无机非金属材料实验

2024-07-25

无机非金属材料实验(共6篇)

篇1:无机非金属材料实验

摘要 悬浮预热器窑和预分解窑工艺是当代水泥工业用于生产水泥的最新技术,通常称为新型干法水泥技术。新型干法水泥生产,就是以悬浮预热和预分解技术为核心,把现代科学技术和工业生产最新成就.新型干法水泥生产是一种新时期比较符合环保要求、符合高生产率要求的生产技术,本文对新型干法水泥生产的特点、生产工艺流程、生产工序以及余热发电进行的介绍。

关键字 新型干法 水泥窑 余热发电 正文

1、新型干法水泥生产的特点 1.1 优良的品质

生料设备全过程广泛采用现代均化技术,矿山开采、原料预均化、原料配料及粉磨、生料空气搅拌均化四个关键环节互相衔接,紧密配合,形成生料制备全过程的均化控制保证体系即“均化链”,从而满足了悬浮预热、预分解窑新技术对生料质量提出的严格要求,产品质量可以与湿法媲美,使干法生产的熟料质量得到了保证。1.2 低消耗

采用高效多功能挤压粉磨、新型粉体输送装置大大节约了粉磨和输送能耗;悬浮预热及预分解技术改变传统回转窑内物料堆积态的预热和分解方法,熟料的煅烧所需要的能耗下降。1.3 生产效率的大幅度提高 悬浮预热、预分解窑技术从根本上改变了物料预热、分解过程的传热状态,传热、传质迅速,大幅度提高了热效率和生产效率。1.4 减少污染,清洁环保

由于“均化链”技术的采用,可以有效地利用在传统开采方式下必须丢弃的石灰石资源;悬浮、预分解技术及新型多通道燃烧器的应用,有利于低质燃料及再生燃料的利用,同时可降低系统废气排放量、排放温度和还原窑气中产生的NO2 含量,减少了对环境的污染,为“清洁生产”和广泛利用废渣、废料、再生燃料及降解有害危险废弃物创造了有利条件。

1.5 装备大型化

装备大型化、单机生产能力大,使水泥工业向集约化方向发展。水泥熟料烧成系统单机生产能力最高可达10 000 t/d,从而有可能建成年产数百万吨规模的大型水泥厂,大大的提高了水泥生产的效率。1.6 生产控制自动化

利用各种检测仪表、控制装置、计算机及执行机构等对生产过程自动测量、检验、计算、控制、监测,以保证生产“均衡稳定”与设备的安全运行,使生产过程经常处于最优状态,达到优质、高效、低消耗的目的。1.7 管理科学化

应用IT 技术进行有效管理,采用科学的、现代化的方法对所获取的信息进行分析和处理。1.8 投资大,建设周期较长

新型干法水泥生产技术要求的生产设备科技含量高,所占资源、地质、交通运输等条件都要求比较高,而且耐火材料的消耗亦较大,因此整体投资比较大

2、新型干法水泥生产工艺流程

2.1 生料制备

来自矿山的石灰石由自卸卡车运入破碎喂料仓,经石灰石破碎系统的破碎后由皮带输送机定量的送往预配料的预均化堆场。黏土用自卸汽车运入或者从工厂的黏土堆棚中用铲斗车卸入黏土喂料仓,经喂料机喂入¢1 200 rnm×1 080 mm 双辊破碎机,在双辊破碎机中破碎到85 %的黏土小于25 mm 后,经计量设备送入预配料的预均化堆场。破碎后的石灰石、黏土和其他辅助原料各自从堆场由皮带输送机送往磨头喂料仓,经配料计量后,定量喂入原料磨进行烘干并粉磨。烘干磨的热气体由悬浮预热器排出的废气供给,开启时则借助热风炉供热风。

粉磨后的生料用气力提升泵送入两个连续性空气均化库,进一步用空气搅拌均化生料和储存生料。2.2 预热分解

预热分解就是利用预热器把生料的预热和进行部分的分解,从而代替回转窑部分功能,以达到缩短回窑长度,同时使窑内以堆积状态进行气料换热的一个过程,移到预热器内在悬浮状态下进行,可以使生料与同窑内排出的炽热气体充分混合,因此,可以增大气料接触面积,使得传热速度加快,热交换效率大大提高,达到提高窑系统生产效率、降低熟料烧成热耗的目的。预分解技术的出现是水泥煅烧工艺的一次技术飞跃。它是在预热器和回转窑之间增设分解炉和利用窑尾上升烟道,设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在分解炉内以悬浮态或流化态下迅速进行,使入窑生料的分解率提高到90 %以上。将原来在回转窑内进行的碳酸盐分解任务,移到分解炉内进行;燃料大部分从分解炉内加入,少部分由窑头加入,减轻了窑内煅烧带的热负荷,有利于生产大型化;由于燃料与生料混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程得到优化。因而具有优质、高效、低耗等一系一系列优良性能及特点。2.3 熟料煅烧

均化库中的生料经卸料、计量、提升、定量喂料后由气力提升泵送至窑尾悬浮预热器和分预分解窑水泥生产过程解炉中,经预热和分解后的物料进入回转窑煅烧成熟料。回转窑和分解炉所用燃料煤由原煤经烘干兼粉磨后,制成煤粉并储存在煤粉仓中供给。熟料经冷却机冷却后,由裙板输送机、计量秤、斗式提升机分别送入熟料库内储存2.4 水泥制成熟料、石膏经定量喂料机送入水泥磨中粉磨。水泥磨与选粉机一起构成所谓的圈流水泥磨,粉磨时也可根据产品要求加入适量的混合材料与熟料、石膏一同粉磨生产不同种类或标号的水泥品种。粉磨后的水泥经仓式空气输送泵送至水泥库储存,一部分水泥经包装机包装为袋装水泥,经火车或汽车运输出厂,另一部分由散装专用车散装出厂。其他不同规模的预分解窑水泥生产线、同规模而不同生产厂家的预分解窑水泥生产线的工艺流程大体上与前述相似,不同之处主要是生产过程中的某些工序和设备不尽相同。新型干法水泥生产工序

从上述的日产4 000 t 熟料的预分解窑水泥生产线的工艺流程不难看出,新型干法水泥生产可以概括成生料制备、熟料煅烧、水泥制成这三大生产过程,但具体生产工序之多,远不只是“两磨一烧”三个工序。一般而言,具体生产主要包括以下几大工序:①原料、燃料、材料的选择及入厂;②原料、燃料、材料的加工处理与预均化;③原材料的配合;④生料粉磨;⑤生料的调配、均化与储存;⑥熟料煅烧;⑦熟料、石膏、混合

