直流电动机教案

2024-07-26

直流电动机教案(共10篇)

篇1:直流电动机教案

直流电动机 教案一

直流电动机 教案一

(一)教学目的

1.知道直流电动机的原理和主要构造。

2.知道换向器在直流电动机中的作用。

3.了解直流电动机的优点及其应用。

4.培养学生把物理理论应用于实际的能力。

(二)教具

如课本图12—10的挂图和模型,两个箭头标志(可用饮料盒铝片制作),自制直流电动机模型(参见图12—2),直流电动机原理挂图一幅,小型直流电动机一台,学生电源一台。

(三)教学过程

1.复习

提问:上节课我们做实验给磁场中的导体通电,发现了什么?(学生回答:通电导体在磁场中受力)。

提问:这个力的方向与哪两个因素有关?(学生回答之后,教师强调:改变电流方向,或改变磁感线方向,导体受力方向就随着改变)

提问:出示如课本12—10甲的挂图和模型,根据上面的结论,通电线圈在磁场中是怎样受力的?(学生回答:ab边受力向上,cd边受力向下)

提问:在这两个力的作用下,线圈怎样运动?(学生回答:线圈会转动)

提问:这个现象中能量是怎样转化的?(学生回答:电能转化为机械能)

2.引入新课

教师陈述:电动机就是利用通电线圈在磁场中受力而转动的现象制成的,它将电能转化成机械能。下面我们来研究电动机是如何利用上述现象制成的,当然,我们先讨论最简单的一种电动机—直流电动机。给出直流电动机定义,并板书:

〈第五节直流电动机〉

3.进行新课

(1)使磁场中的通电线圈能连续转动的办法

很多同学可能马上想到通电线圈在磁场中不能连续转动(转到平衡位置要停下来),而实际的电动机要连续转动。怎样解决这个问题呢?(此处可告诉学生把理论用于实际需要再付出很多劳动,还可简介各国对理论应用于实际的重视,以培养学生对应用科学的兴趣)要解决这个问题,我们还得进行深入研究。

提问:在上节课的演示实验中,线圈转到平衡位置时是立即停止吗?为什么它不立即停止?(学生答:由于惯性线圈会稍转过平衡位置)

提问:转过平衡位置后,为什么它又转回来呢?(利用模型分析:转过平

衡位置后,ab边受力仍朝上,cd边受力仍朝下,正是这一对力使线圈转回来的)

提问:要使线圈不转回来,应该在线圈刚转过平衡位置时就改变线圈的受力方向,即使线圈刚转过平衡位置就使ab边受力变为向下,cd边受力变为向上。怎样才能使线圈受力方向发生这样的改变呢?

引导学生回忆影响受力方向的两个因素,从而得出:应该在此时改变电流方向,或者改变磁感线方向。进一步引导学生分析:改变磁感线方向就是要及时交换磁极,显然这不容易做到;实际的直流电动机是靠及时改变电流方向来改变受力方向的。

板书:〈1.使磁场中的通电线圈连续转动,就要每当线圈刚转过平衡位置,就改变一次电流方向。〉

(2)换向器

提问:怎样才能使线圈刚转过平衡位置时就及时改变电流方向呢?

让学生想办法并开展讨论,教师下

去了解学生的情况并鼓励和指导。

教师出示:两个半圆铝环和电刷,指出:靠这两样东西就可以解决问题。待学生思考片刻,教师出示已准备的与课本图12—12相似的模型,说明铝环与线圈的连接情况和铝环与电刷的配合过程。

引出换向器的概念并板书:

〈2.换向器的作用:当线圈刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动。〉

让学生仔细观察课本图12—12,进一步弄清楚线圈转动过程,重点是甲图和丙图,回答教师填空式的提问:

甲图:电流方向是a→b→c→d,受力方向是ab边受力向上,cd边受力向下,转动方向是顺时针。

丙图:电流方向是d→c→b→a,受力方向是ab边受力向下,cd边受力向上,转动方向是顺时针。

(3)直流电动机的构造

出示:直流电动机,介绍主要构造:磁极、线圈、换向器、电刷。

板书:〈3.直流电动机的构造〉

演示:给直流电动机通电转动,提高学生兴趣(若时间不允许,可省些演示)。告诉学生:下节课同学们将自己装一台小直流电动机,进一步弄清楚它的有关知识。

让学生阅读课文最后两个自然段,了解直流电动机的优点和应用。

4.小结(略)

5.作业:(不要求笔做)

(1)预习下节内容。

(2)比较直流电动机和交流发电机,从原理、构造和能量转化等方面说出它们的区别。

(四)说明

1.本节采用程序性的提问和讨论,启发学生弄清线圈受力情况和转回来的原因,以及解决问题的办法,可以培养学生的思维和创造能力。

2.换向器是教学的难点,制作放

大的直观模型很有必要。靠这一节课教学,一部分学生可能还没有完全弄清楚,下节课学生将进一步认识它。

3.通过前面几节的学习,学生识图能力应该有所提高,本节电动机原理图要尽量让学生自己看图理解。

篇2:直流电动机教案

2.画出直流电动机模型与变阻器、电源、开关组成的串联电路图(图12―4)。

3.按电路图连接电路。

4.经检查无误后,闭合开关,调节滑动变阻器至合适位置,观察电动机线圈转动情况。

篇3:直流电动机的调速研究

现代工业生产中,生产机械为适应其工艺过程要求,在不同的场合下必须具有不同的转速来进行工作,以保证生产机械的合理运行,并提高产品质量。直流调速即直流电动机速度控制,是指在直流传动系统中人为地或自动地改变直流电动机的转速,以满足工作机械对不同转速的要求。如金属切削机械在进行精加工时,为提高工件的表面光洁度而需要提高切削速度。由此可见,调速在生产机械的运行中,具有重要的意义。

从机械特性上看,就是通过改变电动机的参数或外加电压等方法,改变电动机的机械特性,从而改变它与工作机械特性的交点,改变电动机的稳定运转速度。以他励直流电动机为例,直流电动机有三种基本调速方法:(1)他励直流电动机的电枢回路串入电阻调速;(2)他励直流电动机的降低电源电压调速;(3)他励直流电动机的减弱磁通调速。以下分别进行讨论。

