正弦定理的教材分析

2024-07-18

正弦定理的教材分析(精选12篇)

篇1:正弦定理的教材分析

《正弦定理》教材分析

一、内容结构

(1)正弦定理是高中新教材人教A版必修⑤第一章第一节第一部分的内容。本节旨在基于高二已学的三角知识,通过对三角形边

角关系的研究,发现并掌握三角形中的边长与角度之间数量关

系,引出正弦定理。

(2)一个三角形,有六个元素:三个角三条边。知道其中的几个元

素求其它元素的过程,即为解三角形。由于三角形内角和为180

度,故而只需建立二边二角的关系,就能解决所有解三角形的问题。而其中二边二角的关系即为正弦定理。这个过程是对三

角知识的应用;也是对初中解直角三角形内容的直接延伸。

(3)教材证明正弦定理时,应用了前面所学“正弦函数定义”的知

识,很好的解决了“已知两角一边或两边一角求其他边角”的问题。教材的编排循序渐进,有效的把所学知识融会贯通,使

学生更容易接收。

(4)正弦定理本身的应用十分广泛,同学们在下一节中即将学习领

悟到。因此做好该节内容的教学,使学生通过对任意三角形中

正余弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题方法,体会由“定性研究到定量研究”这种数

学思想,对于下一节内容的学习有极大的帮助。

二、教学目标

1.知识与技能目标:

(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;

(2)掌握简单运用正弦定理解三角形、初步解决与测量与几何计算

有关的实际问题的方法。

2.过程与方法目标:

(1)通过对正弦定理的探究,培养学生发现数学规律的思维能力;

(2)通过对正弦定理的证明和应用,培养学生运用数形结合思想方

法的能力;

(3)通过对实际问题的探索,培养学生从数学角度观察问题、提出

问题、分析问题、解决问题的能力;

3.情感态度与价值观目标:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培

养学生勇于探索、善于发现、不畏艰辛的品质,增强学习的成功心理,激发学习数学的兴趣。

(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值。

三、地位与作用

《新课程标准》要求通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理,并

能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理等知识和方法解决一些与测量和几何计

算有关的生活实际问题。

利用正弦定理解三角形,可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,避免了许多繁杂的运算,从而使许多复杂的问题得以解决。

四、教学建议

1.创造性使用教材。

数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课的教学,应该从问题情境做引入,通过对数学实验的操作,使学生领悟证明方法。教师可以对教材作一定程度的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。

2.深刻挖掘教材。

深刻挖掘教材中体现的数学思想。作为教师,首先一定要清楚正弦定理在解三角形思维体系中的地位与作用,引导学生发现三角形的6个元素知三求三的所有情况;使学生理解需要已知哪些量,就可以解决所有关于三角形的所有问题。

这样做的好处是:

(1)使学生知道建立正弦定理的必要性、合理性和重要性,帮助学

生建构数学知识;

(2)提炼数学思想,提高学生解决问题的能力;

(3)在解决三角形的实际问题时,让学生知道要测量出什么量,才

能计算出所的要求的量实际问题。

3.从学生的角度出发设计课堂。

从学生的角度出发设计课堂,从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,课堂设计要紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

篇2:正弦定理的教材分析

刘文弟

一、教学内容:

本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。

二、教材分析:

1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。

三、教学目标:

1、知识目标:

把握正弦定理,理解证实过程。

2、能力目标:

(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:

五、教学过程:

(一)创设问题情景

课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,忽然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?

[设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!]

(二)启发引导学生数学地观察问题,构建数学模型。

用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:

1、考察角A的范围,回忆“大边对大角”的性质

2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A 从而抽象出一个雏形:

3、测量角A的实际角度,与猜测有误差,从而产生矛盾: 定性研究如何转化为定量研究?