材料的储存与准备;⑧熟料、石膏、混合材料的配合及粉磨(即水泥粉磨);⑨水泥储存、包装及发运。

4余热发电近年来, 随着我国水泥工业工艺及装备技术得以迅速发展, 数百条数千吨级新型干法水泥熟料生产线(简称水泥窑)的陆续投产, 为水泥窑纯低温余热发电技术及装备的开发、推广、应用创造了市场条件。在这个背景条件下, 目前国内具有水泥窑余热发电工程设计、技术开发能力的数家单位, 推出了几种水泥窑纯低温余热发电的热力循环系统并已在水泥工业陆续推广应用。世纪90 年代中期, 天津水泥院通过转化吸收一些国家低温余热的回收利用技术, 在完成引进日本川崎公司技术和主机设备的海螺集团宁国水泥厂纯低温余热电站工程设计以后, 经过近十年的艰苦努力, 利用“八五”国家重大科技攻关项目———鲁南水泥厂2×2000t /d 带补燃锅炉的中、低温余热发电技术及装备的研究和开发成果(12kW 机组), 不仅开发出了我国具有自主知识产权的纯低温余热发电的系统技术, 填补了国内空白, 同时, 还会同国内的锅炉和汽轮机生产制造厂家, 开发出适于700t /d、2000t /d、5000t /d 级规模的预分解生产线纯低温余热发电的主要设备, 并得到普遍的推广和应用

5中国发展水泥窑余热发电技术的目的

1.水泥熟料锻烧过程中, 由窑尾预热器、窑头熟料冷却机等排掉的400 ℃以下低温废气余热, 其热量约占水泥熟料烧成总耗热量30%以上, 造成的能源浪费非常严重。水泥生产, 一方面消耗大量的热能(每吨水泥熟料消耗燃料折标准煤为100~115 kg), 另一方面还同时消耗大量的电能(每吨水泥约消耗90~115 kWh)。如果将排掉的400 ℃以下低温废气余热转换为电能并回用于水泥生产, 可使水泥熟料生产综合电耗降低60%或水泥生产综合电耗降低30%以上, 对于水泥生产企业: 可以大幅减少向社会发电厂的购电量或大幅减少水泥生产企业燃烧燃料的自备电厂的发电量以大大降低水泥生产能耗;可避免水泥窑废气余热直接排入大气造成的热岛现象, 同时由于减少了社会发电厂或水泥生产企业燃烧燃料的自备电厂的燃料消耗, 可减少CO2 等燃烧废物的排放而有利于保护环境。

2.水泥生产企业建设余热电站, 投资小, 见效快, 可以大幅降低水泥生产能耗既成本, 相应地可以大幅提高企业经济效益。

3.支持并促进“水泥窑余热发电技术”的研究、开发、推广工作, 可以使中国水泥窑余热发电的总体技术水平达到或接近当前国外先进工业国家已经达到的技术水平

6.余热发电技术

目前水泥行业已经推广应用的几种纯低温余热发电技术, 以蒸汽参数来分, 基本上有两类: 一类为0.69~1.27MPa-280~340℃的低压低温系统, 另一类为1.57~2.47MPa-325~400℃的次中压中温系统。对于0.69~1.27MPa-280~340℃的低压低温系统,其热力系统构成有以下三种模式:其一: 单压不补汽式纯余热发电技术。其二: 复合闪蒸补汽纯余热发电技术。其三: 多压补汽式纯余热发电技术。技术要点: 利用水泥窑窑尾预热器排出的350℃以下废气设置1台窑尾预热器余热锅炉(简称SP锅炉)、利用水泥窑窑头熟料冷却机排出的400℃以下废气设置1台熟料冷却机废气余热锅炉(简称AQC炉)、两台锅炉设置1台蒸汽轮机、发电系统主蒸汽参数为0.69~1.27MPa-280~340℃。

上述三种技术没有本质的区别, 共同的特点: 都是利用在窑头熟料冷却机中部增设抽废气口或直接利用冷却机尾部废气出口的400℃以下废气及窑尾预热器排出的300~350℃的废气余热;最重要的特点是采用0.69~1.27MPa-280~340℃低压低温主蒸汽。区别仅在于: 窑头熟料冷却机在生产0.69~1.27MPa-280~340℃低压低温蒸汽的同时或同时再生产0.1~0.5MPa-饱和~160℃低压低温蒸汽、或同时再生产85~200℃的热水;汽轮机采用补汽式或不补汽式汽轮机;复合闪蒸补汽式适用于汽轮机房与冷却机距离较远的情况而多压补汽式适用于汽轮机房与冷却机距离较近的情况。

对于1.57~2.47MPa-325~400℃的次中压中温系统, 其热力系统构成有如下两种模式: 其一: 冷却机多级取热纯余热发电技术。其二: 冷却机多级取热及循环风纯余热发电技术。

技术要点: 利用水泥窑窑尾预热器排出的350℃以下废气设置1台窑尾预热器余热锅炉(简称SP锅炉)或同时利用窑尾C2级预热器内筒设置过热器;利用熟料冷却机排出的400℃以下废气设置1台熟料冷却机废气余热锅炉(简称AQC炉), 或者通过改变窑头熟料冷却机废气排放方式: 利用熟料冷却机排出的部分360℃以下废气设置1台AQC余热锅炉、利用熟料冷却机排出的部分500℃以下废气设置1台熟料冷却机废气余热过热器(简称ASH过热器);将AQC炉排出的废气部分或全部返回冷却机, 窑头熟料冷却机冷却风采用循环风方式;利用两台锅炉或者增设的余热过热器设置补汽式蒸汽轮机, 发电系统主蒸汽参数为1.57 ~3.43MPa-340 ~435℃、补汽参数为0 ~0.15MPa-饱和~160℃。7研究、开发、应用水泥窑纯低温余热发电技术应遵循的基本原则 水泥窑纯低温余热发电技术是以节能降耗从而降低水泥生产成本为目的, 它的内涵是: 将水泥生产

过程中产生的并且水泥生产过程本身已不能再利用的余热回收从而转化为电能的技术, 因此, 研究、开发、应用水泥窑纯低温余热发电技术应遵循的基本原则: 不影响水泥生产、不增加水泥熟料热耗及电耗、不改变水泥生产用原燃料的烘干热源、不改变水泥生产的工艺流程及设备。

