信号实验心得

2024-07-10

信号实验心得(精选8篇)

篇1:信号实验心得

实验心得

通过本次实验,使我加深了对铁路信号的基本原理的理解,充分认识了信号的组成、结构和显示意义,了解了铁路信号学的科学方法以及编组站解体作业控制过程,驼峰推车调车的步骤,也认识到了计算机连锁系统的强大优点,能否直观反应列车情况,并对列车进行操作。在小组成员的通力合作和老师的帮助下我们利用微机模拟环境对操控设备进行操作,每当我们完成一个具体操作,我们都会获得极大的成就感。这使我们基本掌握了铁路现场最新的编组站信号控制设备的使用和原理,在实验中能够将书本中所知道的车站连锁系统和具体实验操作相结合,我们小组基本完成了实验所要求的操作,实现了预期的目标。

实验前,我们做了充分的准备,我们每个成员都有各自的任务,包括仔细阅读铁路信号基础与信号实验指导,了解实验的目的、要求、操作程序和注意事项,并且在网上搜索了一些相关的资料,避免发生当上机模拟实验时出现手忙脚乱的现象,询问学长在做同一个实验时的心得体会。这些准备工作大大提高了我们对实验内容的了解,非常有助于我们完成实验操作。我们结合试验内容复习有关理论,如不同的信号机各种颜色光所表示的意义、计算机中各种字母所显示内容与显示意义,使我们巩固了课堂所学的知识。

在实验的过程中,我们也遇到了好些问题,如在办理推

峰作业中驼峰信号的显示不能按照我们的想法实现,这可能是我们的操作能力有待加强;我们并不知道如何在计算机中建立通路,不过,在老师的帮助下,经过很多次的尝试,我们终于可以自己完成这个操作;对于道岔的改变,定位到反位与反位到定位也经过了几次尝试,我们攻克了这一问题。在实验中我深刻的理解了“连锁”的强大,知道如何防止建立敌对进路,及信号、道岔和进路之间如何建立一定的制约关系来保证行车安全的,了解了调车进路、发车进路等进路的排列,如何进行驼峰推车作业。

本次实验,我们了解了微机联锁控制系统的联锁功能包括几点:1)联锁逻辑运算:接收ATS或车站值班员的进路命令,进行联锁逻辑运算,实现对道岔和信号机的控制;

2)轨道电路信息处理:处理列车检测功能的输出信息,以提高列车监测信息的完整性;3)进路控制:设定、锁闭和解锁进路;4)道岔控制:解锁、转换和锁闭道岔;5)信号机控制:确定信号机的显示。我们既更扎实的掌握了课堂所学的知识以及积累了宝贵的现场经验,又锻炼了我们的动手操作能力,为以后如果成为了调度员做准备工作。同时小组成员们紧密合作,各自交流意见,提高了我们对知识认知的深度和广度,相互得到了很多启发。

篇2:信号实验心得

1.信号的分类与观察

主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。

2.非正弦信号的频谱分析

主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。

3.信号的抽样与恢复

主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。

4.模拟滤波器实验

主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。

通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。

DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等。频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数。

二.心得体会

这些年来,有限的时间和精力都投入到了学习当中,动手能力比较差,所以对于实验课程并不是很擅长。实验时不能很迅速的熟悉每种仪器的使用方法,调试的时候有时会感觉无从下手,不知道具体按哪个键才能得到想要的波形和结果,往往在波形有问题的时候不知道是哪里出错了,画图的时候也显得比较缓慢,画出来的图形总是不太好看。但正因为如此,我认为开设这门课程对于锻炼我的动手操作的能力有很大的帮助,也能提高我对课程的兴趣,而且实验中所用到的仪器都是常用的基本仪器,以后分析信号时一定会经常需要,现在先掌握一些它的基本用法,以后要用时就能更熟练,为以后的研究奠定了基础。在我看来,自学能力、读图绘图能力、联系理论知识的能力、分析问题的能力、实验精神等对于完成实验是不可或缺的。

1.自学能力

实验前,我们需要对即将进行的实验进行预习。首先,应该有关对仪器有一个总体的认识,略读一下仪器的说明书,熟知仪器对实验的作用以及和实验有关的工作原理。其次,书写预习报告并不是将实验书本上的内容抄一遍!书写预习报告让我们更好的掌握实验所需要的知识,充分的预习可以让我们明确实验目的和实验内容,掌握实验步骤,这样能既可以保证实验的顺利进行,还可以让我们更容易的通过实验发现自己的问题。