1 他励直流电动机的电枢回路串入电阻调速

电枢回路串入电阻调速要求,仅通过改变电枢回路的电阻来调节速度。此时,他励直流电动机的理想空载转速不变,额定转速降变大,特性变软。如图一所示,设他励直流电动机工作在固有机械特性曲线的点上,以转速稳定运行。为了调节速度,将接触器KM的常开触头断开,串入电阻,此时,他励直流电动机的工作点从固有特性曲线移到人为特性曲线上运行,他励直流电动机所对应的稳态转速为nc。串入不同的电阻,可获得不同的稳态转速。

用电枢回路串联电阻的方法调速时,虽然设备简单、操作方便,但因电动机的机械特性变软,系统转速受负载影响大。此时轻载时达不到调速的目的,重载时还会产生堵转现象,而且在串联电阻中流过的是电枢电流,长期运行时损耗也大,经济性差,因此这种调速方法在使用上有一定局限性。

2 他励直流电动机的降低电源电压调速

不同的人为机械特性对应不同的稳定转速,如图二中的a、b、c点所示。如将电源电压由UN调至U1,则他励直流电动机的工作点将由a点经v点过渡到c点,其特性曲线是一簇以U为参数的平行直线。

在整个调速范围内均有较大的硬度,在允许的转速变化率范围内可以获得较低的稳定转速,故此种方法的调速范围较宽,一般可达10—12。通过电压正反向变化,使电动机能平滑地起动和工作在四个象限,能实现回馈制动,而且控制功率较小,效率较高,配上各种调节器可组成性能指标较高的调速系统,因此在工业中得到广泛应用。

3 他励直流电动机的减弱磁通调速

他励直流电动机在额定磁通下工作时,磁路已接近饱和,因此,一般采用减磁调速。在U=UN、电枢回路中不串入附加电阻时,若减弱磁通,则理想空载转速和转速降将均随磁通的减小而升高,因此,他励直流电动机的磁通越弱,其机械特性越软。

采用调节励磁调速方法时,在高速下由于电枢电流去磁作用增大,使转速特性变得不稳定,换向性能也会下降。因此,采用改变磁通量来调速的范围是有限的。

由于弱磁调速只能升速,而转速的升高受到换向条件和机械强度的限制,调速范围不大,因此单独使用弱磁调速方法意义不大。对于要求调速范围较大的系统,常常把调压与调磁两种方法配合使用。以电动机的额定转速作为基础速度,在基速以下采用调压调速,在基速以上采用弱磁调速。

上述他励直流电动机三种调速的性能与应用场合如表一所示,可根据生产机械的调速要求合理选择调速方法。

4 结束语

直流电动机具有良好的起动、制动性能,宜于在较大范围内平滑调速。长期以来,在电动机调速领域中,直流调速方法一直占主要地位。与交流电动机相比,直流电动机有良好的调速性能,它的调速范围较广;调速连续平滑;经济性好,设备投资较少,调速损耗较小,经济指标高;调速方法简便,工作可靠。因此,在现代生产机械中被广泛采用。

参考文献

[1]张智先,姚永刚.电机与控制技术[M].北京:中国铁道出版社,2010.

[2]李敬梅,等.电力拖动控制线路与技能训练[M].北京:中国劳动社会保障出版社,2001.

篇4:直流电动机工作原理教案设计

1.书上彩图一下子给出线框受力方向,学生觉得突兀;

2.没有实际器材,换向器究竟什么样,怎样起作用不形象.

3.学生动手少,缺少理论与实践结合,枯燥,觉得学无所用.

经过思考,紧扣物理课程标准中对注重联系实际和过程与方法的渗透,再结合初中学生形象思维仍占优势,逻辑思维需要感性经验的直接支持的特点,我设计了这个教案,其基本设计思路如下:

1.通过实验对比,设置障碍,激发学生的学习兴趣.

2.铺设台阶,及时引导学生发现问题,从而寻求解决问题的途径,理解电动机工作原理.

3.激发求证心理,理论与实践相结合.

4.通过变式型设计,调动学生创造发明的积极性.

实践证明,效果很好,与大家分享一下.

导入:实验展示:给两个直流电动机通电,一个可以持续转动,而另一个不可以.学生自然产生疑问,为什么第一个不能持续转动呢?(其中一个电动机的线圈两端与电刷用导线焊接上,相当于两个铜环)学生带着疑问开始了本节课的学习.

第一环节:找出为什么不能持续转动

师:展示模型如图1:对线框的各个边分析,告诉学生左边一条边受到的力(由于初中生没有学习安培定则),让同学们分析对边受力情况.

学生运用磁场对通电导线的作用力的方向与电流方向有关,可以得出力的方向与左边方向相反.

(在两边线框上固定两根细线在图1F处,便于沿着力的方向拉动.)

师:线框将如何转动?

师:通电展示改动过的直流电动机模型,跟大家想的一样.生喜悦.

生:线圈转动怎么停下了?

师:转动模型如图2,这时右边受力有无变化?

生:右边受力无变化,仍向上,因为磁场和电流方向都不变.

师:拉动细线展示.

师:让线圈转到图3所示位置,上边受力变化吗?上下边受力有什么特点?

生:这两个力是一对平衡力,所以静止.

师:通电线圈的平面与磁感线垂直时,线圈受到磁场的作用力是一对平衡力,我们把这个位置称作平衡位置.

通过展示,将过程放大,便于学生发现电动机不转的原因,为下面解决问题埋下伏笔.

第二环节:怎样才能持续转动

师:用手转动模型,缓慢展示回到平衡位置的情况,那么怎样才能继续转呢?

生:改变力的方向.

师:追问:如何改变?

生:改变磁场方向、改变电流方向.

生:磁场.

师:展示实验,对调磁极.

生:大笑.(因为不断调动磁极不可能)

生:改变电流.

生:对调电源正、负极.

生:也一样.

生沉默……

师:展示模型如图4遮去电源部分.

生:好奇,开始比较两个模型不同之处

生:加了两个半环.

生:皱眉,这样能行吗?

师:展示模型如图4,转动模型至相反位置,如图5:让大家再次受力分析.

