:

电子技术课程设计报告

VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12分计数器131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图23

2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告

八、总结

1. 实验过程中遇到的问题及解决方法

① 面包板测试,未遇问题。

② 七段显示器与七段译码器的测量,正常。 ③ 时间计数电路的连接与测试

在连接晶振的过程中,晶振无法起振.在排除线与芯片的接触不良问题后重新对照电路图,发现是由于12脚未接地所至.

在连接六进制的过程中,发现电路只能4,5的跳动,后经发现是由于接到与非门的引脚接错一根所至,经纠正后能正常显示.

④ 校正电路

在连接校正电路的过程中,出现时和分都能正常校正时,但秒却受到影响,特别时一较分钟的时候秒乱跳,而不校时的时候,秒从40跳到59,然后又跳回40,分和秒之间无进位,电路在时,分,秒进位过程中能正常显示,故可排除芯片和连线的接触不良的问题.经检查,校正电路的连线没有错误,后用万用表的直流电压档带电检测秒十位的QA,QB,QC和QD脚,发现QA脚时有电压时而无电压,再检测秒到分和分到时的进位端,发现是由于秒到分的进位未拔掉所至.

2. 设计体会

通过这次对数字钟的设计与制作,让我了解了设计电路的程序,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真仿真成功之后才实际接线的。但是最后的成品却不一定与仿真时完全一样,因为,再实际接线中有着各种各样的条件制约着。而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功。所以,在设计时应考虑两者的差异,从中找出最适合的设计方法。

通过这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。

3. 对设计的建议

我希望老师在我们动手制作之前应先告诉我们一些关于所做电路的资料、原理,以及如何检测电路的方法,还有关于检测芯片的方法。这样会有助于我们进一步的进入状况,完成设计。

第三篇:数字钟的设计与制作 课程设计2

淮阴师范学院电子与电气工程系

课程设计报告

学生姓名 班

级 专

业 题

指导教师

2009 年 6 月

周顺

学 号

240701090

07级2班 电子信息工程 数字钟的设计与制作

陈华保

电子技术课程设计报告

一、设计目的

数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解在制作中用到的各种中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时序电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.

二、设计要求 ㈠设计指标

⑴时间以12小时为一个周期; ⑵显示时、分、秒;

⑶有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; *⑷计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; ⑸保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。 ㈡设计要求

⑴画出电路原理图;

⑵自行装配和调试,并能发现问题和解决问题。

⑶编写设计报告,写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图

1.数字钟的构成

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

图1

电子技术课程设计报告

2.晶体振荡器电路

晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

图2

3.时间记数电路

一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。本次设计中选择74HC390。由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。

秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。CPA(下降沿有效)与1HZ秒输入信号相连,QD可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。将10进制计数器转换为6进制计数器的电路连接方法如图 2.4所示,其中QC可作为向上的进位信号与分个位的计数单元的CPA相连。

图3

电子技术课程设计报告

图4

分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同,只不过分个位计数单元的QD作为向上的进位信号应与分十位计数单元的CPA相连,分十位计数单元的QC作为向上的进位信号应与时个位计数单元的CPA相连。

时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为24进制计数器,不是10的整数倍,因此需将个位和十位计数单元合并为一个整体才能进行24进制转换。利用1片74HC390实现24进制计数功能的电路如图(d)所示。

图5二十四进制电路

另外,图(d)所示电路中,尚余-2进制计数单元,正好可作为分频器2HZ输出信号转化为1HZ信号之用。

4.译码驱动及显示单元电路

选择74LS47作为显示译码电路;选择LED数码管作为显示单元电路。由74LS47把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。这里的LED数码管是采用共阳的方法连接的。

计数器实现了对时间的累计并以8421BCD码的形式输送到74LS47芯片,再由74LS47芯片把BCD码转变为十进制数码送到数码管中显示出来。

5.校时电路

数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,

电子技术课程设计报告

并采用正常计时信号与校正信号可以随时切换的电路接入其中。即为用COMS与或非门实现的时或分校时电路,In1端与低位的进位信号相连;In2端与校正信号相连,校正信号可直接取自分频器产生的1HZ或2HZ(不可太高或太低)信号;输出端则与分或时个位计时输入端相连。当开关打向上时,因为校正信号和0相与的输出为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态;当开关打向下时,情况正好与上述相反,这时校时电路处于校时状态。