2.读图绘图能力

除了学会如何操作实验仪器外,学会如何读图读数也是衡量是否掌握实验仪器使用的重要指标之一。我们通过示波器将信号的波形、频率特性反映出来后,要知道它们的参数就要学会读图读数,在示波器上我们可以读出波形的峰峰值、周期、频率、显示器每格代表的数值等。数据的直观反映就是图像,为了分析比较的方便我们需要大量绘图。完成实验并不需要太多时间,但绘图的过程却相当的艰辛,第一次绘图完成后给老师检查不合格,拿回去又得一步步重来,异常考验我的毅力。每次画图,不仅要建立合适的坐标系、1:1地将图形绘制在坐标纸上,还要标注仪器显示频上的各种参数,此外,图形需要美观,图线需要圆滑。

3.联系理论知识和分析问题的能力

实验是一门实践科学,但它是以理论为基础的,单纯的根据实验步骤得出一组数据是没有多大意义的。除了预习外,对实验的结果作一定的预测也必不可少,对实验结果的预测告诉我们实验结果应该是什么样子的。实验中,时刻注意预测结果与实验结果相比较,当两种结果有很大差别时,我们应该根据结果对实验进行有针对性和目的性的检查。因此,在实验过程中我们需要联系理论知识,用理论知识去分析得到的数据,并且要学会分析理论和实际的差异。

4.实验精神

优秀的实验精神包括很多方面,这其中实事求是,有耐性、毅力,合作意识尤其重要。正如老师所说,实验是一门实践学科,看到什么就是什么,不要根据自己的主观意向去改变它,即使是根据理论知识也不行。实验中有很多工作都很烦琐,需要我们保持耐心,静下心来,不急不躁。实验都是两个人共同完成的,这就要求我们要擅长于与别人合作,许多事情一个人的力量是难以做到很好的,但多个人的力量却能达到意想不到的结果,我们不仅要提高自己的能力,还要学

会与别人合作的能力,毕竟一个人的力量有限,不可能什么都会,不可能什么都做得很好。在实验课中,我学会了与同学协同分工,根据各自的长处来分配不同的任务,这样不但可以提高效率,还可以使实验结果更加理想,很多时候我没有想到的问题别人想到了,别人没有想到的问题我想到了,这样可以互补长短,互相帮助,共同进步。

以上任何一个方面的锻炼都可以培养我们的能力,塑造我们的品格,这对于我们以后的学习和工作都有重要的意义。在今后的学习中,我会多注重理论与实践相结合,做到学以致用。学习书本上的知识只是为了让我们能运用到实际中去解决各种问题,如果学了以后不能很好的应用,那也没有意义,所以我一定要多多锻炼自己动手操作的能力,不能再像以前那样一遇到需要自己动手的事情就嫌麻烦而不愿意去做。

三.意见与建议

我们所学的专业是与通信有关的,而通信中最重要的就是对信号的处理与对系统的设计,好的通信系统可以高效率地完成对信号的传输,通信中最主要的问题就是要能在尽可能短的时间内把信号尽可能不失真地传送到目的地,因此现代通信系统中大多数都是传送的数字信号,但这并不意味着我们就可以忽略模拟信号的作用,因为我们传送出去的以及对方收到的还有很多是模拟信号,比如话音信号。本实验虽然帮助我们增加了对基本信号(正弦信号、方波信号、脉冲信号、衰减指数信号等)的认识,深入理解了信号在频域和时域中作用的联系和区别,直观的看到了滤波器对信号的滤波效果,但对于我们掌握信号与系统的概貌仍是不够的。基本每次实验都能在三小时以内完成,而教学大纲安排的是四个小时,是故希望老师在以后的教学当中可以给我们多介绍一下相关的理论和应用,让我们对所学的知识有个更加全面的认识。还有一点小遗憾,一个学期只上四次课远远不能满足我们的理论联系实际需求,所以强烈建议加课或者把教学内容安排的更充实一些!