生:可以转了.在体会真神奇时,学生也就体会了换向器如何改变电流方向问题.

师:我们把这两个半环叫做换向器.

师:通电展示,电动机持续转动.

第三环节:寻找直流电动机模型换向器的改装

师:展示不能持续转动的换向器的改动.让学生寻找不能持续转动电动机的改动部分,进一步了解换向器的功能.

这时学生动手欲望很强,便于积极培养学生动手能力.

第四环节:学生自己动手安装直流电动机模型

1.安装直流电动机模型,可以持续转动.

2.改变电流方向,观察线圈转动方向.

3.对调磁极,观察线圈转动.

这个实验重在让学生体会自己能让电动机持续转动的愉悦.老师课前要调试好直流电动机模型,部分小组电刷和换向器之间稍微紧些.这样便于培养小组合作精神.实验只要布置(1),(2)、(3)不需老师提醒,学生自己就忙上了,等不及了!我们何不抓住机遇,顺水推舟,这样既培养了动手能力,又调动了积极性.

第五环节:总结直流电动机工作原理

师:请大家试着总结一下直流电动机工作原理.

生:磁场对线圈的作用,换向器改变电流方向,通电线圈……

师:线圈为什么会越过平衡位置?

生:由于惯性.

师:直流电动机的工作原理:通电线圈在磁场中受到力的作用而转动,由于惯性线圈越过平衡位置,通过换向器及时改变电流方向,从而能够持续转动.

边总结边转动模型.

第六环节:应用性设计

师:如图6所示是最简单的直流电动机模型,怎样使小电动机持续转动?想一想,通电后线圈将怎样运动?为什么能持续转动?请大家用漆包线和收音机扬声器后的磁体亲自做一做.这个设计取材容易,操作简单,课后容易实现.

这样处理的好处:

1.先给出一个线框受到的力,学生容易判断另一个线框的力,又能复习磁场对通电导线的力的方向与电流方向和磁场方向有关.

2.学生身临其境的参与了为什么用换向器的过程,所以换向器的结构及功能就很清晰了.

3.学生亲自动手让电动机转起来,不但培养了学生的动手能力,同时学生觉得学有所用,有强烈的喜悦感.

4.会灵活运用直流电动机的工作原理解决问题,不需死记硬背就能形象的掌握了.

篇5:电动机教案

【教学目标】 1.知识与技能

①了解磁场对通电导线的作用;

②初步认识科学与技术、社会之间的关系。2.过程与方法

经历制作模拟电动机的过程,通过实验方法探究直流电动机的结构和工作原理。

3.情感、态度与价值观

通过了解物理知识如何转化成实际技术应用,进一步提高学生学习科学技术知识和应用物理知识的兴趣。【重点、难点】 重点:

①通电导线在磁场中受到力的作用,力的方向跟电流的方向、磁场的方向都有关;

②直流电动机的能量转化。

难点:

电动机能够持续转动的原因。【教学环节】

复习提问:

奥斯特实验说明了什么? 新课引入: 引导学生举出尽可能多的用电器,从这些用电器中找到使用电动机的用电器。出示电动机模型,提出问题: 电动机是如何工作的?

新课教学

一、通电导体在磁场中的作用 提出问题:

通电导体与磁场之间到底有什么作用?

引导学生进行猜想,设计实验,进行实验验证。1.通电导体在磁场中受到力的作用

设计实验 观察:

(1)未闭合开关时,导体在磁场中的情况;(2)未加磁场时,通电导体的情况;

(3)闭合开关,观察导体在磁场中的情况 提出问题:

从上述现象,你可以获得什么样的结论? 小结:通电导体在磁场中会受到力的作用。

2.通电导体在磁场中受到力的方向与电流方向和磁场方向有关 引导学生讨论通电导体在磁场中的运动方向与什么因素有关 引导学生进行实验设计,引导学生观察:

(1)改变电流方向对于通电导体在磁场中的运动方向的影响(2)改变磁场方向对于通电导体在磁场中的运动方向的影响

(3)同时改变磁场的方向和通入电流的方向对于通电导体在磁场中的运动方向的影响

小结:通电导体在磁场中的受力方向与电流方向和磁场方向有关。

二、通电线圈在磁场中的作用 提出问题:

通电导体在磁场中受到力的作用会运动,那么通电线圈在磁场中又会受到什么作用?

演示实验探究

小结:通电线圈在磁场中会扭转 提出问题:

怎么样才能让线圈在磁场中转起来?

引导学生进行讨论,注意分析线圈的受力变化,引导学生找到办法。演示实验:让线圈在磁场中连续转动

三、电动机 1.电动机的构造

⑴定子:固定不动的部分 ⑵转子:能够转动的部分 2.换向器 说明:直流电动机的换向器的作用,注意利用课件和实物进行说明 小结: 作用:通过改变通入线圈的电流的方向来改变通电导体在磁场中的运动方向,使线圈在磁场中不停地转动。3.电动机的工作原理

提出问题:

电动机的工作原理是什么?

电动机的工作原理:通电线圈在磁场中会转动。4.电动机的能量转化

提出问题:能量怎样转化? 小结:电能转换成机械能。

5.电动机的应用:引导学生举例 小结:

知识小结:

一、通电导体在磁场中的作用 1.通电导体在磁场中受到力的作用

2.通电导体在磁场中受到力的方向与电流方向和磁场方向有关

二、通电线圈在磁场中的作用:使线圈转动

三、电动机 1.电动机的构造 2.换向器

3.电动机的工作原理 4.电动机的能量转化

电动机的应用 方法小结:

1.思维程序:提出问题——猜想——实验检验——得出结论——实际应用 2.研究方法:控制变量法、转换法。

篇6:《电动机》教案

教学目标

1.了解磁场对通电导线的作用。

2.通过制作模拟电动机的过程,锻炼学生的动手能力。

教学重点

磁场对电流的作用。

教学难点

1.分析概括通电导体在磁场中的受力方向跟哪两个因素有关。2.理解通电线圈在磁场里为什么会转动。

教学过程

由生活中常见带有电动机用电器入手引入课题。电动机 提问:

奥斯特实验说明了什么?