实际使用时,因为电路开关存在抖动问题,所以一般会接一个RS触发器构成开关消抖动电路,所以整个较时电路就如图(f)。

图6 带有消抖电路的校正电路

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分

图7 *6.整点报时电路

电路应在整点前10秒钟内开始整点报时,即当时间在59分50秒到59分59秒期间时,发出报时电路报时控制信号。

当时间在59分50秒到59分59秒期间时,分十位、分个位和秒十位均保持不变,

电子技术课程设计报告

分别为

5、9和5,因此可将分计数器十位的QC和QA 、个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。

报时电路可选74HC30来构成。74HC30为8输入与非门。

四、元器件

1.四连面包板1块 2.共阳七段数码管6个 3.网络线2米/人 4.74LS47集成块6块 5.CD4060集成块1块 6.74HC390集成块3块 7.74HC51集成块1块 8.74HC00集成块2块 9.74LS08集成块1块 10.10MΩ电阻5个 11.300Ω电阻6个 12.30p电容2个 13.32.768k时钟晶体1个 芯片连接图

1)74HC00D

图8 2)74LS08

图9

电子技术课程设计报告

3)74HC390D

4)74HC51D

4) CD4060

图10

图11

电子技术课程设计报告

图12 5)74LS74

图13

电子技术课程设计报告

6)74LS47

图14 2.面包板的介绍

面包板一块总共由五部分组成,一竖四横,面包板本身就是一种免焊电板。 面包板的样式是:

电子技术课程设计报告

图15 面包板的注意事项:

1.面包板旁一般附有香蕉插座,用来输入电压、信号及接地。 2.上图中连着的黑线表示插孔是相通的。

3.拉线时,尽量将线紧贴面包板,把线成直角,避免交叉,也不要跨越元件。 4.面包板使用久后,有时插孔间连接铜线会发生脱落现象,此时要将此排插孔做记号。并不再使用。

五、各功能块电路图

数字钟从原理上讲是一种典型的数字电路,可以由许多中小规模集成电路组成,所以可以分成许多独立的电路。

(一) 六进制电路

由74HC390、7400、数码管与74LS47组成,电路如图16。

U1A3123U2A12Com74HC00D74HC00DU5SEVEN_SEG_COM_KABCDEFGU3AIO1IO337126DADBDCDD513OAOBOCODOE121110915141QA1QB1QC567V1 32Hz 5V141INA1INB21CLRIO21QD74HC390D43~EL~BI~LTOFOGVCCIO45V74LS47将十进制计数器转换为六进制的连接方法

图16

电子技术课程设计报告

(二) 十进制电路

由74HC390、7400、数码管与74LS47组成,电路如图17。

ComU3SEVEN_SEG_COM_KU1AIO1141INA1INB21CLR31QA1QB1QC1QD5677126DADBDCDD513OAOBOCODOE12111091514ABCDEFGVCC5V74HC390D43~ELOF~BIOG~LT74LS47十进制接法测试仿真电路

图17

(三) 六十进制电路

由两个数码管、两74LS

47、一个74HC390与一个7400芯片组成,电路如图18。

74LS47

74LS47

图18

电子技术课程设计报告

(四) 双六十进制电路

由2个六十进制连接而成,把分个位的输入信号与秒十位的Qc相连,使其产生进位。

(五) 时间计数电路

由1个二十四进制电路、2个六十进制电路组成,因上面已有一个双六十电路,只要把它与二十四进制电路相连即可,详细电路见图19。

VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12器分计数131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图19

2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告

(六) 校正电路

由74HC51D、74HC00D与电阻组成,校正电路有分校正和时校正两部分,电路如图20。

IO1VCC正常输入信号5V校正信号R1IO2U2C9108小时校正电路J110Mohm74HC00D注意:分校时时,不会进位到小时。U11111213910U2DKey = A12R210MohmIO313U2A8123时计数器IO574HC00D1123674HC00D正常输入信号校正信号R3U3A10Mohm12U2B456分计数器IO6IO44574HC00D74HC51D3J274HC00DKey = B分钟校正电路分校正时锁定小时信号输入R410MohmU3B456图中采用基本RS触发器构成开关消抖动电路,其中与非门选用74HC00;对J1和J2,因为校正信号与0相与为0,而开关的另一端接高电平,正常输入信号可以顺利通过与或门,故校时电路处于正常计时状态,当开关打向上时,情况正好与上述相反,这时电路处于校时状态。74HC00D数字钟设计-校时电路部分