篇3:信号实验心得

关键词:数字信号处理,语音信号,实验,改革

如今,数字信号处理已几乎涉及各行各业的每一个角落,是一门非常重要、实用的技术,因此,在高校中,几乎每个工科专业都会涉及与数字信号处理相关的教学内容,电类专业更是专门开设数字信号处理课程,甚至是现代数字信处理课程或是高级数字信处理课程。

数字信号处理课程的特点是理论性强,公式的推导与证明过程繁杂,在教学过程中如果处理不好,甚至会被当成一门数学课,从而导致学生学习兴趣下降。为了提高学习兴趣,提升学习效果,实验课程成为课堂教学的重要部分,是理论推导的有效补充,已经成为数字信号处理课程改革的一个重要内容与方向。[1,2,3,4,5]

笔者通过网络方式调查了近年来国内一部分重点高校的实验课程开设情况,包括实验内容、实验设备以及实验指导教材等。在实验内容上,各高校基本大同小异,均集中在频谱分析、滤波器设计等方面,与教学重点相吻合。这些基本的要点与重点已经在教学界达成了共识。在实验设备上,一部分引入Matlab W作为软件实验平台,一部分以DSP芯片构建硬件实验平台或是购买商品化硬件实验平台。实验指导教材对应于实验设备,包括已出版实验指导书(以Matlab为主),商品化硬件平台自带的实验指书。纵观各高校实验课程的开设,结合各专业具体学时安排与实际条件,所选择的设备与教材有所不同,各重点有所侧重,但基本体系已经相对完善,基本可以满足工科本科学生的基本学习需求。其中,硬件实验平台的缺点在于硬件成本高,不便于改动,灵活性较差,学生实验也更多地集中于硬件芯片的编程实现。而Matlab实验平台则具有更大的灵活性,可视性强,尤其是随着笔记本电脑的普及,更具有学习时间与学习地点的灵活性,而不必完全局限于上课时间于实验室内完成实验。在笔者多年的教学过程中发现,无论是硬件实验平台,还是软件实验平台,都只是实验方式与手段上的不同,在实验内容上基本一致。而实验内容才是影响学习效果的关键因素。而且现行实验内容存在的最大问题即实验对象简单抽象化。[5]例如,讲频谱分析时或滤波时,更多地采用的信号是由几个不同频率的正弦信号合成的。这些信号比较简单,物理意义也明确,但与实际信号联系不大,而从不容易上学习把理论与实践相联系。也有教师试图将实际信号与课程联系,例如王祖林和郭旭静[6]曾提出用通信信号为实例进行讲解,取得了不错的授课效果,但这类信号不易获取,对于非通信类专业的学习来说也存在理解困难等不足,因此,该方法在各高校的授课中并不多见。

1 实验内容改革设想

1.1 实验对象的选择

在实验课程中增加与日常生活密切相关的实例,已经成为实验课程改革中的一项共识。正是基于这一点,笔者提出以语音信号为实验课程的实验对象的设想。该设想是基于语音信号以下优点:(1)语音信号来源于日常生活,没有人会感觉到陌生;(2)语音信号易于获取,且每名学生都可以结合自身语音进行分析,实验对象即具有共性,又具有不同;(3)语音信号具有明确的时域频域物理意义,便于学习过程中对理论知识的理解;(4)语音信号处理是数字信号处理中的一个重要分支与科研热点,对学生而言又具有扩展性与探索性。

1.2 实验时间与地点的选择

传统的实验课程,都是在指定的时间到指定的实验室内,由1~2名教师或实验员带着几十个学生完成实验。由于实验场地与设备的局限性,在指定时间地点之外很难进行实验。如何突破这个局限,是实验课程改革中必须面对的问题。因此,笔者认为,实验内容与环节的设计上,可以考虑让学生拥有更大的时间与空间自由度。

1.3 考核方式的选择

在实验过程中让学生拥有更大的时间与空间的自由度,如果考核方式与制度还是保持传统不变,则可能是出现雷同等不良现象,反而降低了预期实验效果。在考核方式制定上,即要考虑到共性的部分,即对理论的理解,又要考虑到每名学生个性的部分,即在实际应用上的灵活性。

2 实验内容与实验环节设计

根据上述分析与设想,并根据多年的教学实践,在传统实验内容的基础上,对每个实验项目增加了选做的实验内容(见表1)。

在实验环节的设计上,把每一次实验的学时分为两部分,第一部分用于理解并完成部分实验内容,第二部分学时用于考核。例如一个2学时的实验课,分为1个学时用于实验,1个学时用于考核,且两部分学时不连续进行,进行考核的1个学时是在提交实验报告后进行。