结束语

世界水泥技术的发展趋势是以节省资源、节约能源和环境保护为中心,进行清洁生产和高效集约化生产,加强水泥生态化技术和设备的研究、开发,逐步减少天然资源和天然能源的消耗,最大程度地减少环境污染,最大限度地接收、消纳工业废弃物和城市生活垃圾等,使水泥工业达到与环境友好、和谐、共存。新型干法水泥生产技术代表着当今世界水泥生产的潮流,发展新型干法水泥是实现中国水泥工业现代化的必由之路。虽然中国先进的新型干法水泥生产线与国际先进水平已经相接近,但从整体来看,还存在较大差距。为了使中国新型干法水泥生产工艺与设备的主要技术经济指标逐步赶上,甚至超过国际先进水平,同时在环境保护和生态建设方面逐步达到国际先进水平,我们还需要不懈努力

参考文献 柴春省.新型干法水泥生产线实现污泥资源化利用的实践与探索[J].中国科技信息,2010(02)时晓初.抢抓机遇谋发展 提速增效创佳绩——云南水泥工业2009 年经济运行报告[J].中国水泥,2010(02)3 刘寿绵、艾 军.水泥行业低碳化生产方法和设想[J].中国水泥,2010(02)张凤刚等.CEMAT 系统在大型水泥企业中的应用[J].水泥,2004(10)[9]张轶. 中外水泥窑纯低温余热发电对比[J]. 中国建 材,2005,(6).

[10]张富,张福滨. 水泥行业纯低温余热发电技术及现 状[J]. 建材发展导向,2007,(1).

[7]谭业锋. 工业窑炉废气余热的回收与利用研究[D]. 济南: 山东大学,2006 [3]赵宗燠. 余热利用与锅炉节能[M]. 银川: 宁夏人民 出版社,1984.

篇2:无机非金属材料实验

总结报告

一、项目改革的背景、思路

材料是当代社会经济和科学技术发展的四大支柱之一。我国高等院校担负着为国家经济建设培养材料科学与工程专业高级人才的重要历史使命。几十年来,我国的材料类专业高等教育发展迅速,特别是在20世纪末的改革浪潮中,材料类专业的教学改革也取得了很大的进展。但从整体看,已进行的教学改革研究中,对理论课程体系改革力度较大,而对实验教学课程体系的研究还远远不能满足现代工程教育、创新人才培养的需要。

材料科学从主体上来说是一门实验科学。专业实验在培养学生探索材料本质、开发新材料和解决实际生产问题的综合素质和能力方面发挥着举足轻重的作用。因此研究并形成适合我国材料学科发展人才需求的、与改革后理论课程体系相配套的科学、完整的实验课程体系已势在必行。

1996年,我校作为主持单位之一参加了教育部面向21世纪高等工程教育改革计划中“材料类专业人才培养方案及教学内容体系改革的研究”项目,2000年通过国家鉴定。至此确立了面向一级学科专业立足二级学科专业的办学思路,并初步形成了新的“无机非金属材料工程专业教学计划”。

为进一步深化教学改革,强化对学生的工程素质培养,确立与新理论教学体系相适应的实验课程体系,特提出“无机非金属材料工程专业实验教学体系整体优化的研究与实践”课题,并于2000年8月正式被教育部获准立项。

该项目旨在巩固深化已取得的教学成果的同时,进一步对拓宽后的无机非金属材料工程专业的实验课程体系进行整体优化,改革实验教学方法,在专业实验教学中强化学生的能力和素质培养,探索新专业实验室的管理运作模式,实现其高效良性运作。

二、项目研究、实践的情况

项目根据材料科学与工程学科的特点,针对原有人才培养模式中工程实践训练的不足,确立无机非金属材料工程专业实验教学目标。项目针对实验课程体系的研究,实验教学方法和手段改革,“实验中心”管理运行模式探索等内容,全

面实施了无机非金属材料专业实验教学改革。构筑了无机非金属材料工程专业实验教学新体系,出版了“无机非金属材料实验”教材及CAI课件,公开发表了36篇的教学改革研究论文,出版了“材料科学与工程专业教学改革研究与实践”论文专集,探索出材料专业实验室实施开放性和综合性实验教学的途径和方法。

在建设过程中,该项目提出的实验课程体系,通过“试点——总结——扩大试点——总结——全面推广”的阶段,积极稳妥的在96级至99级4届材料科学与工程专业、无机非金属材料工程专业等18个班中实施。2003年,该实验体系又在2000级无机非金属材料工程专业6个班推广实践,至9月项目成果通过国家教育部项目结题验收,已累计有24个班644名学生参与改革实践。实践表明:通过项目的实施,教师教育理念得到转变,实验课程体系得以完善,实验教学方法和教学手段得到更新,实验室建设与管理水平得到提高,学生的专业实践能力和综合素质得到提高。

2004年10月,项目研究成果通过全国高等教育研究中心组织的鉴定,鉴定委员会认为:项目研究与实践有创新、有突破,学生收益面较广,体现了高水平、高起点的特点。研究成果对国内高校专业实验改革具有很好的辐射和借鉴作用,研究成果在同类项目中达到国内领先水平。

三、项目主要成果简介

1、确立无机非金属材料工程专业实验教学目标

通过对国内几十所高校及用人单位的广泛调研,认为:21世纪材料类专业人才必须具有良好的综合素质,必须通晓材料的制备与加工、组成与结构、性能与应用的材料科学与工程的全面知识,应具备开拓和创新精神,具备较强的适应社会发展的能力。由此确定无机非金属材料工程专业实验教学目标是:掌握材料科学与工程学科基础知识,兼顾材料科学家科学研究和材料工程师工程实践的综合需要,培养学生自主创新意识,锻炼学生动手能力和独立思考问题与解决问题的能力。

2、新的无机非金属材料工程专业实验课程体系

新的无机非金属材料专业实验课程体系,在与学科基础课配套设置物理实验、实验化学、电工与电子技术实验的同时,对原附属于理论课的实验内容进行全面整合,同时为拓宽专业实验内涵,强化工程能力训练,增设了粉体工程实验、材料制备与性能实验、材料研究与测试技术等课程实验内容,优化后形成了由材料工程实验(含粉体工程实验、热工工程实验、流体力学实验)、材料科学基础实验、材料制备与性能实验(含公共基础实验、专业选修实验),材料研究与测试方法等

课程组成专业实验课程体系。调整后的无机非金属材料专业实验教学结构发生了根本变化,突出了培养材料工程师和材料科学家应具备的“材料研究”、“材料制备”和“材料生产”的基本能力的训练,实验学时比例大幅度增加。体现了加强学生综合能力,创新能力,主动实践能力的培养思路,实现了对学生的专业基础训练和专业综合能力训练。

根据新课程体系设计思路,在实验教学中,改革传统工科专业将“专业基础实验”、“专业实验”教学完全分开的做法,在实验教学大纲制订中,将专业基础实验和专业实验融合为一体,避免交叉重复,形成更为合理的专业实验教学理论与实践体系,同时加大了对过去陈旧的、演示性、验证性实验项目的整合力度,以学生为主体,开发了一批设计性、综合性实验项目。