4、进一步修正雏形中的公式,启发学生大胆想象:以及

[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]

(三)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:

1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。

2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。

3、让学生总坚固验结果,得出猜想:

在三角形中,角与所对的边满足关系

[“特例→类比→猜想”是一种常用的科学的研究思路!]

(四)让学生进行各种尝试,探寻理论证实的方法。提出问题:

1、如何把猜想变成定理呢?使学生注重到猜想和定理的区别,强化学生思维的严密性。

2、怎样进行理论证实呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证实。

3、你能找出它们的比值吗?借以检验学生是否把握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。

4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。[学生成为发现者,成为创造者!让学生享受成功的喜悦!]

(五)反思总结,布置作业

1、正弦定理具有对称和谐美

2、“类比→实验→猜想→证实”是一种常用的研究问题的思路和方法 课下思考:三角形中还有其它的边角定量关系吗?

六、板书设计: 正弦定理

问题:大边对大角→边角准确的量化关系? 研究思路:特例→类比→实验→猜想→证实 结论:在△ABC中,边与所对角满足关系:

七、课后反思 本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证实方法的前提下,在教师预设的思路中,一步步发现了定理并证实了定理,感受到了创造的快乐,激发了学习数学的爱好。

(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:

1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证实”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”„„促使学生去思考问题,去发现问题。

(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证实方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。

(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。

一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。但相信随着课改实验的深入,这种状况会逐步改善。

篇3:谈正弦定理与余弦定理的运用

例1在△ABC中,a,b,c分别为内角A、B、C的对边,根据下列条件,判断△ABC的形状(1)acos A=bcos B;(2)(a2+b2)sin(A-B)=(a2-b2)sin(A+B).

分析:对于上述例1中(1)和(2)分析以后可以发现,给出的条件中都是既有边长也有角度,所以一般都应该对于给出的这类条件进行整理,最终化简为仅有角度或者边长的形式,而在这个过程中一般采用正弦定理和余弦定理的变式效果会更好.

解:对于(1)的求解,可以考虑两种方法,

解法1:因为a=2Rsin A,b=2Rsin B,所以2Rsin Acos A=2Rsin Bcos B,即sin2A=sin2B,所以2A=2B或者2A+2B=π.

可以得到A=B或者,所以该三角形为等腰或者直角三角形.

解法2:因为,所以,即a2(b2+c2-a2)=b2(a2+c2-b2)将该表达式进行因式分解可得(a2-b2)(a2+b2-c2)=0,也就是a=b或者a2+b2=c2,同样得到该三角形为等腰或者直角三角形.

相比(1)而言,(2)的形式相对复杂,一般在解题过程中发现A+B这样的条件往往化为π-C,但本题等式两侧的次数相对对称,对于左侧的A-B需要展开,因此右侧保留A+B,得到

a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)],即2a2cos Asin B=2b2cos Bsin A,此时可以将所有条件化角或者化边,可以得到sin Asin B(sin2A-sin2B)=0或者,也就是sin2A=sin2B或者(a2-b2)(a2+b2-c2)=0,同(1)类似,可以得到该三角形为等腰或者直角三角形.

二、观察结构,注重与定理的联系

例2在△ABC中,a,b,c分别为内角A、B、C的对边,

(2)若△ABC的面积为S,且2S=(a+b)2-c2,求tan C的值.

分析:上述两个问题给出的条件与问题之间存在较大距离,需要对给出的条件进行代数变形,而结构中都含有边长的平方关系,可以与正、余弦定理的公式联系在一起.

(2)由于条件右侧含有a2+b2-c2的形式且最终所求也与角C有关,容易想到左侧的面积,所以条件可以化为

三、利用图形,恰当选择变量和定理

正、余弦定理是三角形内边角关系的两个定理,因此还有一类问题需要在图形中解决长度和角度问题.

例3如图1,在边长为1的等边△ABC中,D、E分别为边AB、AC上的点,若A关于直线DE的对称点A1恰好在线段BC上,求AD长度的最小值.