在第一部分的学时上,对于传统的实验内容在实验课时详细讲解、演示,并要求学生同步跟随完成,对于增加的内容,提出问题与目标,引导学生思考,并不要求其在实验课内完成,而是鼓励学生在实验课时之外完成,鼓励学生通过查资料,讨论等方式完成,并且可以通过邮件等方式与授课老师进行讨论。

在增加的实验内容部分中,4个实验项目所用的声音信号可以为同一声音信号,以增强实验的连续性。

3 考核方式的改革

传统的实验课程的考核方式以提交实验报告为主,提交实验报告后即为该次实验的结束。笔者尝在上交实验报告并批阅完后,再进行第二部分学时的课程,请每位学生向全班学生讲解其实验结果(如果学时不足,或是人数过多,则可根据实验报告撰写的情况抽取部分学生讲解),针对出现的问题由教师现场答疑,并根据学生讲解的情况考察其是否独立完成,是否理解实验目标,对于有主动深化探索的学生,提高其考核成绩。每次实验的考核成绩包含实验报告成绩和现场讲解成绩两部分。通过强化考核力度,消除学生侥幸心理,引导学生重视自我学习与自主思考的能力,从而提升学习效果。

4 结束语

数字信号处理课程的实验内容是整门课程的重要组成部分,在现有实验条件不变的基础上,通过对实验内容的改进,重新设计实验环节与考核方式,强化实践过程,引导学生主动思考,提升学习兴趣,鼓励深化学习与探索精神。通过2年实验课程的教学实践,学生的动手能力有了很大的提高,自主学习与思考能力也有了提升,对数字信号处理理论知识的理解也更加清晰,有效地提升了数字信号处理课程的教学效果。本套实验内容与考核方式改革对于其他学校数字信号处理课程的教学均有一定的借鉴意义。

篇4:信号实验心得

【关键词】优质课程 信号与系统 实验教学 体系

【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2012)10-0010-02

高等教育“十一五”规划纲要中明确指出,21世纪的高等教育要以质量工程建设为核心。在高等教育质量工程建设中,优质课程及精品课程的建设占有极其重要的地位。“信号与系统”是工科院校开设的一门重要专业基础课,在许多高校都列为重点建设课程。[1~2]我学院针对两个一级学科(仪器科学与技术、光学工程)开设“信号与系统”课程,不仅要求充分讲授该课程的经典内容,还必须兼顾学科及专业需求,进行有特色的理论教学及实验教学。作为校级优质课程,仪器专业“信号与系统”课程长期以来持续建设,已经形成了理论教学扎实、实验教学强化的特点。但由于目前本科培养计划中学时数的限制,无法兼顾本课程理论及实验多方面的要求,往往只能采用软件仿真作为实验教学的主要内容。考虑到我校的办学定位及仪器专业应用型人才培养的需求,我们在原有理论及实验教学的基础上,开展全方位实验教学体系建设,进一步提高本课程的教学效果。

一、“信号与系统”教学内容及实验内容的演变

1.教学内容的演变

信号是信息学科研究的基本内容,信号与系统是两个用得极为广泛且密切相关的基本概念。在许多实际应用中,尤其是在信号提取、信号恢复、信号增强、语音识别等信号处理的问题中,以及在大规模集成电路的整体设计中,信号、系统、处理往往是有机结合在一起的。因此,教学内容从单纯讲信号、系统演变为信号、系统与数字信号处理融合,以信号分析为基础,以系统分析为桥梁,以处理技术为手段,形成新的教学体系,适应新的科技条件下对专业基础课的教学要求。[3~4]因此,仪器专业“信号与系统”课程的教学内容主要包括:信号与系统的基本概念、采样定理、连续及离散线性时不变系统的时域分析、连续及离散信号的频域分析(含离散傅里叶变换、快速傅里叶变换)、连续及离散信号与系统的复频域分析、数字滤波器设计等。