(引导学生回忆奥斯特实验,知道通电导体周围存在磁场,能使小磁针偏转,即电流对磁体有力的作用,那么反过来,磁体对电流有力的作用吗?进入快乐体验:

一、1、研究磁场对通电导线的作用

学生回答并总结影响通电导体在磁场中受力的两个因素: 通电导体在磁场中受力的方向,跟电流方向和磁感线方向有关。

让学生猜想:通电导体在磁场里要受到力的作用要运动,如果把一个通电线圈放于磁场中,它又将怎样?

2、研究磁场对通电线圈的作用 [探究]让线圈转起来

屏幕上显示实验器材、用漆包线制作矩形线圈的制作方法,用红色字强调制作过程的注意事项 教师巡视指导,查看各组学生分组制作线圈情况。

线圈制作完成后,屏幕上显示组装小电动机时线圈和磁铁的放置方法及如何使小电动机转动的方法。

让学生把制作的线圈置于磁场中并接通电路观察它的转动。

老师查看各组情况作总结,揭示电动机的工作原理:通电线圈在磁场中受力将会转动。

二、电动机的基本构造

结合制作的小电动机,学生回答电动机的基本构造。屏幕出示定子和转子。

[师]在上面探究活动中,我们使线圈转起来了。如果把“小小电动机”线圈两端引线的漆皮全部刮掉,线圈又会怎样运动呢?

学生实际操作、观察并回答现象:线圈转到一定位置后停止转动。

教师结合图进行解释,让学生结合影响通电导体在磁场中受力方向的因素进行讨论并回答:如何能使线圈持续转动?

实际的直流电动机是通过换向器来实现这项功能,看屏幕(屏幕放映带有换向器的线圈在磁场中的转动过程)

让学生结合flash动画认识换向器的构造并讨论回答它的作用。屏幕出示换向器的作用.[师]实际的直流电动机都有多个线圈,每个线圈都接在一对换向片上。

三、生活中的电动机

结合课本和生活经验回答电动机优点。收获园

篇7:电动机教案_

教材分析

电动机是我们生活中常见的一种电气化设备,电动机将电能转化为机械能,从而带动各种生产机械和生活用电器的运转。电动机的应用很广,种类也很多,但它们工作的原理都是一样的。如何从日常生活中常见的现象入手,激发学生探究的欲望是新课标的新体现。在旧教材中,这节书的内容分为三部分:磁场对电流的作用,直流电动机,实验:装配直流电动机模型。这就是传统的教学模式,先讲理论再进行实践。而新教材把这三节合并为“电动机”,从与生产、生活密切相关的现象入手,激发学生的兴趣,再探讨电动机的原理,“从生活走向物理”,这样使学生更易于接受。旧教材要求学生用左手定则判断通电导线在磁体中的受力方向,而新标准则要求“通过观察,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系”,与旧教材相比,要求已经降低,减轻了学生的学习负担;再者,新教材中由学生探究模拟电动机的实验对于学生了解电动机的基本构造有很大的帮助,使学生更好地理解电动机的原理和换向器的作用;最后由学生讨论生活中有哪些地方用到电动机,真正体现“从物理走向生活”的新理念。

这节课的内容比较多,我把它分为2课时来讲,第一节课主要讨论磁场对电流的作用及让学生探究实验“小小电动机”,最后留下一个问题让学生课外思考,为下一节课做好铺垫。第二节课主要介绍电动机的结构和换向器的作用。换向器的作用是以探究和比较的方法来介绍的,让学生自己由“小小电动机的实验”解决相关的问题,最后得出换向器的作用。

教学目标

知识与技能

①了解磁场对通电导线的作用;

②初步认识科学与技术、社会之间的关系。

过程与方法

经历制作模拟电动机的过程,通过实验方法探究直流电动机的结构和工作原理。

情感、态度与价值观

通过了解物理知识如何转化成实际技术应用,进一步提高学生学习科学技术知识和应用物理知识的兴趣。

重点与难点

重点

①通电导线在磁场中受到力的作用,力的方向跟电流的方向、磁场的方向都有关;

②直流电动机的能量转化。

难点

电动机能够持续转动的原因。

教学准备

教师:U形磁铁、电源、导线、开关、线圈和电动机演示模型。

学生:U形磁铁、小小电动机线圈、5号电池(2节)、金属支架、硬纸板和电动机模型。

板书设计

第四节 电动机

一、磁场对通电导线的作用

结论:

①通电导线在磁场中受到力的作用。

②通电导体所受力的方向跟电流方向、磁场方向有关。

二、电动机的基本结构

②换向器的作用:改变线圈的电流方向,使线圈得以持续转动。

三、生活中的电动机

①电动机的作用:把电能转化为机械能。

② 引入新课

第一课时

师:同学们好!我们上课前先来欣赏一些图片(用多媒体展示机床、电梯、电扇、电动玩具、冰箱等使用电动机的电器,并播放它们由停止到运转的状态),这些图片里的东西有什么共同的特点。

生甲:它们都是电器。

生乙:它们的运转都需要用到电。

生丙:它们都是靠电动机来转动的。

师:这些同学都说得很好。(用课件形式显示几种机器如电扇、电梯、电动玩具的结构图,并圈出电动机的位置)这些机器都有一个很重要的设备──电动机。

板书:第四节 电动机

进行新课

师:那么,为什么给电动机通电,它就能转动呢?电动机工作的原理是怎样的呢?

生:(随着老师的问题思考)

师:在回答这个问题之前,先让我们一起来回忆一下奥斯特电生磁的实验。哪位同学可以叙述一下奥斯特的实验过程及结果?

生:丹麦物理学家奥斯特在做实验时偶然发现当导线中有电流通过时,它附近的磁针指向发生了偏转,这个意外的现象引起了奥斯特极大的兴趣,它又继续做了许多实验,终于证实了电流的周围存在着磁场。

师:回答得很好。让我们一起回过头来看看奥斯特的实验(用多媒体课件展示奥斯特实验的实验装置及结论)。奥斯特是用一根小磁针放在通电导线的旁边发现了小磁针会受到力的作用,而且电流方向改变后,小磁针的转动方向也改变。那么我们反过来想一下,假如通电导线放在磁场中会不会也受到磁场的作用力呢?