3、无机非金属材料实验教材

2002年6月由化工出版社出版。该教材按现代无机非金属材料研究与生产的总体需要选择了54个实验项目,根据专业的特点,把一些实验性质和实验内容相近的项目进行归类、调整,形成以原燃料质量测试研究、材料形成规律分析、材料性能测定为主线的比较科学的实验系列。教材出版后,受到专家较高评价,其理论体系被许多高等院校所关注。

4、无机非金属材料专业实验多媒体课件

该课件2003年6月由化工出版社出版。它的出版发行,填补了我国“无机非金属材料实验”教学课件的空白。为运用现代教学手段,改革传统的实验教学模式,提高实验教学水平和质量创造了必要条件。课件将录像和动画技术结合起来,通过录像展示实验仪器的操作方法,通过FLASH动画展示实验原理及实验过程中的细小变化,便于学生理解,具有很好的可视性和一定的先进性。课件不仅对教材中所述及的实验原理、实验设备、实验方法的理解与掌握起到了很好的辅助教学作用,而且对教材中的实验项目也进行了必要的增补,由原54个实验项目增至56个,反映的信息量大,实用性强。

该课件由材料学院、艺术学院、学校电视台联合开发,设计有创意,制作质量高。课件采用模块化设计,分三级菜单完整体现无机非金属材料实验课程体系,使用者可以在三级目录中随意切换。

5、教学改革实践成果

在实验教学改革与实践过程中,我们收集96级、97级、98级、99级、2000级、2001级无机非金属材料专业实验调查资料及学生体会4本,整理典型实验报告6本,完成实践报告1份。

本项目实验教学内容的改革重点在于对综合性、设计性实验内容的规划,在于对开放性的实验教学方法、科学的专业实验成绩评价方法研究探索,特色在于材料工程实验平台、材料科学公共基础实验平台、专业选修实验平台课程的实施。我们按照各种材料的制备、性能测试的系统性去安排实验,并根据各种材料的研究需要去体现实验的综合性,让学生系统地理解所开实验的目的意义、原理,掌握实验方法,掌握材料生产质量控制和科学研究基本技能,提高分析问题、解决问题的能力。

在实践中,我们还进行了专业实验课程成绩的评价指标和方法的研究,提出以重知识运用、动手能力培养为主的思想。对实验数据处理及结果分析,则按实验性质进行分类,提出写综合实验报告、设计型实验报告的要求。

6、实验教学基地的建设与科学管理

根据学科建设的需要,学校对硅酸盐材料工程教育部重点实验室、材料复合新技术国家实验室、材料研究及测试中心进行了大幅度投入,同时对无机非实验材料中心进行建设,由此为无机非金属材料专业实验提供了强大的基地支撑。

自1998年开始,学校先后增专项300万元,实现了无机非金属材料实验中心设备资源的优化重组,实验条件明显改善。目前,无机非金属材料实验中心已有各类仪器设备600多台套、总价值达450多万元,已初步形成了一定规模。每年能接纳近300位本科生专业实验和200名本科生、研究生的学位论文实验。已成为我校实施材料科学与工程专业本科生教学培养的重要实验基地,同时也已为全国材料类专业实验室的建设提供了很好的示范作用。

实验中心还进行了开放实验室运行模式探索;在积极提高实验中心实验技术人员素质的同时,发挥我校材料学科优势,跨院系引入高职称的专业课教师参与实验教学,以改善实验教学队伍知识结构,提高实验教学水平。

根据实验教学需要,我们将教学改革与实践经验、科研成果有机结合,创新开发与研制了20台套实验设备,并在满足自身教学需求的同时,成功向兄弟院校推广,为拓展项目成果和促进实验中心自身发展奠定了很好基础。

四、项目成果推广及应用情况

本项目针对无机非金属材料工程专业,研究并实施的全方位了实验教学改革,其成果不但对武汉理工大学其他专业实验教学改革产生示范作用,而且已通过无机非金属材料类专业教学指导委员会幅射到有无机非金属材料工程专业的高等院校。

自2003年9月项目结题后,本实验体系2003年、2004年分别在武汉理工大学2000级、2001级材料科学与工程专业12个班推广实施,又有575名学生

参与实践,取得很好教学效果。2003年,本专业本科生参与发表论文56篇,涉及人数73人。2004年,该专业本科毕业生,获湖北省优秀学士论文一等奖2项,二等奖2项,三等奖1项,获湖北省大学生科技成果一等奖、二等奖、三等奖各1项。同时实验教学改革思路也被推广到其他材料类专业,并在2003级教学计划中得到全面体现。2003年10月该项目成果在无机非金属材料类专业教学指导委员会年会上重点进行了交流,有56所学校代表参加,对相关学科、专业或学校的产生积极影响。

本项目成果不仅满足了本校实验教学的需要,而且还满足了全国其他兄弟院校材料专业实验教学的需要。已有南京大学、中南大学、福州大学等40多所学校教师到无机非金属材料实验中心参观学习,出版的《无机非金属材料实验》教材,已在中国地质大学等高校销售2786册,“无机非金属材料实验多媒体课件”,已在重庆大学等12个高校销售13套。研制和开发的实验设备已在河海大学等11所高校推广54台套。

五、项目成果的优势与特色

项目成果的优势与特色主要体现在下面六个方面:

1、研究内容系统而全面,在全国高校同类专业中独树一帜。

本项目以无机非金属材料工程专业拓宽为契机,以实验教学思想的转变为动力,以大幅度提高本专业学生的综合素质及能力为根本目标,对原有专业实验课程进行整合优化的同时,在实验室管理运作模式、多媒体实验教学课件开发、综合性和设计性实验规划等多方面,协调一致地进行了全方位改革,力图探索一条符合中国特色的专业实验教学改革之路。这样全面系统地改革一个专业教学实验是我校历史上前所未有的,在全国高校同类专业中也是独树一帜的。

2、《无机非金属材料实验》教材和CAI课件的配套出版,填补了我国“无机非金属材料实验”教学课件的空白。为运用现代教学手段,改革传统的实验教学模式,提高实验教学水平和质量创造了必要条件。

3、开设的设计性、综合性实验项目交叉、综合、启发性强,具有创新性。

本项目在教学内容的组织上,将专业基础实验和专业实验融合为一体,将传统的单项实验法与新型的多项实验组合法相统一,注重设计性、综合性实验项目的开设,形成由材料工程实验平台、材料科学公共基础实验平台、专业选修实验平台课程组成的特色实验体系。教材中把实验分为三类,即传统实验、综合实验和设计型实验,是教学、生产、科研相统一的最佳模式,这种结合具有创新性。