2.实验内容的演变

实验教学始终是为理论教学服务的,其最终的目的是为了强化理论学习,全面提高教学质量。早期“信号与系统”的实验以硬件为主,尤其是以电路实验为主。随着信息技术的不断发展和信息技术应用领域的不断扩展,这门课程已从电子信息工程类专业的专业基础课演变为众多工科专业(如计算机技术、自动控制、测控技术及仪器、生物医学工程等)的专业基础课,其实验领域也获得拓展。特别是伴随着计算机软硬件技术的快速发展,本课程实验由早期的硬件实验演变为软件仿真实验。[5]由于本课程仍然是一门实践性很强的课程,无论技术如何发展演变,信号也脱离不了实际应用中的物理系统,因此现在又强调从软件仿真实验

演变为软硬件实验结合。[6]

二、“信号与系统”实验教学计算机软硬件应用方案

“信号与系统”课程理论性强,实践性强,实验对于理论具有巩固和强化的作用。由于学时的限制,课内实验具有较大的局限性。一方面是实验数量受到局限,只能开设最基本、最重要的实验,无法进行多个理论的验证,而本课程又是一门逻辑性很强的课程,基本概念环环紧扣,实验数量少非常妨碍学生对课程基本内容的理解和掌握,从而使学生的知识面受到局限;另一方面,在实验方法上也受到局限,不能尝试多种解决问题的方法,只能用常规方法去做,这样限制了学生的思维,不利于学生综合能力的培养。目前很多学校以软件仿真实验为主,由于学时的限制以及软件仿真实验的内容十分丰富且复杂的,所以就舍弃了硬件实验。无论软件仿真怎样逼近实际,毕竟与实际物理系统存在差异。如果没有硬件实验,学生便不知道其结果应该怎样去应用,在什么情况下采用软件计算的结果为好,在什么情况下用硬件实现较好。从课程教学质量和应用型人才培养要求来看,这是一个亟待解决的严重问题。因此,计算机软硬件实验对于“信号与系统”实验体系都是不可缺少的,要两条腿走路,其关键是要完成硬件实验和软件实验的全方位比较,才能深入理解信号与系统的理论实质。

为了更好地完成辅助理论教学的任务,我们需要对本课程的实验教学体系进行精心的设计。实验教学体系的建立要从整个课程教学体系来考虑,在课堂讲授内容、学生作业内容、教学目标等方面综合权衡。在一个典型的数字信号处理系统中,输入通道中的传感器输出信号需要进行调理,属于物理系统部分,硬件实现比较好;数字信号处理部分可以采用单片机、数字信号处理器、计算机等硬件设备,同时利用硬件平台上的软件来完成数字信号处理任务,这部分以软件仿真实验为好,而在输出通道需要进行必要的信号变换并输出模拟信号,还是硬件实验较好。本课程采用的实验教学体系,见图1。

在课内实验安排方面:实验内容强调经典、重要、基本,少而精,始终抓住信号产生→获取→处理→使用这条主线,不仅有利于教学安排,而且保证学生基础牢固,知识更系统,理解更全面。课内实验以软件仿真为核心,其编程软件采用公认的优秀软件,即MATLAB。MATLAB是优秀的科学计算和仿真软件,研究设计单位和工业部门同样公认它的重要价值。如美国NI公司的信号测量与分析软件LabVIEW、Cadence公司的信号和通信分析设计软件、TI公司的DSP等都和MATLAB具有良好的接口。现在的计算机硬件(PC机)配置很高,计算精度很高,用于进行数字信号处理和数字图像处理十分理想,结果显示也很直观。

篇5:数字信号实验报告

数字信号处理

姓名:

殷超宇

班级:

14060142 学号:

1406014226

实验题目:Z Z 变换及离散时间系统分析

指导教师:

张志杰

分数:

实验题目:

Z 变换及离散时间系统分析

实验目的:

1、通过本实验熟悉 Z 变换在离散时间系统分析中的地位和作用。

2、掌握并熟练使用有关离散系统分析的 MATLAB 调用函数及格式,以深入理解离散时间系统的频率特性。

实验内容:

给定系统)8.0 /(2.0)(2   z z H,编程并绘出系统的单位阶跃响应 y(n),频率响应)e(jwH,并给出实验数据与代码。

参考代码:

详见《数字信号处理上机实验指导》(班群里有)

实验代码(代码从 B MATLAB)

软件复制粘贴于此处,教师检查重点): :

clear;

x=ones(100);% x(n)=1,n=1~100;

t=1:100;% t 用于后面的绘图;

b=[0,0,-0.2];% 形成向量 b;

a=[1,0,0.8];% 形成向量 a;

y=filter(b,a,x);% 求所给系统的阶跃响应;

plot(t,y,“k-”);grid on;

ylabel(“ y(n)”)

xlabel(“n”)