分析:由于需要求解线段长度,则将线段放在三角形中进行计算.图中存在对称,不妨连结A1D,得A1D=AD,因此可以在△A1BD中进行求解,而对于图形问题的变量选择,可以选择边长也可以选择角度.

解法1:不妨设A1B=x,AD=y,则在△A1BD中,

例3给出一个图形,要解决某条线段长度的最值问题,需要将该线段放在三角形内利用正余弦定理进行计算,由于所选三角形的不一样以及求解所用定理的不同,选择了两种不同的变量设法,而这也是求解图形问题常见的解决方法.

篇4:正弦定理和余弦定理的应用

正弦定理和余弦定理的承载背景是三角形。正弦定理和余弦定理架起了沟通三角形的边和角的桥梁。下面结合具体的例题谈谈正弦定理和余弦定理在三角形中的应用。

1利用正弦、余弦定理解斜三角形

例1.在△ABC中,已知a=2,b=3,A=45°,求B、C及c。

思路:已知a, b, A,由正弦定理可求B,从而可求C, c。

点评归纳:(1)在已知三角形两边及其中一边的对角,求该三角形的其他边角的问题时,首先必须判明是否有解,例如在△ABC中,已知a=1,b=2,A=60°,则sinB=basinA=3>1, 问题就无解。如果有解,是一解,还是二解。

(2)正、余弦定理可将三角形边角关系互相转化。

(3)在三角形的判断中注意应用“大边对大角”来确定。

2面积问题

例2.△ABC中角A、B、C的对边分别为a, b, c,且b2+c2-a2+bc=0

(1)求角A的大小;

(2)若a=3,求SΔABC的最大值;

(3)求asin(30°-c)b-c的值。

思路:(1)由b2+c2-a2+bc=0的结构形式,可联想余弦定理,求出cosA,从而求出A的值。

(2)由a=3及b2+c2-a2+bc=0,可求出关于b, c的关系式,利用不等式,即可求出bc的最大值,进而求出SΔABC的最大值。

(3)由正弦定理可实现将边化为角的功能。从而达到化简求值的目的。

解析:(1)因为cosA=b2+c2-a22bc=-bc2bc=-12,所以A=120°

(2)由a=3,得b2+c2=3-bc,又因为b2+c22bc(当且仅当c=b时取等号),所以3-bc2bc,当且仅当c=b=1时,bc取得最大值为1,

所以SΔABC=12bcsinA34,所以SΔABC的最大值为34

点评归纳:(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用。 (2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理。 (3)在求三角形面积时,通过正、余弦定理求一个角,两边乘积,是一种常见思路。

3判断三角形形状

例3.在△ABC中,a, b, c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),该判断三角形的形状。

思路:利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系。

解析:已知即a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)]

所以2a2cosAsinB=2b2cosBsinA,由正弦定理,即sin2AcosAsinB=sin2BcosBsinA

所以sinAsinB(sinAcosA-sinBcosB)=0,所以sin2A=sin2B,

由,0<2A<2π,0<2B<2π,得2A=2B或2A=π-2B

即△ABC是等腰三角形或直角三角形。

点评归纳:三角形形状的判定方法

(1)通过正弦定理和余弦定理,化边为角(如a=2RsinA,a2+b2-c2=2abcosc等),利用三角变换得出三角形内角之间的关系进行判断。此时注意一些常见的三角等式所体现的内角关系,如sinA=sinBA=B;sin(A-B)=0A=B;sin2A=sin2BA=B或A+B=π2等。

(2)利用正弦定理、余弦定理化角为边,如sinA=a2R,cosA=b2+c2-a22bc等,通过代数恒等变换,求出三条边之间的关系进行判断。

篇5:正弦定理和余弦定理的复习

教材:正弦定理和余弦定理的复习《教学与测试》76、77课

目的:通过复习、小结要求学生对两个定理的掌握更加牢固,应用更自如。过程:

