课程教案高数范文

2022-05-28

教学活动的组织是多环节的过程,在这其中教案至关重要,在教学活动评价中要注重教案指标的设置。教案指标中首先要有常规的完备性评价指标,如教案中有没有教育目标、教学的具体要求,教学内容是否具有针对性等。以下是小编精心整理的《课程教案高数范文》,仅供参考,大家一起来看看吧。

第一篇:课程教案高数范文

高数教案设计

教案设计

教材:《高等数学》(第三版)上册,第一章函数与极限,第三节函数

的极限。

一、计划学时

本小节分为两个部分,对于初学者来说有一定的难度,所以也就分为两个学时进行教学。第一学时:自变量趋于有限值时函数的极限。第二学时:自变量趋于无穷大时函数的极限。(本次教案主要说明第一学时的内容。)

二、教材处理

通过第一节关于函数基本知识的学习,以及高中时已经对函数极限有过一定的学习了解与铺垫,所以就要通过一些基本的示例,来一步步引导学生接触本节的内容,并进一步学习与研究。来扩展同学们的知识面,并易于接受新内容。

三、教学目标 知识和能力目标:

1、通过教学过程培养学生的思维能力、运算能力、以及数学创新意识。让你给同学们积极思考、敢于提出自己的想法。

2、让同学们掌握一些本节教学中所涉及的技能技巧。

3、通过数学知识为载体,增强学生们的逻辑思维能力,提高学习的兴趣和能力。传达出数学的人文价值。

四、教学难点和重点

1、如何让学生较快的接受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。

2、让学生们熟练的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。

五、教学设计

1、总体思路

先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢了解步骤的方法技巧。最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。

2、教学过程

(1)先让同学们大致看一下本小节内容,对本节内容有一定的了解。(4分钟)

设计说明:通过让同学们进行自主学习,对本小节内容有大志的了解,以便于学生更易于接受新知识。

(2)通过小例子让大家熟悉并初步认识一下极限的概念。如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。 解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.(5分钟)

设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维能力以及发撒思维能力。 (3)由上面例子,先让同学们自己总结规律,给出定义:设函数f(x)在某个去心邻域内有定义,如果存在常数A,使得对于任意给定的正数M,总存在正数K,只要点x适合不等式0<|x-x|

设计说明:通过对照上面例题再给出定义,就更加便于理解与接受,同时增强同学们的概括能力与创新意识。

(4)根据所给的定义,举例子说明并让同学们熟悉做题的步骤。如:证明:当x趋向于2时,函数f(x)=4x-7趋向于1.(步骤略) 之后找一些同学到黑板上做题。如:证明当x趋向于x时,函数f(x)=x趋向于x.(步骤略)等一些例题。(13分钟)

设计说明:通过立体让同学们更加熟悉新的知识与步骤,掌握本节的知识技巧技能。

(5)给出一个推论:函数存在极限的充分必要条件是左极限、右极限各自存在并且相等。并给出例子:f(x)=x-1(当X<0) 0(当X=0) x+1(当x>0). 证明:当x趋向于0时,f(x)的极限不存在。(证明略)(9分钟)

设计说明:既符合课本的教学要求又扩大学生们的知识面。 (6)对本节内容进行总结,提醒同学们本节的重点与难点,以及易错点,并布置相对应的课后习题(4分钟)。

设计说明:使同学们透过练习,一个或多个知识点对应一道练习题,让本节课所学到的理论知识转化为实际计算能力。

(7)形成性总结。课后通过作业的批改,从而发现学生中普遍存在的问题以及主要犯的错误,进行反思与总结,以便在下节课中再次强调一下易错的点以及需要特别注意的问题。

设计说明:目的在于在反馈信息中发现问题,而在后续教学中及时解决,以保证教学效果最优化。

六、本节课的设计反思

本节课目的在于锻炼学生们的计算能力以及逻辑思维能力,有利于培养学生积极思考、树立创新意识。符合课程标准的要求。

第二篇:高数1.3教案

§1.3 数列的极限

函数研究两个变量的对应关系,而极限则是研究自变量变化时,因变量的变化趋势。

一.极限思想―割圆术:用圆内接正多边形面积逼近圆面积

圆内接正六边形面积记为A1

十二 A2

二十四 A3

62n1 AnnN

A1,A2,,An,构成一列有次序的数――数列. n→大,AnA (圆面积)。不论n如何大,只要n取定, AnA. 设想n,即内接正多边形边数无限增加,在这个过程中,内接正多边形的面积无限接近于圆,同时An→确定的数值(即圆的面积)数学上就称为的极限(n)。