实验数据(图像或表格复制粘贴于此处,教师检查重点):

实验心得与收获(可手写):

篇6:数字基带信号实验报告

专业班级:

指导老师:李 敏

姓 名:

学 号:

实验一 数字基带信号

一、实验目的

1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容

1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形。

三、实验步骤

本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:

(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、 用示波器观察HDB3编译单元的各种波形。

仍用信源单元的FS信号作为示波器的外同步信号。 (1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。

(2)将K1、K2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI(3)将K1、K2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1码和HDB3码。 接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ ,观察这些信号波形。观察时应注意:

HDB3单元的NRZ信号(译码输出)滞后于信源模块的NRZ-OUT信号(编码输入)8个码元。

DET是占空比等于0.5的单极性归零码。

BPF信号是一个幅度和周期都不恒定的准正弦信号,BS-R是一个周期基本恒定(等于一个码元周期)的TTL电平信号。

信源代码连0个数越多,越难于从AMI码中提取位同步信号(或者说要求带通滤波的Q值越高,因而越难于实现),而HDB3码则不存在这种问题。本实验中若24位信源代码中连零很多时,则难以从AMI码中得到一个符合要求的稳定的位同步信号,因此不能完成正确的译码(由于分离参数的.影响,各实验系统的现象可能略有不同。一般将信源代码置成只有1个“1”码的状态来观察译码输出)。若24位信源代码全为“0”码,则更不可能从AMI信号(亦是全0信号)得到正确的位同步信号。

四、 实验报告要求

1. 根据实验观察和纪录回答:

(1)不归零码和归零码的特点是什么?

(2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同?为什么?

答:1)不归零码特点:脉冲宽度 τ 等于码元宽度Ts归零码特点:τ <Ts

2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。

2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。

答:信息代码 1 11 1111

AMI 1 -11-1 1 -1 1

HDB31 -11-1 1 -1 1

信息代码0 0 0 00 0 0 00 0 0 00

AMI 0 0 0 00 0 0 00 0 0 00

HDB30 0 0 1-1 0 0 1 -1 0 0 1 -1

信息代码 0 1 1 10 0 1 00 0 0 01 1 0 00 0 1 00 0 0 0

AMI0 1 -1 1 0 0 -1 0 0 0 0 01 -1 0 0 0 0 1 00 0 0 0

HDB3 0 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0

3. 总结从HDB3码中提取位同步信号的原理。

答:HDB3中不含有离散谱fS(fS在数值上等于码速率)成分。整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱fS成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

4. 试根据占空比为0.5的单极性归零码的功率谱密度公式说明为什么信息代码中的连0码越长,越难于从AMI码中提取位同步信号,而HDB3码则不存在此问题。

篇7:随机信号分析实验报告

I In ns st ti it t u ut te e

o of f

T Te ec ch h n no o l lo og gy y

实 验 报 告 告

课程名称:

随机信号分析

系:

电子与信息工程学院

级:

名:

号:

指导教师:

实验时间:

实验一、各种分布随机数得产生

(一)实验原理 1、、均匀分布随机数得产生原理 产生伪随机数得一种实用方法就是同余法,它利用同余运算递推产生伪随机数序列.最简单得方法就是加同余法

为了保证产生得伪随机数能在[0,1]内均匀分布,需要M为正整数,此外常数 c 与初值 y0 亦为正整数。加同余法虽然简单,但产生得伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布得随机数

ﻩ ﻩﻩ

式中,a为正整数。用加法与乘法完成递推运算得称为混合同余法,即

ﻩﻩ

ﻩ用混合同余法产生得伪随机数具有较好得特性,一些程序库中都有成熟得程序供选择。

常用得计算语言如 Basic、C与 Matlab 都有产生均匀分布随机数得函数可

以调用,只就是用各种编程语言对应得函数产生得均匀分布随机数得范围不同,有得函数可能还需要提供种子或初始化。

Matlab提供得函数rand()可以产生一个在[0,1]区间分布得随机数,rand(2,4)则可以产生一个在[0,1]区间分布得随机数矩阵,矩阵为2行4列。Matlab 提供得另一个产生随机数得函数就是 random(’unif’,a,b,N,M),unif 表示均匀分布,a与b就是均匀分布区间得上下界,N与M分别就是矩阵得行与列。