图20

(七) 晶体振荡电路

由晶体与2个30pF电容、1个4060、一个10兆的电阻组成,芯片3脚输出2Hz的方波信号,电路如图21。

图21

电子技术课程设计报告

(八) 整点报时电路

由74HC30D和蜂鸣器组成,当时间在59:50到59:59时,蜂鸣报时,电路如图22。

说明:当时间在59分50秒到59分59秒期间时 分十位、分个 位和秒十位均保持不变,分别为5,9和5;因此,可以将分计数器十位的Qc和QA,个位的QD和QA及秒计数器十位的QC和QA相与,从而产生报时控制信号。IO1分计数器十位的Qc和QAIO2U11VCCIO35VVCCX182345V分计数器个位的QD和QAIO456114V_0.5WIO512秒计数器十位的QC和QAIO674HC30D数字钟设计-整点报时电路部分图22

六、总接线元件布局

整个数字钟由时间计数电路、晶体振荡电路、校正电路、整点报时电路组成。 其中以校正电路代替时间计数电路中的时、分、秒之间的进位,当校时电路处于正常输入信号时,时间计数电路正常计时,但当分校正时,其不会产生向时进位,而分与时的校位是分开的,而校正电路也是一个独立的电路。

电路的信号输入由晶振电路产生,并输入各电路。

七、电路原理总图

在原有的简图的基础上,按实际布局画了这张按实际芯片布局的接线图,如图23:

电子技术课程设计报告

VCC5VR6200ohmComR7200ohmComR8200ohmComR9200ohmComR10200ohmComR11200ohmComABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGABCDEFGVCC5VVCC5VVCC5VVCC5VVCC5VVCC5V1312111015141312111015141312111015141312111015141312111015141312111015U7OGBI/RBOU8OGBI/RBOU9OGBI/RBOU10OGBI/RBOU11OGBI/RBO14U12OGBI/RBO499999OAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOAOBOCODOEOEOEOEOE9OEOFOFOFOFOFRBIRBIRBIRBIRBI7126354712635471263547126354712635471263131110131110356793567131110U13B2QDU14A1QDU14B2QD54U15A1QD9U15B2QD356791QA1QB1QC2QA2QB2QC1QA1QB1QC2QA2QB1QA1QB1QC1QD2QA2QB1CLR2CLR1CLR1CLR2CLR1INA2INA1INB2INBU18A74LS08D614141512151574LS390D74LS08D121474LS08D8142VCC5VR1J112U19A311213910U20R145-32.768kHz时计数9器810U21C108975O3O4O5O6O7O8O9U22RTCCTCRS111X2校时Key = A74LS00D12MRR25V45U19B6112364U21D12分计数器131146VCCR510MohmR412U24A4~1PR51Q1D312141315123J2U21A3574LS00DC130pF30pF校分Key = B12214214274LS51D6~1QO11O12O13R345m setU21B6~1CLR74LS74D4060BP开关在下,校准状态开关在上,正常工作74LS00DVCC5V图23

2CLR1INA2INA1INA1INB2INB1INB2INA2INBU13A2QCU18C109U18B2QCC25RBI74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCD74LS47DLTABCDOF213电子技术课程设计报告

八、总结

1. 实验过程中遇到的问题及解决方法

① 面包板测试,未遇问题。

② 七段显示器与七段译码器的测量时,有时有些数字显示断开、不完整。原因可能是数码管引脚接触不良,或者是数码管某些引脚坏。在接电路时译码管的电源和接地的没接,直接导致译码管无法工作,数码管无数字显示。 ③ 时间计数电路的连接与测试

仔细的连接电路是非常重要的,不要忘了电源和接地的引脚连接线。测试时秒 计数显示无法进位、跳动还较快,无法进位是因为在74LS08D集成管的输入输出弄错引脚,跳动较快是因为把4060BP和74LS74D的接线引脚接在了4060BP的2引脚。经检查发现接线错误调整后,时间秒显示正常。 ④ 校正电路