一、复习正弦定理、余弦定理及解斜三角形 解之:x62 22(622)3bca13622 当c时cosA222

二、例一 证明在△ABC中asinA=bsinB=csinC=2R,其中R是三角形外接圆半径

证略 见P159 注意:1.这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例二 在任一△ABC中求证:a(sinBsinC)b(sinCsinA)c(sinAsinB)0

证:左边=2RsinA(sinBsinC)2RsinB(sinCsinA)2RsinC(sinAsinB)

=2R[sinAsinBsinAsinCsinBsinCsinBsinAsinCsinAsinCsinB]=0=右边

例三 在△ABC中,已知a3,b2,B=45 求A、C及c

解一:由正弦定理得:sinAasinB3sin453b22 ∵B=45<90

即b

当A=60时C=7cbsinC2sinsinB7562sin452 当A=120时C=15

cbsinC2sin156sinBsin4522 解二:设c=x由余弦定理 b2a2c22accosB 将已知条件代入,整理:x26x10

22bc22622(31)22从而A=60

C=75

当c622时同理可求得:A=120 C=15

例四 试用坐标法证明余弦定理 证略见P161

例五 在△ABC中,BC=a, AC=b, a, b是方程x223x20的两个根,且

2cos(A+B)=1 求 1角C的度数 2AB的长度 3△ABC的面积

解:

1cosC=cos[

(A+B)]=

cos(A+B)=∴C=120

2由题设:ab23ab2

∴AB

2=AC2

+BC

2AC•BC•osCa2b22abcos120

a2b2ab(ab)2ab(23)2210 即AB=10

3S1113△ABC=2absinC2absin12022232

例六 如图,在四边形ABCD中,已知AD

CD, AD=10, AB=14,BDA=60BCD=135

求BC的长

D

C

解:在△ABD中,设BD=x

则BA2BD2AD22BDADcosBDA

A

B ,即142x2102210xcos60 整理得:x210x960

解之:x116 x26(舍去)由余弦定理:

BCBD16sin3082

∴BCsinCDBsinBCDsin135

例七(备用)△ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 2

求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。解:1设三边ak1,bk,ck1 kN且k1

a2b2c2k4∵C为钝角 ∴cosC0解得1k4

2ac2(k1)∵kN ∴k2或3 但k2时不能构成三角形应舍去

1当k3时 a2,b3,c4,cosC,C109

42设夹C角的两边为x,y xy4

1515(x24x)44SxysinCx(4x)当x2时S最大=15

三、作业:《教学与测试》76、77课中练习

a2b2b2c2c2a20 补充:1.在△ABC中,求证:

cosAcosBcosBcosCcosCcosAD A

2.如图ABBCD=75

BC CD=33 BDC=45

ACB=30

求AB的长(112)

B

篇6:正弦定理的证明

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证

正弦定理:三角形ABC中 BC/sinA=AC/sinB=AB/sinC

证明如下:在三角形的外接圆里证明会比较方便

例如,用BC边和经过B的直径BD,构成的直角三角形DBC可以得到:

2RsinD=BC (R为三角形外接圆半径)

角A=角D

得到:2RsinA=BC

同理:2RsinB=AC,2RsinC=AB

这样就得到正弦定理了

2

一种是用三角证asinB=bsinA

用面积证

用几何法,画三角形的外接圆

听说能用向量证,咋么证呢?

三角形ABC为锐角三角形时,过A作单位向量j垂直于向量AB,则j 与向量AB夹角为90,j与向量BC夹角为(90-B),j与向量CA夹角为(90+A),设AB=c,BC=a,AC=b,

因为AB+BC+CA=0

即j*AB+J*BC+J*CA=0

|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0

所以asinB=bsinA

3

用余弦定理:a^2+b^2-2abCOSc=c^2

COSc=(a^2+b^2-c^2)/2ab

SINc^2=1-COSc^2

SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2

=[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2

同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2

得证用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证

4

篇7:正弦定理余弦定理[推荐]

一、知识概述

主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况.