极限方法是高数中一个基本方法。

二.数列的极限定义――xnfn,D为正整数。

1.第一种定义:当项数n无限增大时,如果xn无限接近于一个确定的常数a,则称当n无限增大时xn的极限是a. 2.“N”def 当0,不论它多么小,总N0,对于nN的一切xn,恒有xna成立,则limxna.如果数列没有极限,就称是发散的。

n *1.是任意给定(任意性)

*2.N与有关,随给定而选定,一般地越小,N越大,N大到何种程度,取决于使xna成立时xn的项数n的取值,定义中仅要求N有关,并不一定要找出最小的自然数N. *3几何意义:nN时,所有的xn都落在a,a内,即数列只有有限个(最多只有N个)在区间之外。 *4利用定义不能直接求极限。

三.极限的证明

1例1 证明lim(1)1

n1n1111, n1 证:0,要使11n1n1111取N[1],则当nN时,有1, 1n1n1 ∴lim(1)1

n1n limxna的证明步骤:

n 1)给定0

2)要使xna,解出NN() 3)取N,即N. 4)当nN时,有xna

5)下结论。 n! 例2 证明 limn0

nnn!证:0,要使n0<,

nn!nn111只要n0=

nnnnnn!11取 N[],则当nN=[]时,有n0

nn!∴limn0 nn 例3 证明. limnn1n0 n1n

证:0,要使只要111,n2

4n1n2n1取N[2]

则当nN时有n1n, 4∴limnn1n0.

2n1 例4 设q1,证明等比数列1,q,q,,qn1,的极限是0。

 证:01∵xn0qln取自然对数,解得∴n1,

lnqlnn1],则当nN时有xn0q 取N[1lnq limqnn10。

四.收敛数列的性质

1.极限的唯一性

定理1 数列不能收敛于两个不同的极限。 2.有界性

(1)有界概念:数列xn,若M0,对一切xn有xnM,称xn有界。

(2)收敛数列的有界性

定理2 如果数列xn收敛,那么数列xn一定有界。

若xn无界xn发散。xn有界,则不一定收敛。

如xn1n1,即1,1,1,1,,1n1,

∴数列有界是收敛的必要条件,非充分条件。 3.收敛数列与子数列的关系

子数列:在数列xn中任意抽取无限多项并保持这些项在原数列中的次序,得到的一个数列为原数列xn的子数列。xn

k定理3 若xn收敛于a,则它的任一子数列也收敛,且极限也是a。

一个发散的数列也可能有收敛的子数列。 

小结:本节介绍了数列极限的定义,理解利用定义证明数列的极限,知道收敛数列的有关性质。



第三篇:高数级数的教案

第7

5、76课时:

【教学目标与要求】

1.理解常数项级数收敛、发散以及收敛级数的和的概念; 2.熟练掌握级数的基本性质及收敛的必要条件; 2.掌握几何级数收敛与发散的条件。

【教学重点】

1、常数项级数收敛、发散的概念及几何级数;

2、级数的基本性质及收敛的必要条件。

【教学难点】

级数的基本性质及收敛的必要条件。

§12 1 常数项级数的概念和性质

一、常数项级数的概念

1.常数项级数的定义

给定一个数列

u1 u2 u3    un    则由这数列构成的表达式u1  u2  u3     un    叫做常数项)无穷级数 简称常数项)级数 记为un 即

n1

n1unu1u2u3    un    

其中第n项u n 叫做级数的一般项

2.级数的部分和 作级数un的前n项和snuiu1u2u3    un

n1i1n称为级数un的部分和

n1

3. 级数敛散性定义 如果级数un的部分和数列{sn}有极限s 即limsns

n1n则称无穷级数un收敛 这时极限s叫做这级数的和

n1并写成

sunu1u2u3    un    

n1如果{sn}没有极限 则称无穷级数un发散

n1

余项 当级数un收敛时 其部分和s n是级数un的和s的近似值 它们之间的差值

n1n1

rnssnun1un2    叫做级数un的余项

n1

例1 讨论等比级数(几何级数)