校正时有时单独校正分,时会跟着调动,原因是分与时的进位接线没断开。

2. 设计体会

通过这次实训,让我们更加了解了各种集成块的应用,也对其中一些集成块的用途有了一定的了解。

实训对于我们的动手能力也是一种提高,细心,认真在其尤其重要。对于一些容易遗漏的引脚,如电源,接地引脚特别要注意。 3.对设计的建议

在学生了解的基础上,应该培养学生自己的改进、创新的意识。让学生的能力有真正的提高。

第四篇:数电课程设计数字电子钟的设计与制作

一、设计目的

数字电子技术是工科专业的一门专业基础课,该课程理论与实践联系密切,系统性强,课程设计是本课程教学中必不可少的环节,通过设计可以使学生初步掌握基本的数字电路设计方法和技能,进一步加深对数字电子技术课程的理解,掌握数字电子系统的组成和设计方法以及系统的调试方法,熟悉常用数字芯片的功能及使用方法,为后续课程的学习奠定坚实基础。

二、设计任务

1、用给定的数字集成电路设计制作一个数字电子钟。

2、基本功能:具有时、分、秒计时功能,用六位数码管和LED显示“XX:XX:XX”(最大显示23:59:59),要求计时准确,能够调整时间。除电源外其它部分均需自行设计制作。

3、扩展功能:有整点报时功能;时分秒之间的间隔符“:”按秒跳动。

三、设计要求

基本要求:

1、根据给定的器件设计电路,画出电路原理图,仿真实现所设计功能。

2、制作实际电路并测试,用自己设计的秒脉冲源作计时脉冲,+5V电源由实验室提供。要求制作工艺良好,电路能正常稳定工作。

3、写出设计总结报告,除报告封面和电路图可以打印外,其它内容均必须手写(复印、打印的一律不及格)。

扩展要求:完成扩展功能

四、所需元器件及材料

IC:CD4518三块、CD4040、CD4060、CD4081各一块、CD4543六块,DIP16IC插座12个; 其他器件:共阴数码管(CL5011AH)6个,红色LED4个,石英晶振32768HZ一个,电阻220Ω44个,220K、10M各1个,51P瓷片电容2个,轻触开关4个,8针接插件3个,4针接插件1个,9cm*15cm万能板两块、红、黑色导线各1卷,黄、蓝色导线各2卷、焊锡2卷。

实验室准备数字电路实验箱、数字万用表以及实践所需工具。

五、日程安排

周一:接受任务,收集资料 ;设计电路,画出电路图,仿真

周二:制作显示板并测试

周三:制作时间计数器和秒脉冲板并测试 周四:总体调试与测试 周五:教师检查验收,写总结报告

六、制作步骤

1、查找资料,设计电路,仿真;

2、制作显示及驱动板,输入8421BCD码验证;

3、制作计时器,先用实验箱或信号发生器输出秒脉冲计时,输出用做好的显示板显示,或用实验箱显示;

4、制作秒脉冲,先用LED测试,可行后接入计时电路测试;

5、连接电路,总体测试。

七、注意事项

数码管、电阻、电容、开关等安装前一定要测试检查,确定没有问题再焊接,数码管不能用5V电源去测试,用数字万用表的二极管档可测试是否发光,集成块和晶振不便测试可不测。

先要画出电路原理图和接线图,安装时首先考虑好元器件布局,先装IC插座,接好电源线和地线,但不要通电,然后按图依次连接,连好后仔细检查没有问题再通电,连好一个单元测试一个单元,逐次完成,然后再将各单元连接起来,两块板之间用接插件连接。特别注意集成块不要接反!