二、重点知识讲解

1、三角形中的边角关系

在△ABC中,设角A、B、C的对边分别为a、b、c,则有

(1)角与角之间的关系:A+B+C=180°;

(2)边与角之间的关系:

正弦定理:

余弦定理:a2=b2+c2-2bccosA

b2=c2+a2-2accosB

c2=a2+b2-2abcosC

射影定理:a=bcosC+ccosB

b=ccosA+acosC c=acosB+

bcosA

2、正弦定理的另三种表示形式:

3、余弦定理的另一种表示形式:

4、正弦定理的另一种推导方法——面积推导法

在△ABC中,易证明再在上式各边同时除

以在此方法推导过程中,要注意对

面积公式的应用.

1、在△ABC中,ab=60, sinB=cosB.面积S=15,求△ABC的三个内角. 分析:

在正弦定理中,由

进而可以利用三角函数之间的关系进行解题. 解:

可以把面积进行转化,由公式

∴C=30°或150°

又sinA=cosB∴A+B=90°或A-B=90°显然A+B=90°不可能成立

当C=30°时,由A+B=150°,A-B=90°得A=120°B=30°

当C=150°时,由A-B=90°得B为负值,不合题意故所求解为A=120°,B=30°,C=30°.例

2、在△ABC中,a、b、c分别是内角A、B、C的外边,若b=2a,B=A+60°,求A的值. 分析:

把题中的边的关系b=2a利用正弦定理化为角的关系,2RsinB=4RsinA,即sinB=2sinA. 解:

∵B=A+60°

∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°

=

又∵b=2a

∴2RsinB=4RsinA,∴sinB=2sinA

3、在△ABC中,若tanA︰tanB=a2︰b2,试判断△ABC的形状. 分析:

三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a+b=c,a+b>c(锐角三角形),a+b<c(钝角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.

解法一:由同角三角函数关系及正弦定理可推得,∵A、B为三角形的内角,∴sinA≠0,sinB≠0.

∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC为等腰三角形或直角三角形.解法二:由已知和正弦定理可得:

整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.

5、利用正弦定理和余弦定理判定三角形形状,此类问题主要考查边角互化、要么同时化边为角,要么同时化角为边,然后再找出它们之间的关系,注意解答问题要周密、严谨.

4、若acosA=bcosB,试判断△ABC的形状. 分析:

本题既可以利用正弦定理化边为角,也可以利用余弦定理化角为边. 解:

解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B

∴2A=2B或2A+2B=180°∴A=B或A+B=90°

故△ABC为等腰三角形或直角三角形解法二:由余弦定理得

∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c

故△ABC为等腰三角形或直角三角形.

6、正弦定理,余弦定理与函数之间的相结合,注意运用方程的思想.

5、如图,设P是正方形ABCD的一点,点P到顶点A、B、C的距离分别是

1,2,3,求正方形的边长.

分析:

本题运用方程的思想,列方程求未知数. 解:

设边长为x(1

设x=t,则1

-5)=16t

三、难点剖析

1、已知两边和其中一边的对角,解三角形时,将出现无解、一解和两解的情况,应分情况予以讨论.

下图即是表示在△ABC中,已知a、b和A时解三角形的各种情况.

(1)当A为锐角时(如下图),(2)当A为直角或钝角时(如下图),也可利用正弦定理进行讨论.

如果sinB>1,则问题无解; 如果sinB=1,则问题有一解;

如果求出sinB<1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.

2、用方程的思想理解和运用余弦定理:当等式a2=b2+c2-2bccosA中含有未知数时,等式便成为方程.式中有四个量,知道任意三个,便可以解出另一个,运用此式可以求a或b或c或cosA.

3、向量方法证明三角形中的射影定理

在△ABC中,设三内角A、B、C的对边分别是a、b、c.