4、项目研究和实践过程中,在探索开放性的实验教学方法,考试方法改革和实

验设备的开发,以及发挥学科实验基地优势、跨院系组织实验教学等方面均体现出明显特色。

5、取得的实验改革成果全面而系统,为成果推广创造了条件。

项目构筑了无机非金属材料工程专业实验教学新体系,配套出版了高质量的专业实验教材和多媒体课件,研制成功经济实用的配套实验设备,同时探索出材料专业实验室实施开放性和综合性实验教学的途径和方法,为全国的材料专业实现全面系统的实验教学改革积累了经验,也为提高我国该专业本科生的专业实验能力和综合素质,广泛推广本项目研究成果,创造了条件。

6、由试点到推广,完成了实践全过程,学生受益面大。

篇3:无机非金属材料实验

最近十多年来, 材料科学与工程专业的高等教育的发展非常迅速, 很多高校相继对原有的与材料科学与工程相关的各个二、三级学科进行了合并或调整, 也有不少高校从无到有相继开办了材料专业, 相应的材料科学与工程专业的教学改革也取得了很大的进展。由于材料专业自身的壮大发展和各地经济发展的不平衡, 材料专业的教改也引起了学校内外的广泛关注[1]。全面来看, 在已经进行的教育教学改革研究中, 对理论教学的课程体系改革力度较大, 而对实验教学课程体系的研究还远远不能满足现代工程教育以及社会急需的创新人才培养的需要。

根据化学组成和显微结构特点, 材料可分为金属材料 (metal materials) 、无机非金属材料 (inorganic non-metallic materials) 、有机高分子材料 (polymeric materials) 和复合材料 (composite materials或composites) [2]四大类。其中无机非金属材料是由硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐等原料和 (或) 氧化物、氮化物、碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的工艺制备而成的材料, 是除金属材料、高分子材料以外所有材料的总称。它与广义的陶瓷材料有等同的含义[3]。“陶瓷”一词和“ceramics” (来自希腊字keramos, 意为用火烧成的制品) 同样具有有狭义 (陶瓷与瓷器) 和广义 (无机非金属材料) 的双重含义[4], 人们一般常提到的陶瓷是指狭义的陶瓷, 本文讨论的材料专业的实验中所提到的陶瓷也是指其狭义概念的部分。

材料专业属于工科类, 设置有较多的实验教学也是其突出特征, 大部分院校也都比较重视学生实践和动手能力的培养, 所以开设的实验课程比较多。对于实验体系的建设, 各个院校越来越认识到大力改革实验教学的形式和内容的重要性和紧迫性, 纷纷采取各种办法和措施手段以鼓励实验管理部门及其组织管理者积极开设综合设计性、创新性实验和研究型课程, 鼓励本科生参与科研活动。为此, 有的院校确定无机非金属材料专业实验体系建设以开设综合性实验为基本模式, 压缩、减少验证性实验的数量和比例, 适当增加学生自主设计实验步骤的实验, 加强与外部的联系合作, 利用现代技术手段改进实验教学方法, 建设起立体化的无机非金属材料专业实验教学体系。本科材料专业大多单独开设有普通物理实验、无机化学实验、物理化学实验、材料科学基础实验、材料工程基础实验、专业方向实验等实验课程, 总学时数一般为200个左右。前5门实验课程属于学科基础或专业基础方面的, 不少院校的材料类专业基本上都开设, 探讨的已经比较多了, 相对也比较成熟, 很多已有正式出版或已成体系的实验教材或指导书。而作为包括无机非在内的各个专业方向的专业实验体系都在不断地建设和探索完善过程中。本课题小组试图对无机非方向专业实验中的陶瓷实验进行一些探讨。

2 陶瓷实验设置应考虑的几个问题

材料学从本质上来说是一门实验科学。专业实验可以增加学生的感性认识、培养学生分析解决实际问题的能力、强化工程素质、启迪创新思维和创造能力, 可以培养学生探索材料本质、开发新材料和解决实际生产问题的综合素质和能力。以往的实验多为验证性实验, 学生按实验指导书的要求按设定的步骤进行操作, 得到预期的实验现象和结果。这种实验方式不能激发学生的兴趣, 不利于调动学生的积极性和创造性, 学生在实验过程中始终处于被动地位, 为此, 确定材料科学与工程专业实验改革以开放实验室、开设综合性实验为基本思路, 减少验证性实验的数量和比例, 适当增加学生自主设计实验步骤的实验, 加强与企业、科研院所和兄弟学校的联系合作, 打造立体化的材料专业实验教学体系。因此, 专业实验教学的改革, 包括实验教学体系的改革、实验教学内容的整合更新、利用现代技术手段改进教学方法等, 是高教改革的重点和难点之一。

陶瓷方面的实验项目很多, 尤以材性检测类的为最多。例如仅就陶瓷物性检测方面的实验项目各版本的实验指导书就列出了气孔率、吸水率、白度、光泽度、透光度、显微硬度等等的测定实验[5,6,7]。还有一些诸如无机粉体的制备实验等也属于陶瓷实验的范畴, 然而在前面开设的材料科学基础实验或材料工程基础实验中已有开设或涵盖, 在这里不作讨论。

第一, 首先要明确无机非方向的陶瓷方面的实验要解决什么样的问题。或者说要让无机非方向的同学通过陶瓷实验了解些什么内容。通过陶瓷实验可以让学生了解陶瓷的生产工艺和产品检测以及新品种开发方面的基本知识和要求, 培养学生的实践动手能力。生产工艺和新产品开发方面的内容包括原料的选择与制取、配料设计、坯体和釉料的制备、半成品的干燥与陶瓷的煅烧等。而各类检测项目则包括:过程质量控制和产品质量检验等。

第二, 要充分认识陶瓷生产工艺的突出特点, 分清主次, 抓住重点, 合理安排具体的实验项目。人们在以往的研究和生产实践中发现, 不管是无机非金属材料还是有机材料, 或者是金属材料, 各种类型的材料在很多方面都有着或多或少的联系和区别。单纯无机非金属类材料领域也是这样的情况, 只不过是有更多共性的东西, 如原料的选择、配料设计、窑炉煅烧等。但对于陶瓷部分来说, 与其他各种类型材料相比起来最大的不同 (或者说显著的特点) 是施釉和装饰[8]。施釉本身也具有装饰作用, 但又不完全是装饰, 有其具有必不可少的实用价值。施釉作用在于可以改善陶瓷制品的表面性能, 使制品表面光滑, 对液体和气体具有不透过性, 不易沾污;其次, 可以提高制品的机械强度、电学性能、化学稳定性和热稳定性[9], 还可以扩大原料的使用范围并提高产品等级等[10]。装饰可使陶瓷既具有实用性又具有艺术感, 从而改善制品的外观质量和提高产品等级。不仅如此, 装饰尚能扩大坯用原料的来源[11]。因此, 陶瓷实验的设置应围绕施釉和装饰这两点展开, 即在确定陶瓷方面的实验项目时釉料的制备、施釉以及陶瓷的装饰要重点考虑。陶瓷的另一个主要特点是成型。陶瓷坯体的成型可以分为注浆成型 (Slip Casting) 、塑性成