(让学生思考和讨论)

生:我想会。因为奥斯特的实验证明了通电导线可以产生磁场,而且我们也知道了通电螺线管产生的磁场就相当于一个条形磁铁的磁场。那么把通电导线放在磁场中也就相当于把两个磁铁放在一起,肯定会有力的作用。因为两个磁体之间是可以相吸或相斥的。

师:这个同学的猜想听起来很有道理,但是正不正确呢?我们应该怎样去判断?

生:用实验去验证。

师:那么我们应该怎样去设计这个实验呢?请同学们再讨论一下,给出一个比较好的方案来。

(巡回听取学生讨论的方案)

师:请小组代表把你们讨论的结果告诉大家。

生甲:因为我们考虑到问题是要验证通电导线在磁场中有没有受到力的作用。所以我们想到实验必须有一条通电的导线,选择器材时就应该有导线,电源和开关;另外还要有提供磁场的条形磁铁。把通电导线放在磁场中看它能不能受到力的作用。

生乙:我们的方案和他们的大致相同。但是我们觉得用U形磁铁可能更好些,因为U形磁铁内的磁场集中些。还有我们觉得那根通电导线最好能用一个支架把它支起来,使它可以自由地摆动,这样才能更好地观察。

师:你们是根据什么想到这一点的呢?

生:我们是根据奥斯特的实验想到的。其中的小磁针不也是可以自由转动的吗?

师:同学们设计的方案都很好,特别是这组的同学考虑得非常全面,而且有根有据的。

(鼓励学生深入、严谨地思考,激发学生积极主动地探究)

师:那么同学们看看我的这套实验仪器能不能验证你们的猜想呢?

(拿出演示实验仪器)

师:(介绍实验仪器)像刚才那位同学说的,为了使通电导线能自由地摆动,我们给他做了个导轨。(安装好实验装置)导线ab放在磁场里,我们把开关合上,请同学们认真观察这根导线看它会怎么样?(闭合开关,演示实验)

师:同学们看到了什么现象。

生:导线运动了。

师:怎么运动?

生:向左运动。

师:那么这个实验说明了什么问题?

生:说明了导线在磁场中可以运动。

师:能不能说得更完善些。

生甲:应该是通电导线在磁场中可以运动。

生乙:说明了通电导线在磁场中会受到力的作用,没有力的作用导线就不会运动。

师:这位同学总结得很好,得到的结论也比较全面。

板书:

一、磁场对通电导线的作用

结论:1.通电导线在磁场中受到力的作用。

师:刚才我们用实验验证了我们的猜想,我们的实验现象也很明显,导线是运动了,而且是向左运动的。那么同学们再思考一下,奥斯特改变电流方向,小磁针的转动方向也改变了。我们这里的导线是不是永远向左运动的呢?怎么样去验证你的想法?

生甲:可以改变电流的方向来看看导线的运动方向有没有改变。

生乙:可以保持电流方向不变,改变磁场方向来看看导线的运动方向有没有改变。

师:那我们再用实验来验证这些同学的想法。

(先改变电流方向,示意学生看现象;保持原来的电流方向,再改变磁场方向)

师:同学们观察到了什么现象?由此又说明了什么?

生:看到导线的运动方向改变了,说明了改变电流或者磁场的方向,通电导线的运动方向也会改变。

师:换句话说就是通电导线受到磁场力的方向跟电流和磁感线的方向都有关系。

板书:结论:2.通电导线所受力的方向跟电流的方向、磁感线的方向都有关。

师:刚才我们是把一根通电导线放在磁场中发现它会受到力的作用。那么假如我们不是放一根导线,而是把整个线圈放到磁场中,又会怎么样呢?

(演示把线圈放到磁场中的实验)

师:可以观察到,线圈转动了起来,那么同学们可以讨论一下:为什么线圈是转动而不是直线运动呢?

生:(讨论后总结)由于导线两边的电流方向是不一样的,那么他们受到的力也就不一样了,就像一个框被相反的力扭动一样,所以只能是转动的。

师:总结得很好。其实我们开头讲的电动机的原理就是这样的,是用电来使线圈转动,然后带动机器转动的。下面我们就来做这个“小小电动机”实验,看看电动机是怎样转起来的。并且思考一下电动机为什么能不停地转动,这和我们的实验器材的结构有没有关系?

生:(动手做实验,探究电动机的转动,记录实验现象并思考问题)(约7、8min)

师:好了,刚才我们通过实验也验证了我们开始的猜想。那么同学们在做实验的时候有没有注意到我们的实验器材有什么特别的地方呢?

生:我们的线圈引线的两端都只是把一半的漆皮刮去的。

师:对,这是实验的特别之处,同学们回去想一下,为什么要这样做,假如把两端漆皮全部都刮去的话,又会怎么样呢?

(让学生先回去思考)

师:同学们你们在学完这节课后,有什么收获呢?

生甲:我知道了通电导线在磁场中会受到力的作用„„

生乙:我还知道了我们有了设想之后一定要用实验去验证。

师:这节课我们能获得那么多知识,和同学们善于思考是离不开的。同学们在讨论问题时都很认真,并且还能联系我们以前学过的东西去想问题,也越来越善于由看到的实验现象总结出实验的结论,语言表达比较规范。请同学在课外思考我们刚才提出的问题。

第二课时

师:上节课我们做了“小小电动机”的实验,模拟了电动机转动时的情况。今天我们看看真正的电动机是怎么样的。

(出示直流电动机模型,并通电使它转动)

师:我们先来看看电动机的主要结构是怎样的?

生:有能转动的线圈,还有不动的磁体。

师:对。电动机就是由能转动的线圈和不动磁体组成。我们把它们叫做转子和定子。

板书:

二、电动机的基本构造

1.电动机的组成

师:上节课我们还留下一个问题,在做“小小电动机”的实验时我们发现线圈可以不停地转动,同时我们也发现线圈引线的构造很特别,为什么要这样做,否则线圈可以不停地转动吗?下面我们继续来探讨这个问题。

师:(演示实验)现在我把线圈引线的绝缘漆全部刮去,看看实验的结果会怎么样。

师:我们发现结果是怎么样的呢?