4、正弦定理解三角形可解决的类型:(1)已知两角和任一边解三角形;

(2)已知两边和一边的对角解三角形.

5、余弦定理解三角形可解决的类型:(1)已知三边解三角形;

(2)已知两边和夹角解三角形.

6、三角形面积公式:

6、不解三角形,判断三角形的个数. ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析:

①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解.

③a

④a0 ∴△ABC有两解.

篇8:正弦定理的教材分析

误区一:盲目化简,忽视特殊情况

案例1在三角形ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断三角形ABC的形状.

错误解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),

∴2sin Acos B·b2=2cos Asin B·a2,

即a2cos Asin B=b2sin Acos B.

方法一由正弦定理知:a=2Rsin A,b=2Rsin B,

∴sin2Acos Asin B=sin2Bsin Acos B,

又∵sin Asin B≠0,

∴sin Acos A=sin Bcos B,

∴sin2A=sin2B.

∴2A=2B,即A=B,

∴△ABC为等腰三角形.

方法二由正弦定理、余弦定理可知:

∴△ABC为直角三角形.

正确解析∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),

∴2sin Acos B·b2=2cos Asin B·a2,

即a2cos Asin B=b2sin Acos B.

方法一由正弦定理可知:

a=2Rsin A,b=2Rsin B,

∴sin2Acos Asin B=sin2Bsin Acos B,

又∵sin Asin B≠0,

∴sin Acos A=sin Bcos B,

∴sin2A=sin2B.

在△ABC中,0<2A<2π,0<2B<2π,

∴2A=2B或2A=π-2B,

∴△ABC为等腰或直角三角形.

方法二由正弦定理、余弦定理可知:

误区二:局限表面,忽视隐含条件

利用两角和与差的余弦公式展开得

总之,在正弦定理与余弦定理的应用中,一定要挖掘隐含条件,思维缜密,让两个定理的作用得到最大限度的发挥.

篇9:正弦定理的教材分析

一、 解三角形

正弦定理常用于解决以下两类解斜三角形的问题:① 已知两角和任一边,求其他两边和一角;② 已知两边和其中一边的对角,求另一边的对角及其他的边和角.

余弦定理常用于解决以下两类解斜三角形的问题:① 已知三边,求三个角;② 已知两边和它们的夹角,求第三边和其他两个角.

例1在△ABC中,a=2,b=6,A=30°,则边c= .

解法一 由正弦定理,得sinB==.又030°=A).

当B=60°时,c=90°,c==

4;而当B=120°时,C=30°,c=

2.

解法二 由余弦定理,得cosA=,即c2-6c+24=0,解得c=2或4.

点评 已知两边及其中一边的对角,解三角形时,需考虑解的个数.

二、 判断三角形的形状

利用正、余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或边的关系.一般地,利用正弦定理的公式a=2RsinA,b=2RsinB,c=2RsinC,可将边的关系转化为角的正弦关系,然后利用三角恒等变换公式进行化简,其中往往要用到三角形内角和定理A+B+C=π;利用余弦定理的公式cosA= ,cosB=,cosC=,可将角的余弦关系转化为边的关系,然后充分利用代数知识来解决问题.

例2在△ABC中,若=,判断△ABC的形状.

解法一 由正弦定理,得=,即=,所以sin2A=sin2B,所以2A=2B或 2A=180°-2B,即A=B或A+B=90°,所以△ABC为等腰或直角三角形.

解法二 由题设,有=,得=,化简,得(a2-b2)(a2+b2-c2)=0,所以a=b或 a2+b2=c2,所以△ABC为等腰或直角三角形.

点评 已知三角形中的边角关系式,判断三角形的形状,有两条思路:① 化边为角,再进行三角恒等变换,求出三个角之间的关系式;② 化角为边,再进行代数恒等变换,求出三条边之间的关系式.两种转化主要是应用正弦定理和余弦定理.