型 (Plastic Making) 和压制成型 (Dry and Semi-Dry Pressing)

三种[12]。陶瓷在成型方面与其他类型的材料的生产工艺相比较起来差异也比较大, 也需要加以注意。另外陶瓷所用原料种类多, 坯体干燥和烧成过程控制要求严格, 因为最终产品一经煅烧完成再无补救的办法, 即不合格的产品不可能再回到生产流程中去重新参与配料利用了。最后就是其成品检验与其他无机非产品的也很不相同。当然还有粘土的可塑性、颗粒的流动性也经常在陶瓷生产中用到。以上几方面的内容在开设陶瓷实验时根据各院校自身的具体情况进行筛选, 但作为一个完整的陶瓷实验模块, 在安排其组成部分的时候, 尽量考虑其连贯性, 以使陶瓷实验部分完整系统。

第三, 尽量将陶瓷类的实验设置成设计性或综合性实验。陶瓷实验一般安排在大三或大四学年进行, 大多数的必修课程同学们都已经学习过或正在学习, 他们已经具有了不少的专业理论和实验理论知识, 也具备了一定的实验设计能力和动手能力, 如果时间和其它实验条件具备的话, 尽量采用设计性的综合实验。安排不同组别的同学制备不同的陶瓷品种, 例如建筑卫生瓷、电瓷、透明瓷、医用瓷、彩色瓷、化工瓷等等。从原料选择、配料设计开始, 依次进行原料的加工处理、粉体 (或浆料) 制备、成型、干燥到烧成和成品检验。设计性实验往往容易激发学生的探索和求知欲望, 学生的热情高, 一般都能够积极主动地参与到实验中来。设计性实验之所以能够激发学生的参与热情, 究其原因说明大多数人都有创造和探求新知识的冲动和欲望。所以在专业课的实验阶段, 在时间和其它实验条件许可的情况下, 尽量采用设计性 (综合) 实验为好。实验宜安排在相关的专业知识刚刚学完之际。根据各个院校实验计划课时数的安排, 在内容上不可能都安排出来, 要做到有所取舍, 在时间安排上也应有所侧重或涉猎、涵盖。

另外, 可以考虑将陶瓷实验项目和内容适当地趣味化, 以提高学生的学习兴趣。大家都知道, 兴趣是学习和工作的最好的老师。如果对所学对象没有兴趣, 就根本谈不上高质量、高效率地学习[13]。相较于其它方面的实验, 陶瓷实验应相对容易做到趣味化。例如, 可以安排学生通过实验做一个具有一定纪念意义的或者具有一定装饰作用的小物件。当然实验的内容和深度一定要符合课程实验大纲和培养目标要求, 不要将完整的教学内容和严肃的教学过程完全游戏化和空泛化。

3 结语

在大学毕业生就业形势日益严峻的今天, 如何培养适合社会需求的复合型人才, 如何提高教学质量, 对学校提高办学水平和声誉度至关重要。在规划、设定培养目标和制定培养计划以及进行具体课程内容设置的时候, 一定要实事求是从学生的实际出发, 仔细认真地去研究材料专业的教育教学规律, 切实把每一部分开设的内容最大限度的符合培养目标要求和切合实际需要。材料专业的工科性质决定了其需要设定的教学内容一定要理论联系实际, 把实践环节纳入教学内容与课堂教学, 切实做到培养学生的实际动手能力, 提高学生综合素质, 以更好地适应市场需求[14]。

篇4:无机非金属材料实验

关键词:无机非金属材料;实验室开放;教学研究;综合性实验

无机非金属材料专业主要培养具备无机非金属材料特别是建筑材料科学与工程方面的知识,能够从事该领域的科学研究、技术开发、工艺和设备设计、建筑施工、监理、技术及经营管理等方面的高级工程技术人才。学生通过系统学习及专业训练,掌握该领域的基础理论、专业知识和基本技能,研究无机非金属材料及其复合材料的组成、结构与性能之间的关系,探索无机非金属材料的制备、加工工艺技术及性能测试评价。笔者结合无机非金属专业的特点和毕业生的就业方向,探讨和研究无机非金属材料专业的专业课实验教学,从调整课程设置、修改教学内容、改进考核方法、加大实验室的开放力度等几个方面进行了探讨性研究,提出了改革方案,为无机非金属材料工程专业实验教学改革提供了理论依据。

一、专业实验课的设置及实验内容

在20世纪90年代,高等学校的课程设置和教学内容都进行了改进,无机非金属材料专业经过调整后,把原有的胶凝材料、水泥工艺学、混凝土工艺学等专业课程的实验课的内容,统一调整为无机材料测试技术专业课的实验内容,由于无机材料测试技术课程实验学时较少,删除了现在无机行业使用较少的材料实验内容,如,石灰的消解温度、产浆量;石膏的性质、细度的比表面测定方法等实验内容,增加了一些新型材料的实验内容,这样能使学生及时掌握无机材料科学发展的方向,也增强了学生适应社会的能力。但是新型材料的发展,离不开基础材料,基础材料在无机材料的发展中起着重要作用,新材料及复合材料的实验也是在基础材料实验的基础上有所发展的,拼命地追求新材料的实验内容,忽略了基础实验和传统的实验内容,使得无机非金属材料专业学生在完成本科毕业论文阶段明显感觉到实验动手能力不足,在毕业后的工作中,表现出缺乏基础实验技能的训练。所以,基础材料的实验教学在实验课教学中尤为重要,专业实验课的实验内容更应重视基础材料的内容。

二、专业实验实行独立设课,引导学生重视实验课

高等学校的学生存在一个普遍的现象,重视理论课和考试课,忽视考查课和实验课。这种现象是中国应试教育模式的延伸,在这种教育模式下,学生习惯了考试,不适应考核与考查。只有把实验课与专业课分开,独立设置成一门课程,进行单独考核,单独计入学分,才能引起学生足够的重视,从而提高学生的专业技能。