生:线圈不能连续转动。

师:为什么会出现这种情况呢?难道是我们上节课的结论有错误?

(用多媒体把实验的装置图-23甲放大来给学生看。请学生思考问题)

图-23 线圈不能连续转动

师:(演示实验)我们再来看看当我把线圈放在这个位置(图-23乙)时看它会动吗?

(同时也用多媒体把线圈在乙的位置放大后显示出来)

师:很显然线圈没有动,这是为什么?

(请学生思考讨论后回答)

生甲:我想线圈要在磁场中转动可能和它被放置的位置还有关系。

生乙:我们也是这样想的,在乙的位置上可能线圈的两边受到两个反向的力,那么就不能转动了。

师:确实是这样,在乙的位置上刚好在同一直线上受到两个大小相等、方向相反的力(相当于二力平衡),所以线圈不能转动了。我们把这个位置就叫做线圈的平衡位置。那么线圈为什么在甲的位置可以转动但又不能连续地转动呢?让我们一起通过线圈的运动受力图来分析。

[用多媒体把丙的位置也放大后显示出来,并且把他们的电流方向和受力方向也一起标出来(图-23甲、乙、丙组合起来),教师一边标出电流方向一边讲解]

师:好了,我们刚刚也分析了线圈不能持续转动的原因,在丙的位置线圈受力的方向恰好与它运动的方向相反。你能想出什么好办法使线圈能连续地转动吗?

(小组讨论)

生甲:我们觉得线圈不能连续转动是因为转到丙这个位置时,左右两边线的电流方向和在甲时相反了。只要我们想办法让它转过平衡位置后就把左右电流方向对换,这样就可以使线圈连续转动了。

生乙:我们觉得可以用调换磁感线方向的方法,调换的位置、时间和刚才甲同学的一样。

生丙:我们觉得不用那么麻烦,我们做的“小小电动机”的实验不是可以持续转动吗?我们让电动机转到乙的位置不给导线通电,就不会产生阻碍的力了。由于惯性线圈继续转动,到了甲的位置再给它通电,那样就可以使它持续转动了。

师:我们的同学都很聪明,能够想出各种各样的办法来解决问题。但有的同学的办法很简单,有些同学的方法就比较复杂,我们可不可以开动脑筋,想出更简单,更实用的方法呢?其实直流电动机和我们模拟电动机的原理是一样的,它使用了一个叫换向器的零件来使电动机不断转动的。

师:(指出电动机里换向器的位置,介绍它的结构特点)换向器由两个彼此绝缘的半环组成,两个半环分别与线圈的两端接通。当线圈转动通过平衡位置后,半环从与一个电刷接触,改变为与另一电刷接触,从而改变线圈中电流的方向和磁场力方向,使线圈得以转动。

(让学生通过电动机模型,观察换向器)

板书:

2.电动机的组成

生:(接通电源观察电动机转动时换向器的工作)

师:(请学生分析电动机换向器的工作情况)

生:(大致和上面分析差不多)

师:我们要特别注意的一点是换向器两个半环之间是绝缘的,等线圈转到另一半和电刷接触时就改变了电流的方向,比起“小小电动机”又有所改进:把另一半的动力也用到了。

板书:2.换向器的作用:改变线圈的电流方向,使线圈得以持续转动。

师:我们观察了电动机如何工作,知道了它的工作原理。电动机转动后能带动其他机器的转动,那么电动机起到了什么作用呢?

(提示从能量的角度来考虑)

生:把电能转化为机械运动的能量。

师:很好。

板书:

三、生活中的电动机

1.电动机的作用:把电能转化为机械能。

师:那么我们日常生活中还有哪些地方是用到电动机的呢?

生:(举例)如电车、电力机车。

篇8:简易直流电动机模型的制作

电动机模型的特点

如图1和图2所示,分别是直流电动机工作原理图和模型示意图. 从图中可以看出,理解直流电动机的工作过程,图2比图1更容易让我们接受,模型电动机的工作情景更加接近实际电动机的工作过程,有助于理解电动机的工作原理以及电动机转动方向与磁场方向和电流方向的关系.

实际电动机和模型电动机在工作原理方面是一样的,都是通电导线在磁场中受到安培力的作用而使转子产生旋转. 为了让模型电动机线圈稳定旋转,在线圈的绕制时,必须让两根轴在一条直线上,并且线圈要均匀. 由于模型电机不带负载,绕制线圈不必太多,以达到减小线圈的重量.

电动机模型的制作

1. 制作材料及工具

漆包线(长30cm,直径1mm),磁铁一块(废旧喇叭里的磁铁也可以),5号电池3节,带插接头的导线2根,积木块(长方体,圆柱体直径3cm),小刀,透明胶带.

2. 制作过程

(1)将漆包线绕在圆柱形积木上,制作电机线圈,尽可能地让绕组的轴在线圈直径所在的直线上.

(2)用小刀挂掉线圈一端的漆包线的绝缘漆,另一端只挂掉一半.

(3)将两根带接插头的导线用胶带固定在积木块顶端,两积木块并排放置作为电动机线圈的支架,注意调整好接插头圆孔的角度,确保线圈转轴能够灵活转动. 可以手指拨动线圈,如果线圈最后能够停止在任何位置,说明线圈的形状及支架安装基本完成. 如图3所示.

(4)将磁铁放在线圈的下方,接通电池给线圈通电,发现线圈有摆动,但是没有转动起来. 继续调整磁铁与线圈之间的距离,轻轻拨动线圈,发现线圈快速旋转起来. 这样模型就成功了.

电动机工作原理图与模型电动机的对比

载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直,作用在导体上的安培力大小为[f=BIL],力的方向由左手定则确定.

磁场:图1中N和S是一对静止的磁极,用来产生磁场,其磁感应强度沿圆周按正弦分布.

励磁绕组:容量较小的发电机是用永久磁铁做磁极的. 容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的. 用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流.

电枢绕组:在N极和S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流.

换向器:电枢绕组两端分别接在两个相互绝缘且和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器. 换向器上压着固定不动的炭质电刷.

电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢.