三、 证明三角形中的恒等式

例3在△ABC中,求证:a2sin2B+b2sin2A=2absinC.

证法一 a2sin2B+b2sin2A=(2RsinA)2•2sinBcosB+(2RsinB)2•2sinAcosA=8R2sinAsinB(sinAcosB+cosAsinB)=8R2sinAsinBsinC=2•2RsinA•2RsinB•sinC=2absinC,

所以原式得证.

证法二 左边=a2•2sinBcosB

+b2•2sinAcosA=a2••+b2••=2ab•=右边,

所以原式得证.

点评 此题所证结论为△ABC的一种边角关系,证明考虑两种途径:一是把边的关系转化为角的关系,一般是通过正弦定理的公式a=2RsinA,b=2RsinB,c=2RsinC;二是把角的关系转化为边的关系,若是正弦形式,则通过正弦定理,若是余弦形式,则通过余弦定理.

四、 解决实际问题

例4某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°,距离为10 n mile的C处,并测得渔船正沿方位角为105°的方向,以9 n mile/h的速度向某小岛靠拢,于是我海军舰艇立即以21 n mile/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间.

分析 如上图,设舰艇与渔船在B处相遇,设舰艇从A处靠近渔船所用的时间为xh,∠1,∠2可以求出,而AC已知,BC,AB均可用x表示,故可看成是一个已知两边夹角求第三边问题,则利用余弦定理建立方程来解决较好.而有了路程后,在已知速度的情况下,时间便很好求了.

解 有AB=21x n mile,BC=9x n mile,AC=10 n mile,∠ACB=∠1+∠2=45°+(180°-105°)=120°,

根据余弦定理,可得AB2=AC2

+BC2-2AC•BCcos120°,得(21x)2=102+(9x)2-2×10×9xcos120°,即36x2-9x2×10=0,解得x1= ,x2=-(舍去).

所以AB=21x=14,BC=9x=6.

则cos∠BAC===0.928 6,所以∠BAC=21°47′.

45°+21°47′=66°47′,小时即40分钟.

答:舰艇应以66°47′的方位角方向航行,靠近渔船需要40分钟.

点评 解好本题需明确“方位角”这一概念,方位角是指由正北方向线顺时针旋转到目标方向线的角,其范围是[0°,360°).设出未知量x,将由两个出发点及一个相遇点构成的三角形的各边、角用含x的式子表示,则可利用余弦定理建立方程求出x.

1. 在△ABC中,∠A=45°,a=2,c=,解此三角形.

2. 在△ABC中,若B=60°,2b=a+c,判断△ABC的形状.

3. 在△ABC中,若a2=b(b+c),求证:A=2B.

4. 在△ABC中,已知内角A=,边BC=2.设内角B=x,周长为y.

(1) 求函数y=f(x)的解析式和定义域;

(2) 求y的最大值.

1. b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°.

2. 法一 根据正弦定理,有2sinB=sinA+sinC,由B=60°,可解得A=60°,C=60°,因此△ABC是正三角形.

法二 根据余弦定理,得2=a2+c2-2accos60°,整理得(a-c)2=0,所以a=c,所以△ABC是正三角形.

3. 法一 因为cosB====,所以cos2B=2cos2B-1=2×-1===.

又因为cosA===,所以cosA=cos2B,而A,B是三角形内角,所以A=2B.

法二 由a2=b(b+c),可得sin2A=sinB(sinB+sinC),

所以sin2A=sin2B+sinBsin(A+B),所以sin(A-B)sin(A+B)=sinBsin(A+B),

所以sin(A-B)=sinB,则A=2B.

4. (1) 由A+B+C=π,A=,B>0,C>0,得0

应用正弦定理,知AC=•sinB=sinx=4sinx,AB=•sinC=4sin-x.