2、、随机变量得仿真 根据随机变量函数变换得原理,如果能将两个分布之间得函数关系用显式表达,那么就可以利用一种分布得随机变量通过变换得到另一种分布得随机变量。

若X就是分布函数为 F(x)得随机变量,且分布函数 F(x)为严格单调升函数,令Y=F(X),则 Y 必为在[0,1]上均匀分布得随机变量.反之,若 Y 就是在[0,1]上均匀分布得随机变量,那么 即就是分布函数为 FX(x)得随机变量。式中 F X1()为F X() 得反函数.这样,欲求某个分布得随机变量,先产生在[0,1]区间上得均匀分布随机数,再经上式变换,便可求得所需分布得随机数。

3、高斯分布随机数得仿真 广泛应用得有两种产生高斯随机数得方法,一种就是变换法,一种就是近似法.如果X1,X2 就是两个互相独立得均匀分布随机数,那么下式给出得 Y1,Y2

便就是数学期望为 m,方差为得高斯分布随机数,且互相独立,这就就是变换法。

另外一种产生高斯随机数得方法就是近似法.在学习中心极限定理时,曾提到 n 个在[0,1]区间上均匀分布得互相独立随机变量 Xi(i=1,2…,n),当n足够大时,其与得分布接近高斯分布.当然,只要 n 不就是无穷大,这个高斯分布就是近似得。由于近似法避免了开方与三角函数运算,计算量大大降低。当精度要求不太高时,近似法还就是具有很大应用价值得.4、、各种分布随机数得仿真 有了高斯随机变量得仿真方法,就可以构成与高斯变量有关得其她分布随机变量,如瑞利分布、指数分布与分布随机变量。

(二)

实验目得 在很多系统仿真得过程中,需要产生不同分布得随机变量。利用计算机可以很方便地产生不同分布得随机变量,各种分布得随机变量得基础就是均匀分布得随机变量.有了均匀分布得随机变量,就可以用函数变换等方法得到其她分布得随机变量。

(三)实验结果

附:源程序 subplot(2,2,1);

x=random(’unif’,2,5,1,1024); plot(x); title(’均匀分布随机数’)subplot(2,2,2);G1=random(’Normal',0,1,1,20000); plot(G1); title(’高斯分布随机数’)subplot(2,2,3);G2=random(“Normal’,0,1,1,20000);R=sqrt(G1、*G1+G2、*G2);plot(R);title(’瑞利分布随机数’)subplot(2,2,4);G3=random(”Normal’,0,1,1,20000);G4=random(“Normal’,0,1,1,20000); X=G1、*G1+G2、*G2+G3、*G3+G4、*G4; plot(X);title(”x^2 分布随机数')

实验 二、随机变量检验(一)实验 原理 1、均值得计算 在实际计算时,如果平稳随机序列满足各态历经性,则统计均值可用时间均值代替。这样,在计算统计均值时,并不需要大量样本函数得集合,只需对一个样本函数求时间平均即可。甚至有时也不需要计算 N   时得极限,况且也不可能。通常得做法就是取一个有限得、计算系统能够承受得 N 求时间均值与时间方差。根据强调计算速度或精度得不同,可选择不同得算法。

设随机数序列{},一种计算均值得方法就是直接计算下式中,xn 为随机数序列中得第 n 个随机数。

另一种方法就是利用递推算法,第n次迭代得均值也亦即前 n 个随机数得均值为迭代结束后,便得到随机数序列得均值 m m N 

递推算法得优点就是可以实时计算均值,这种方法常用在实时获取数据得场合。

当数据量较大时,为防止计算误差得积累,也可采用式中,m1 就是取一小部分随机数计算得均值.2、方差得计算 计算方差也分为直接法与递推法。仿照均值得做法

方差得递推算法需要同时递推均值与方差 m mnx mn n n n    1 11()

迭代结束后,得到随机数序列得方差为

其它矩函数也可用类似得方法得到.3、统计随机数得概率密度直方图 假定被统计得序列得最大值与最小值分别为 a 与 b。将区间等分 M(M 应与被统计得序列得个数 N 相适应,否则统计效果不好。)份后得区间为,,…,,… ,。用,表示序列得值落在区间里得个数,统计序列得值在各个区间得个数,则就粗略地反映了随机序列得概率密度得情况.用图形方式显示出来就就是随机数得概率密度直方图.(二)