当电枢转到图1所示位置时,[ab]边转到了S极下方,[cd]边转到了N极下方. 这时线圈电磁转矩的方向发生了改变,但由于换向器随同一起旋转,使得电刷[A]总是接触N极下的导线,而电刷[B]总是接触S极下的导线,故电流流动方向发生改变,电磁转矩方向不变.

如图1所示,根据左手定则我们可以判断出通电导线受力的方向,ab段导线和cd段导线受力方向没有在一条直线上,使得线圈转动. 但是随着转子的转动,转子线圈所在平面与磁场方向平行,ab,cd段导线受力平衡. 此时,电池电路由于换向器的缺口,断开了直流电路. 那么转子由于惯性会一直转动,直到换向器再次接通直流电路,使得ab,cd段导线分别受到反方向的力,最终保证了转子的持续转动.

那么,模型电动机是如何实现换向的呢?在制作线圈时,我们将线圈的一个端保留一半绝缘漆,这样就使得线圈在一个旋转周期中,只有一半的时间线圈通电,而另一半时间线圈断电,其旋转只靠线圈惯性转动. 所以,在实验过程中,通电时线圈不会立刻转动,而是需要手动拨动.

制作总结

模型电动机可以用于分析与直流电动机转动方向相关的因素. 影响直流电动机转动方向的因素有两个,一是电流方向,二是磁极位置.

实验时交换电池的两根接线,使流入电动机电枢线圈的电流改变方向,观察电动机转动方向的改变. 接通电池电源线路,拨动线圈后,发现线圈能连续转动. 改变电池极性,线圈转动方向随之改变;改变磁铁极性(环形磁铁上下倒置),线圈转动方向亦随之改变.

该模型电动机简单易制,操作方便. 通过实际操作,锻炼了我的动手能力,对已学知识有了更深的理解和认识.

篇9:电动机控制教案

课题:任务1安装和调试三相异步电动机连续与点动混;教学目的、要求:

1、能在教师的指导下设计三相异步;

2、正确理解三相异步电动机点动与自锁混合控制电路;教学重点:点动、自锁混合控制线路的设计、原理、接;教学难点:点动、自锁混合控制线路的设计和原理;授课方法:引导法、讲授法、演示法、课题: 任务1 安装和调试三相异步电动机连续与点动混合控制线路

教学目的、要求:

1、能在教师的指导下设计三相异步电动机点动与自锁混合控制电路

2、正确理解三相异步电动机点动与自锁混合控制电路的工作原理

3、能正确绘制点动与自锁混合控制电路的原理图、接线图和布置图

教学重点: 点动、自锁混合控制线路的设计、原理、接线图的绘制

教学难点: 点动、自锁混合控制线路的设计和原理

授课方法: 引导法、讲授法、演示法、练习法 教学参考及教具(含电教设备): 接线板 板书设计:

一、板前明线布线安装工艺

二、电气控制线路故障检测方法 三、三相异步电动机点动与自锁混合控制原理图 原理分析

1、点动控制:

2、连续控制

四、绘制元器件布置图和接线图

注:要求以一块黑板的版面来进行板书设计 教 案 纸 教学过程 复习:

1、什么是时间继电器?常用的时间继电器有哪几种?

2、什么是速度继电器?其主要作用是什么?

学生活动

学时分配 5min 2min 5min 10min 学生回答老师的提问

机床电气设备正常工作时,电动机一般处于连续运行状态,但在 试车或调整刀具与加工工件位置时,则需要电动机能实现点动运行。一般要求连续与点动混合的场合中,会采用什么样的电路呢?这就是

我们今天要研究的内容,本任务将完成三相异步电动机连续与点动混

合控制线路的安装与调试。任务引入 知识链接

1、布线通道尽可能少,同路并行导线按主电路、控制电路分类集 中,单层密排。

一、板前明线布线安装工艺

2、布线尽可能紧贴安装面布线,相邻电器元器件之间也可“空中走线”。

3、安装导线尽可能靠近元器件走线。

4、布线要求横平竖直,分布均匀,自由成形。

5、同一平面的导线应高低一致或前后一致,尽量避免交叉。

6、变换走向时应垂直成90角。

7、按钮连接线必须用软线,与配电板上的元器件连接时必须通过接线端子,并编号。

二、电气控制线路故障检测方法

1、电阻测量法。电阻测量法是切断电源后,用万用表的电阻挡检测的方法。这种方法比较方便和安全,是判断三相笼型异步电动机控制线路故障的常用方法。电阻测量法分为电阻分段测量法和电阻分阶测量法。

2、交流电压测量法。交流电压测量法是在接通电源时,用万用表的交流电压检测的方法。交流电压测量法分为分阶测量法和分段测量法。

教师讲解板前明线布线安装工艺,学生听讲 学生学习电气控制线路故障检测方法 教 案 纸 3、逐步短接法。逐步短接法是在控制电源正常情况下,用一根绝缘良好的导线分别短接测试(连接)点的方法。逐步短接法又分局部短接法和长短线短接法。三、三相异步电动机点动与自锁混合控制原理图 15min 5min 学生试着在老师的指导下设计控制电路 学生识别电气原理图中各低压电器及 复合按钮控制点动与自锁混合控制线路

1、识别各低压电器及作用

QF:断路器,起接通和分断电源 FU1:熔断器,起短路和过载保护 FU2:熔断器,起短路和过载保护

KM:交流接触器,它不仅能自动接通和分断电路,而且具有容量作用

大,欠电压释放保护作用

SB1-SB3:按钮,接通和分断电路 KH:热继电器,起过载保护作用

2、电路工作原理如下: 点动控制:首先合上电源开关 QS 教 案 纸

连续控制:首先合上电源开关 QS 起动: 停止:

学生试着分析点动和自锁连续控制电路工作原理 15min 5min

四、绘制元器件布置图和接线图(1)绘制元件布置图 学生绘制元件布置图

按下图所示布置图在控制板上安装电器元件,并贴上醒目的文字符号。

复合按钮控制点动与自锁混合控制线路布置图(2)绘制接线图 教 案 纸 20min 5min 3min 学生绘制接线图 学生练习学生总结所学内容 课堂练习:

1、试说明电路中SB2和SB3按钮的作用?