n0aqnaaqaq2    aqn    的敛散性 其中a0 q叫做级数的公比

解 如果q1 则部分和

snaaqaq    aq2n1aaqnaqna

1q1q1qaa

当|q|1时 因为limsn 所以此时级数aqn收敛 其和为

1q1qnn0

当|q|>1时 因为limsn 所以此时级数aqn发散

nn0

如果|q|1 则当q1时 sn na 因此级数aqn发散

n0

当q1时 级数aqn成为

n0

aaaa   

当|q|1时 因为sn 随着n为奇数或偶数而等于a或零

所以sn的极限不存在 从而这时级数aqn也发散

n0a,|q|1综上所述,级数aqn1q

n0|q|1提醒学生一定要熟练记住上述结论!

例2 证明级数

123  n   是发散的

证 此级数的部分和为

sn123    nnn(n1)

2显然 limsn 因此所给级数是发散的

例3 判别无穷级数

的收敛性

提示 un111    1   

122334n(n1)111

n(n1)nn

1二、收敛级数的基本性质

性质1 如果级数un收敛于和s 则它的各项同乘以一个常数k所得的级数kun也n1n1收敛 且其和为ks

性质2 如果级数un收敛于和s 则级数kun也收敛 且其和为ks

n1n1

性质3 如果uns 则kunks

n1n1

性质4 如果级数un、vn分别收敛于和s、 则级数(unvn)也收敛 且其和为n1n1n1s

性质5 如果uns、vn 则(unvn)s

n1n1n1

性质6

在级数中去掉、加上或改变有限项 不会改变级数的收敛性

比如 级数1111        是收敛的

122334n(n1)级数100001111        也是收敛的

122334n(n1)级数111        也是收敛的

3445n(n1)

性质7 如果级数un收敛 则对这级数的项任意加括号后所成的级数仍收敛 且其和n1不变

应注意的问题 如果加括号后所成的级数收敛 则不能断定去括号后原来的级数也收敛

例如 级数

(11)+(11) +  收敛于零 但级数1111  却是发散的

推论 如果加括号后所成的级数发散 则原来级数也发散

级数收敛的必要条件

性质8 如果un收敛 则它的一般项un 趋于零 即limun0

n1n0

应注意的问题 级数的一般项趋于零并不是级数收敛的充分条件

4证明调和级数

n1n123    n    是发散的 111

1 调和级数的敛散性也必须要记熟!

证: 假若级数1收敛且其和为s s是它的部分和

nnn1nn显然有limsns及lims2ns 于是lim(s2nsn)0

n

但另一方面

s2nsn11    111    11

n1n22n2n2n2n21必定发散

n1n故lim(s2nsn)0 矛盾 这矛盾说明级数n小结

1.常数项级数及其敛散性的概念; 2. 常数项级数的性质;

教学方式及教学过程中应注意的问题

在教学过程中要注意常数项级数的概念以及重要性质,要结合实例,反复讲解,尤其要熟练的记住等比级数与调和级数的敛散性。

师生活动设计P255:3(2)4(1)(2)(3) 作业 P255: 3(3);4(4), (5)

第7

7、7

8、7

9、80、8

1、82课时:

【教学目标与要求】

1.熟练掌握正项级数的审敛法(比较判别法、比值判别法、根值判别法和极限判别法),熟练掌握p级数收敛与发散的条件。 2.熟练掌握交错级数的莱布尼茨判别法。 3.理解任意项级数绝对收敛与条件收敛的概念,记住绝对收敛与条件收敛的关系。

【教学重点】

1.正项级数的审敛法(比较判别法、比值判别法、根值判别法和极限判别法),熟练掌握p级数收敛与发散的条件;

2.交错级数的莱布尼茨判别法;3. 任意项级数绝对收敛与条件收敛 【教学难点】

1、比较判别法的极限形式;