八、设计报告内容

设计原理思路:

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。数字电子钟由以下几部分组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校对电路;六十进制秒、分计数器、二十进制时计数器;以及秒、分、时的译码显示部分等。

各部分原理:十进制同步加法计数器

CD4518是

二、十进制(8421编码)同步加计数器,内含两个单元的加计数器。每单个单元有两个时钟输入端CLK和EN,可用时钟脉冲的上升沿或下降沿触发。若用ENABLE信号下降沿触发,触发信号由EN端输入,CLK端置“0”;若用CLOCK信号上升沿触发,触发信号由CLOCK端输入,ENABLE端置“1”。RESET端是清零端,RESET端置“1”时,计数器各端输出端Q1~Q4均为“0”,只有RESET端置“0”时,CD4518才开始计数。

CD4518采用并行进位方式,只要输入一个时钟脉冲,计数单元Q1翻转一次;当Q1为1,Q4为0时,每输入一个时钟脉冲,计数单元Q2翻转一次;当Q1=Q2=1时,每输入一个时钟脉冲Q3翻转一次;当Q1=Q2=Q3=1或Q1=Q4=1时,每输入一个时钟脉冲Q4翻转一次。这样从初始状态(“0”态)开始计数,每输入10个时钟脉冲,计数单元便自动恢复到“0”态。若将第一个加计数器的输出端Q4A作为第二个加计数器的输入端ENB的时钟脉冲信号,便可组成两位8421编码计数器,依次下去可以进行多位串行计数。 译码器

CD4543是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。可直接驱动LED显示器。

时间计数器电路

(1)秒计数器

秒的个位计数单元为10进制计数器,当QDQCQBQA变成1010时,通过与非门把它的清零端变成0,计数器的输出被置零,跳过1011到1111的状态,又从0000开始,如此重复。秒的十为计数单元为6进制,当QDQCQBQA变成0101时,通过与非门把它的清零端变成0,计数器的输出被置零,跳过0110到1111的状态,又从0000开始,如此就是60进制。同时秒十位上的0101时,要把进位信号传输给“分”个位的计数单元。

(2)分计数器

分的个位和十位计数单元的状态转换和秒的是一样的,只是它要把进位信号传输给时的个位计数单元。

(3)时计数器

当“时”十位的QDQCQBQA为0000或0001时,“时”的个位计数单元是十进制计数器,当他的QDQCQBQA到1010时,通过与非门使得个位74LS90上的清零端为0,则计数器的输出直接置零,从0000有开始。当十位的QDQCQBQA为0010时,通过与非门使得该74LS90的清零端为0,“时”的十位有重新从0000开始,此时的个位计数单元变成4进制,即当个位计数单元的QDQCQBQA为0100时,就要又从0000开始计数。这样就实现了“时”24进制的计数 电路图

原理框图

6位显示驱动电路

数字钟计数及秒脉冲电路

CD4543

CD4518

CD4081

第五篇:数字与文字的故事

一天,数字和文字碰到了一起。两个朋友见面,分外亲热,不由得聊了起来。聊着聊着,他们比起了谁的本领大了。数字说:“你看我多厉害,数学课上要用我,时钟上要用我,凡是要记数的地方都要用到我!”文字也不甘示弱,说:“我的本事比你大,语文课上要用我,写日记时要用我,凡是有记录的地方都要用到我!”两人互不想让,争得不可开交。争着争着,两人都累了,迷迷糊糊地就睡着了。

睡梦中,数字来到一家酒吧前,看见招牌上写着“酒吧”两个字,十分生气,他一扬手,说了声“变”,招牌上的文字立刻变成了数字“98”。酒吧老板一看招牌被人改了,气不打一处来,拉着数字愤怒地说:“你……你怎么把我的招牌变成了‘98’了呢?这以后谁还会到我这里来喝酒呢?你……”没等说完,酒店老板用手一指招牌,“98”又变回了文字。数字红着脸,灰溜溜地走了。

文字也做了一个梦,他梦见自己来到一个柜台前,看见服务员正拿着计算器算账,可计算器上都是数字,他非常生气,用手一指计算器,说了一声:“变!”计算器键盘上的数字立刻变成了文字,屏幕显示:二十八万三千五百六十七点三五九六零四二……。服务员看了这一长串的文字,顿时火冒三丈,说:“你怎么把计算器上的数字都变成文字了!这一长串的文字让我怎么算帐!”说完,用手一抹计算器,上面的文字又变回了数字。文字也只好悄悄地溜走了。

一觉醒来,两个朋友你看看我,我看看你,都不好意思地笑了。从此以后,他们谁也没有再提起比本领的事了。

上一篇:小班中秋节教案范文下一篇:微商发展的建议范文