所以y=4sinx+4sin-x+20

(2) 由(1)知y=4sinx+cosx+sinx+2=4sinx++2

篇10:正弦定理的教学反思

在知识目标方面:通过创设适宜的数学情境,引导鼓励学生大胆地提出问题、引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问推向深入。通过问题的提出、解题方法的探索、到问题的解决、方法的总结、及练习题中方法的应用,都能紧抓公式及公式的变式,运用从特殊到一般、再从一般到特殊的思想方法达成知识目标。通过练习及六个变式问题调动学生的学习热情,进而采用“正弦定理”、“大边对大角”、“三角形内角和定理”、“数形结合”等知识与方法有效突破本节课的教学难点。使学生明白这一类数学问题该怎样解,让学生做到“学会数学,会学数学”。

在能力目标方面:通过例题、练习及六个变式问题,培养学生观察、归纳、概括新知识的能力;通过“故意出错”,让学生“质疑”、“找错”、“改错”,从而使学生的思维具有批判性,优化他们的思维品质;通过课后练习及课后思考,进一步培养学生的数学意识,解决数学问题的能力。

在情感态度与价值观方面:本节课也很注重对学生非智力因素的培养,注重情感交流与情感的建立与培养。并在教学过程中做到:与学生真诚相处、平等交流;依据自己的个人特点采取适当的方法与技巧,注重充分发挥教师的个人人格魅力,而非千篇 一律的“柔声细语”;能借助信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的`美感与幸福感。

篇11:正弦定理的教材分析

a^2=b^2+c^2-2bc*cosA

b^2=c^2+a^2-2ac*cosB

篇12:正弦定理,余弦的多种证明

课本利用向量法证明正弦定理,本文来介绍的另外两种证法.正弦定理:在一个三角形中,各边和它所对角的正弦比相等,即a=bsinAsinB=csinC.证法1:(等积法)在任意斜三角形ABC中,S△111absinCacsinBbcsinA,222两边同除以1abc即得:a=b=c2sinAsinBsinCABC=

.C点评:证法1主要利用了任意斜三角形面积可分别转化为三角形不同边与其对应高的乘积的12.此证法体现了转化与化归的思想方法.abAOBDc证法2:(外接圆法)如图1所示,设O为△ABC的外接圆的圆心,连接CO并延长交圆O于D,连接BD,则A=D,BCaa所以sinAsinDCD,即2R.同理 2RsinAbsinB=2R,csinC=2R.故 a=b=csinAsinBsinC=2R(R为三角形外接圆半径).点评:证法2建立了三角形中的边与对角、外接圆半径三者之间的联系,这三者知二可求一,为正弦定理增添了新内容,体现了数形结合的思想.小结:由以上证明过程,我们可以得到正弦定理的几种变形形式: 1.a: b: c = sinA : sinB :sinC;2.a=2RsinA;b=2RsinB;c=2RsinC;3.sinA=2aR;sinB= 2bR;sinC=2cR.(其中R为△ABC外接圆的半径)

在解决三角形问题时,一定要根据问题的具体情况,恰当地选用公式.公式选择得当、方法运用对路是简化问题的必要手段.

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.

对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质

a^2=b^2+c^2-2*b*c*CosA

b^2=a^2+c^2-2*a*c*CosB

c^2=a^2+b^2-2*a*b*CosC

CosC=(a^2+b^2-c^2)/2ab

CosB=(a^2+c^2-b^2)/2ac

CosA=(c^2+b^2-a^2)/2bc

证明: 如图:

∵a=b-c

∴a^2=(b-c)^2(证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc 再拆开,得a^2=b^2+c^2-2*b*c*CosA 同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。------------------平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 从余弦定理和余弦函数的性质可以看出, 如果一个三角形两边的平方和等于第三 边的平方,那么第三边所对的角一定是直 角,如果小于第三边的平方,那么第三边所 对的角是钝角,如果大于第三边,那么第三边

上一篇:恩师寿宴致辞下一篇:体育高效课堂心得体会