在建筑领域对无机非金属材料的研究越来越广,各种新材料、复合材料大量更新。实验内容和实验工作量越来越大,在原来的基础上增加实验内容远远满足不了实验课的需求,所以无机材料专业的专业实验课应独立设课。课程时间设置成一段时间(一周或两周),课程应分三个阶段,第一阶段:学生必修实验内容(基础实验);第二阶段:教师布置实验内容(综合性、设计性实验内容);第三阶段:学生自主设计实验内容。通过这三个阶段的学习,学生能够把本科阶段的专业课以及专业基础课的内容贯穿起来,形成一个系统的知识链。

三、加大实验室的开放力度,培养学生的动手能力

要满足实验课独立设课的要求,实验室必须进行全面的开放,满足学生的实验需求。

在学生实验集中阶段,首先选一些验证性实验内容,并同时开放所有的实验室,学生可随时选做必修实验内容的任意一个,但是在规定时间内必须完成所有的必修内容。在这一阶段,要求学生熟悉必修试验项目涉及的实验仪器、原理、操作方法及国家的相关技术规程,掌握必修实验材料的技术性质。通过这一阶段的实践,使学生掌握基础材料的实验方法和评定方法,培养学生的动手能力。在第一阶段结束后,提交实验报告,教师布置下一阶段实验任务,这一过程也是必修内容,教师给定几个综合性试验或者设计性试验题目,学生分组选择后进行实验方案的设计,经教师同意后进行试验并写出实验报告。这一过程提高了学生的实验方案设计能力。最后,由学生根据自己的兴趣爱好提出实验题目、设计实验内容,经教师同意认可后,自行进行试验并提交报告。

学生经过这样一个过程后,使理论知识和实践技能有了衔接,同时也是对各门专业课知识的一个系统的总结,不但提高了理论水平,而且提高了学生的动手能力。

四、注重学科交叉渗透,开设综合性实验,提高学生的专业素质

无机非金属材料学涉及多学科领域,所以在专业实验教学过程中,应注重学科知识的交叉渗透。利用综合性试验项目,把许多相关的学科知识进行融合,使学生掌握相关知识,把理论与实践进行衔接。

在国家开展本科教学水平评估以来,学校为了提高本科教学质量,要求本科毕业设计题目是一人一题,不允许出现雷同论文。本科毕业设计时间持续一个学期,由教师命题,学生自主选择,然后根据自己的论文题目,设计实验方案。由于论文命题都是结合教师的科研内容和研究方向定的,所以实验内容除无机材料学外,还包括有机化学、无机化学、声、光、电、力学等多学科的方方面面。这时大多数学生显得很盲目。使学生在专业试验阶段掌握这些相关的实验内容,开设综合性试验、设计性试验就显得尤为重要。综合性、设计性试验能使学生对所学知识和感兴趣的知识进行整合和改进,在实验过程中掌握实践技能,培养学生的专业素质。

专业实验课改革和实践是一项长期的工作,它涉及相关学科的方方面面,是一项系统而艰巨的任务,必须寻求各方面的支持和帮助。无机非金属材料工程专业的毕业生分布在科研、生产、检测等不同领域,要使毕业生都能在自己的岗位上熟练地发挥自己的特长,充分发挥自己的潜能,是我们教学研究要达到的目的。为了达到这一目的,就要不断进行教学研究,探索无机非金属专业的教学改革和建设,培养学生理论联系实际的能力,增强分析问题、解决问题的能力,开发学生的潜在能力,把学生培养成实用型人才。

参考文献:

[1]陈桂华.材料化学专业实验教学研究[J].洛阳师范学院学报,2009:150-151.

[2]张刚.环境科学专业实验课教学改革探讨[J].实验室科学,2009(2):44-46.

[3]肖佳.土木工程材料开放性试验教学研究与实践[J].长沙铁道学院学报:自然科学版,2006(2):83-84.

[4]彭永臻.环境工程实验专业基地建设的研究与实践[J].实验室技术与管理,2006(7):5-7.

篇5:无机非金属材料

材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。 应用领域

无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的

篇6:无机非金属材料论文

摘要

无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳 化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40 年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。

关键字 无机非金属,材料,方向,前景,智能

引言

新材料涉及的领域众多,无机非金属新材料领域是其重要的一个组成部分。“十二五”期间,我国无机非金属新材料应,围绕功能材料确定发展重点无机非金属材料包括水泥、玻璃、陶瓷、耐火材料、人工晶体和半导体材料等,下面就其无机非金属材料的研究与应用前景进行简单介绍。

一、无机非金属材料的特点及应用

无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。

在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类 材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好 的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。

无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完 善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材 料两大类。

普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此 外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材 料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与 金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。特种无机非金属材料的特点是:①各具特色。例如: 高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体 的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材 料的导电性质;快硬早强水泥的快凝、快硬性质等。②各种物理效应和微观现象。例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的 气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。③不 同性质的材料经复合而构成复合材料。例如:金属陶瓷、高温无机涂层,以及用 无机纤维、晶须等增强的材料。

传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种 重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规 格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产 品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维等。

二、无机非金属材料材料的发展现状及前景

20世纪以来,随着电子技术、航天、能源、计算机、通信、激光、红外、光电子学、生物医学 和环境保护等新技术的兴起,对材料提出了更 高的要求,促进了特种无机非金属材料的迅速发展。30~40年代出现了高频 绝缘陶瓷、铁 电陶瓷和压电陶瓷、铁氧体(又称磁性瓷)和热敏电阻陶瓷等。50~60年代开 发了碳化硅和氮化硅等高温结构陶瓷、氧化铝透明陶瓷、β-氧化铝快离子导体 陶瓷、气敏和湿敏陶瓷等。至今,又出现了变色玻璃、光导纤维、电光效应、电 子发射及高温超导等各种新型无机材料。近些年,随着科学技术的进步,无论是传统无机非金属材料,还是无机非金属材料都有了一些新的发展趋势。

1、生态与环保意识加强,建立科学的评价体系,实现可持续发展

西方发达国家在促进传统无机非金属材料产业健康、可持续发展方面的采取 了许多重要措施。世界发达国家十分重视建材工业的可持续发展与绿色评价。生 态评价也成为世界可持续发展的一个重要手段。目前,许多国家正在进行“生态城市”的建设与实践,推广建筑节能技术材料,使用可循环材料等,改善城市生态系统状况。由此,提出了绿色建材、环保建材与节能建材的概念,并开展了大量的研究与实践工作。与西方发达国家相比,我国还存在很大的差距,特别是缺乏立法支持与技术标准的指导以及相应组织的管理与监督,使我国的传统无机非金属材料工业发展还有很大的提升空间。面对资源和环境对我国经济发展的严峻考验,国民经济的可持续发展战略显得愈加重要。