2、画出三相异步电动机点动与自锁混合控制线路图,说明其操作过程和工作原理。课堂小结: 通过本次课的学习,要求学生能阅读三相异步电动机连续与点动混合控制电路图,了解三相异步电动机连续与点动混合控制的工作原理,能绘制三相异步电动机连续与点动混合控制线路接线图。

篇10:直流电阻电路分析教案

“ 等效 ” 是电路理论中一个非常重要的概念。所谓两个结构和元件参数完全不同的电路 “ 等效 ”,是指它们对外电路的作用效果完全相同,即它们对外端钮上的电压和电流的关系完全相同。因此将电路中的某一部分用另一种电路结构与元件参数代替后,不会影响原电路中留下来末作变换的任何一条支路中的电压和电流。据此便可推出各种电路的等效变换关系,从而极大地方便了电路。1 .电阻串并联等效变换(1)电阻的串联:

• 通过各电阻的电流相同,同为 I。• 总电压等于各电阻分电压之 和。即 • 几个电阻串联的电路,可以用一个等

效电阻 R 替代。

• 分压公式:

• 功率分配:各个电阻上消耗的功率之各等于等效电阻吸收的功率,即:

(2)电阻的并联:

(a)各电阻上电压相同;

(b)各分支电流之和等于等效后的电流,即

(c)几个电阻并联后的电路,可以用一个等效电阻 R 替代,即 ※特殊:两个电阻并联时(d)分流公式:,(e)功率分配:

负载增加,是指并联的电阻越来越多,R 并 越小,电源供给的电流和功率增加了。.电阻星形联接与三角形联接的等效变换

无源二端网络是整个网络的一部分,有两个端钮与电路的其余部分连接,它的内部没有电源,总可以简化为一个等效电阻。一般不能用电阻串并联法化简含有两个以上电源的电路称为复杂电路,有时可以将其中一部分用Δ— Y 变换后计算。Y —Δ互相转换,必须遵从等效原则。

(1)Y →△变换公式

(2)△→ Y 变换公式

特殊:当三角形(星形)连接的三个电阻阻值都相等时,变换后的三个阻值也应相等。。3 .支路电流法

具有 b 条支路、n 个 结点的复杂电路,可以有相当多的回路,在平面电路中,中间不含支路的回路称为网孔,网孔数 m=b —(n — 1)。用支路电流作未知量,根据 KCL 列出(n — 1)个 独立结点电流方程,根据 KVL 列出 m 个 独立回路网孔方程,正好求解 b 条支路电流。支路电流参考方向是任意假设的,电压参考方向选择与电流方向一致,这就是支路电流法。4 .网孔电流法

假想的网孔电流,自动满足 KCL,应用 KVL 建立 m 个 网孔方程,解出网孔电流后,再求支路电流,使计算简化,这就是网孔电流法。列网孔电压方程时与本网孔有关的所有电阻之和是自电阻,与相邻网孔关联的电阻称为互电阻。所有网孔电流的参考方向,一般选择顺时针方向,因此互电阻恒为负值。5 .结点电压法

用假设结点 j 对参考结点 0 的电压 U jo 作未知量,使之自动满足 KVL,则只需应用 KCL 列(n-1)个 结点电压方程,解出结点电压后再求各支路电流,也能使计算简化。这就是结点电压法。列结点方程时,所有与该点连接的支路电导之和称为自电导,与相邻结点关联的支路电导是互导,互电导恒为负值。

支路电流法、网孔电流法和结点电压法都是应用基尔霍夫两条定律进行分析计算的。通常网络结构(n — 1)≤ m,所以结点电压法的应用更为广泛。6 .叠加定理

叠加定理是线性电路的重要原理 , 从数学上看 , 叠加定理就是线性方程的可加性。所以叠加定理适用于线性电路的电压、电流的计算。即各支路的电压、电流可看作由各个电源单独作用时在该支路所产生的电压、电流的代数和。由支路电流法和节点电压法得出的都是线性代数方程。利用叠加原理可以将复杂电路分解为许多较简单的电路 , 从而使电路分析过程大大简化。叠加定理的重要性不在于应用它来计算复杂电路 , 而在于它是分析线性电路的普遍原理 , 在后面的非正弦交流电路、暂态过程以及电子电路的分析中也都起较重要的作用。

运用叠加原理时应注意以下问题 :(1)只适用于线性电路;

(2)某一电源作用时 , 其他电源中理想电压源短路 , 理想电流源开路 , 电路其余部分不变;

(3)最后叠加时 , 结果为 ” 代数和 ” , 即要注意各个电源单独作用时的电流和电压分量的参考方向是否与总电流和电压的参考方向一致;(4)叠加原理只适用于电压和电流 , 不适用于功率。7 .戴维宁定理

戴维宁定理指出:任何一个线性有源电阻性二端网络,对外电路来说,可以用一个电压源与一个电阻串联的支路等效代替。戴维宁 定理将复杂的有源二端网络用一个电压源来等效代替 , 从而使电路的分析和计算得到简化。此法尤其适用于求解复杂电路中某一支路的电流 , 只要 将带求支路 划出 , 剩下 一 有源二段网络 , 可以等效为电压源 , 这样可以将复杂电路化简成简单电路,方便的求出待求的量。戴维宁定理特别适用于求解线性有源电阻性二端网络的某支路电流或电压。解题过程可分为如下三个步骤进行。(1)求开路电压;

(2)求等效电阻,电路中的电压源短路,电流源开路;

(3)作出 戴维宁等效电路,计算所求支路的电流或电压。运用 戴维宁 定理时应注意:

(1)等效是对有源二端网络外部而言的;(2)求有源二端网络的开路电压或短路电流时应先分析一下网络的情况。若为简单电路 , 只需利用欧姆定理和基尔霍夫定理便可求解;若为复杂电路 , 则还需利用其他 解复杂 电路的方法(如支路电流法 , 节点电压法 , 以及叠加原理等)才能求出。

(3)求等效电压源内阻的方法有 : 开路电压与短路电流之比 以及除源等 效法 , 一般来说 , 后者较简单。

上一篇:科学中考试卷分析下一篇:新闻采编部工作规划