2、任意项级数敛散性的判别。

第四篇:高数范围

高等数学考试范围

一。数、极限、连续

1.主要内容:函数的概念、复合函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、函数极限的性质、两个重要极限、极限存在准则(夹逼准则和单调有界准则)、无穷小的比较、函数连的概念、间断点及基本类型、闭区间上连续函数的性质(最大值、最小值、零点、介值定理)。

2.重点:函数的概念、复合函数的概念、基本函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、求函数极限、连续的概念性质及应用。

3.难点:极限的∑-N、∑-δ定义,等价无穷小求极限。

二。函数微分学

1主要内容:导数与微分的概念,导数与微分的概念,导数的几何意义,函数求导与连续的关系,导数的四则运算及求法(复数函数求导,隐函数求导,参数式求导及求高阶求导)。罗尔、拉格朗日、柯西中值定理、函数中值定理的概念,用导数判断函数的单调性及单调区间,求极值、拐点、判断凸凹性,弧微分及曲率。

2重点:导数与微分的概念,导数的几何意义及应用,导数的四则运算及求法,罗尔和拉格朗日中值定理及应用,导数判断函数的单调性,导数求函数的极性、最值、拐点及判断其凹凸性。

3难点:求导数及用导数研究函数的性态。

三。一元函数积分学

1主要内容及重点:不定积分及定积分的概念与性质,不定积分的基本公式(22个),定积分与不定积分的换元性和分部积分法,定积分的应用(求面积、体积、平面曲线与弧长、变力做功、液体的压力、引力)牛顿?莱布尼茨公式。2难点:广义积分定积分的应用。

四:向量代数与空间解析几何

1主要内容:空间直角坐标系;向量的概念及其表示,向量的运算(线性、点乘、叉乘、混合乘),单位向量,方向余弦,向量的坐标表示及用坐标进行向量运算、向量的夹角。平面方程(点法式、般式、截距式、两点式)及基本法,直线方程(对称式、参数式、一般式)及其求法,曲面方程的概念及几种曲面,直线、平面位置关系的判定、点到平面的距离。

2重点:空间直角坐标系,向量的概念及其表示向量的运算及其用坐标表示,平面方程、直线方程及求法,几种曲面(椭球面、双曲面,抛物面),直线,平面位置关系的判定。

3难点:向量的叉乘法,用平面、直线的位置关系解决有关的问题,曲线、曲面的投影。

五。多元函数的微分学。

1主要内容及重点,多元函数的概念,偏导数,全微分的概念,一阶偏导数的求法(复合函数、隐函数等)全微分及高阶导数的求法,多元函数的极值和条件极值的概念和求法,方向导数和梯度,偏导数的应用(求空间曲线的切线、法平面、曲面的切面、法线)。

2难点:复合函数、隐函数求导及高阶偏导,求条件极值。

六。多元函数积分学

1主要内容及重点:二重积分,三重积分的概念性质及计算。

2难点:三重积分的计算。

第五篇:高数极限

极限分为 一般极限 (发散的), 还有个数列极限(前者的一种), 解决极限的方法如下 1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)

2洛必达 法则 (大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!必须是 X趋近 而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!)必须是 0比0 无穷大比无穷大!;当然还要注意分母不能为0

洛必达 法则分为3种情况

(1) 0比0 无穷比无穷 时候 直接用 ;(2) 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了;(3)0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !) E的x展开 sina 展开 cos 展开 ln1+x展开 (对题目简化有很好帮助)

4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母! 5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。(面对非常复杂的函数 可能只需要知道它的范围结果就出来了!)

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。 这两个很重要 !对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!

x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) 当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质对付递推数列时候使用 证明单调性!

16直接使用求导数的定义来求极限 ,一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!)

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【课程教案高数范文】相关文章:

高数课程教案范文05-26

高数精品课程范文05-26

高数11教案范文05-23

高数课程设计方案07-01

高数课程心得体会07-01

高数1班教案06-21

成都大学教案高数08-01

考研数学一高数教案08-18

高数1公式范文05-18

高数考纲范文05-16

上一篇:抗洪抢险急救范文下一篇:捐资助学标准范文