2、向着节能、降耗的方向发展

传统的无机非金属材料工业是能源消耗大户,在世界能源日益短缺的今天,如何生产节能、降耗,以及如何生产出高质量的建筑节能、保温产品是建材工业发展的重要趋势。选择资源节约型、污染最低型、质量效益型、科技先导型的发展方式。新型墙体材料、高质量门窗、中空玻璃将大量应用。向着提高材料性能、使用寿命的方向发展。低寿命设计、大量重复建设已经严重制约城市建设的发展。现代化建筑需要高性能建筑材料的支持,而提高建筑的耐久性又对建筑材料的使 用寿命提出了更高的要求。

3、单线生产能力向大型化发展

无论是水泥工业、玻璃工业,还是陶瓷工业,单条生产线的生产能力有大型 化的趋势。生产线的大型化可以有效提高产品的质量,降低能源消耗。

4、向着智能化方向发展

建筑的智能化需要建筑材料的支持。随着技术的进步和生活水平的提高,建筑材料的安全性智能诊断等智能技术将更多的应用于建筑中。

5、向着复合化、多功能化方向发展

复合材料具有单一材料所无法满足的使用功能,是建筑材料的发展趋势,对建筑材料的功能要求越来越趋向于多功能化。

在美国、日本、西欧等所有发达国家在其科技发展战略中都把无机非金属新 材料的发展放在优先发展的重要位置。例如,美国为了保持在高技术和军事装备 方面的领先地位,在先后制定的《先进材料与技术计划(AMPP)》和《国家关键技术报告》中,新材料为六大关键技术之首,而无机非金属新材料占有相当比例;日本发表的《21世纪初期产业支柱》所列的新材料领域的14项基础研究计划中,其中七项涉及无机非金属新材料的研究领域。

未来科学技术的发展,对各种无机非金属材料,尤其是对特种新型材料提出 更多更高的要求。材料学科有广阔的发展前景,复合材料、定向结晶材料、增韧 陶瓷以及各种类型的表面处理和涂层的使用,将使材料的效能得到更大发挥。由 于对材料科学基础研究的日益深入,各种精密测试分析技术的发展,将有助于按 预定性能设计材料的原子或分子组成及结构形态的早日实现。

三、个人研究方向的选择及分析

经过对无机非金属材料发展的历史及现状的研究与分析,以及对其未来发展方向的展望,我初步的确定了个人在无机非金属材料技术的研究方面的方向选 择。

现代技术中的信息、航空航天、能源、生物工程、环境工程等的迅速发展对于材料的性能提出了各种需求,促进了无机非金属材料的发展。由此出现许多新型材料,其中工程陶瓷材料,陶瓷高临界温度Tc超导材料和智能材料等的出现提出了无机非金属材料学的新的研究方向,而复合材料和纳米材料则为无机非金属材料开辟了新的研究领域。

近10年来,整个世界从信息时代进入了高智能化的人机交互时代,人机交互技术已经进入了每个人生活的方方面面。前一段时间,苹果公司出的一个视频 很受欢迎,里面描述了对未来高智能化生活的展望,而标题是“玻璃中的一天”,新型无机非金属智能材料,在这个对未来生活的展望中,占据着不可或缺的地位。虽然这只是个简单的视频,但我们可以从中看到未来的影子,以及智能材料的广 阔的发展前景。

智能材料是指对环境具有可感知、可响应并具有功能发现能力的新材料。日本高木俊宜教授将信息科学融于材料的物性和功能,于1989年提出了智能材料概念。至此智能材料与结构的研究也开始由航空航天及军事部门逐渐扩展到土木工程、医药、体育和日常用品等其他领域。

自l989年以来,先是在日本、美国,尔后是西欧,进而世界各国的材料界 均开始研究智能材料。科学家们研究将必要的仿生(biominetic)功能引入材料,使材料和系统达到更高的层次,成为具有自检测、自判断、自结论、自指令和执行功能的新材料。智能结构常常把高技术传感器或敏感元件与传统结构材料和功能材料结合在一起,赋予材料崭新的性能,使无生命的材料变得有了“感觉”和“知觉”,能适应环境的变化,不仅能发现问题,而且还能自行解决问题。而其理论意义就在于此,智能材料给了新型材料无限的可能性。

同时,智能材料的实践意义在目前已有的应用中可见一斑:

1、智能陶瓷

材料中的t-ZrO2 晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。

2、智能水泥基材料

在现代社会中,水泥作为基础建筑材料应用极为广泛,使水泥基材料智能化具有良好的应用前景。智能水泥基材料包括:应力、应变及损伤自检水泥基材料;自测温水泥基材料;自动调节环境湿度的水泥基材料;仿生自愈合水泥基材料及仿生自生水泥材料等。

水泥基材料中掺加一定形状、尺寸和掺量的短切碳纤维后,材料的电阻变化与其内部结构变化是相对应的。因此,该材料可以监测拉、弯、压等工况及静态 和动态载荷作用下材料内部情况。在水泥净浆中0.5%(体积)的碳纤维用做传感器,其灵敏度远远高于一般的电阻应变片。

在水泥净浆中掺加多孔材料,利用多孔材料吸湿量与温度的关系,能够使材 料具有调湿功能。

目前,智能材料尚处在研究发展阶段,它的发展和社会效应息息相关。飞机 失事和重要建筑等结构的损坏,激励着人们对具有自预警、自修复功能的灵巧飞 机和材料结构的研究。以材料本身的智能性开发来满足人们对材料、系统和结构 的期望,使材料结构能“刚”“柔”结合,以自适应环境的变化。在未来的研究中,应以以下几个方面为重点。(1)如何利用飞速发展的信息技术成果,将软件功能引入材料、系统和结构中;

(2)进一步加强探索型理论研究及材料复合智能化的机理研究,加速发展智能材料科学;

(3)加强应用基础研究。

结束语

目前,我国TCO 玻璃的镀膜技术及设备被少数国外厂商垄断。国内只有深圳南玻集团引进的一条离线TCO 玻璃生产线实现了量产,生产规模为46 万m2/ 年。国内薄膜电池生产厂家需要的TCO 玻璃基片几乎全部依赖进口。国内薄膜 太阳能电池组件生产商对TC O 玻璃的需求存在较大缺口。“十二五”期间,实现TCO 玻璃的技术、装备国产化是发展的重点。新材料涉及的领域众多,无机非金属新材料领域是其重要的一个组成部分。“十二五”期间,我国无机非金属新材料应围绕功能材料确定发展重点。随着我国新能源、航空航天、节能环保、电子信息等产业的快速发展,特别是风力发电、大飞机、高速列车等重大工程的 推进,对高性能无机材料的需求会快速增长。

参考文献

上一篇:安保工作心得精选参考文章900字下一篇:学会坚持写事作文300字