实验目得 随机数产生之后,必须对它得统计特性做严格得检验。一般来讲,统计特性得检验包括参数检验、均匀性检验与独立性检验等.事实上,我们如果在二阶矩范围内讨论随机信号,那么参数检验只对产生得随机数一、二阶矩进行检验。我们可以把产生得随机数序列作为一个随机变量,也可以瞧成随机过程中得一个样本函数。不论就是随机变量还就是随机过程得样本函数,都会遇到求其数字特征得情况,有时需要计算随机变量得概率密度直方图等.(三)

实验结果

附:源程序 subplot(2,2,1);x=random(“unif”,2,5,1,1024);hist(x,2:0、2:5);title(’均匀分布随机数直方图’);s1=0 for n1=1:1024

s1=x(n1)+s1;end Mean1=s1/1024; t1=0 for n1=1:1024

t1=(x(n1)—Mean1)^2+t1;end Variance1=t1/1024;subplot(2,2,2); G1=random(’Normal“,0,1,1,20000); hist(G1,—4:0、2:4); title(”高斯分布随机数直方图’);s2=0 for n2=1:20000

s2=G1(n2)+s2; end Mean2=s2/20000; t2=0 for n2=1:20000

t2=(G1(n2)-Mean2)^2+t2;end Variance2=t2/20000; subplot(2,2,3);G2=random(’Normal’,0,1,1,20000); R=sqrt(G1、*G1+G2、*G2);hist(R,0:0、2:5);title(“瑞利分布随机数直方图’); s3=0 for n3=1:20000

s3=R(n3)+s3;end Mean3=s3/20000;t3=0 for n3=1:20000

t3=(R(n3)—Mean3)^2+t3;end Variance3=t3/20000;subplot(2,2,4);G3=random(’Normal”,0,1,1,20000);G4=random(“Normal”,0,1,1,20000);X=G1、*G1+G2、*G2+G3、*G3+G4、*G4; hist(X,0:0、5:30);title(“x^2 分布随机数直方图’)s4=0 for n4=1:20000

s4=X(n4)+s4;end Mean4=s4/20000;t4=0 for n4=1:20000

t4=(X(n4)-Mean4)^2+t4; end 实验 三、中心极限定理得验证(一)

实验 原理 如果 n 个独立随机变量得分布就是相同得,并且具有有限得数学期望与方差,当 n 无穷大时,它们之与得分布趋近于高斯分布。这就就是中心极限定理中

得一个定理。

我们以均匀分布为例,来解释这个定理。若 n 个随机变量 Xi(i=1,2,…,n)都为[0,1]区间上得均匀分布得随机变量,且互相独立,当 n 足够大时,其与得分布接近高斯分布。

(二)

实验目得 利用计算机产生均匀分布得随机数。对相互独立得均匀分布得随机变量做与,可以很直观瞧到均匀分布得随机变量得与,随着做与次数得增加分布情况得变化,通过实验对中心极限定理得进行验证。

((三)

实验结果

分析:随n取值得增大,均匀分布随机序列求与得图形越发接近于高斯分布。

附:源程序 X0=random('unif”,0,1,1,1024);X1=random(’unif’,0,1,1,1024);

X2=random('unif“,0,1,1,1024);X3=random('unif',0,1,1,1024);

X4=random(”unif',0,1,1,1024);

X5=random(’unif’,0,1,1,1024);

X6=random(’unif“,0,1,1,1024);X7=random(’unif’,0,1,1,1024);

X8=random('unif”,0,1,1,1024);

X9=random(’unif’,0,1,1,1024); G=random(“normal”,0,1,1,1024);

Y1=X0+X1+X2+X3+X4;

Y2=X0+X1+X2+X3+X4+X5+X6+X7+X8+X9;

subplot(2,2,1);hist(X0,0:0、2:2);

title(“均匀分布随机数直方图’)

subplot(2,2,2);hist(Y1,0:0、2:6);

title(’五个均匀分布之与随机数直方图”)subplot(2,2,3);hist(Y2,0:0、2:8);

title(’十个均匀分布之与随机数直方图“)subplot(2,2,4);hist(G,-4:0、2:4);title(”高斯分布随机数直方图“)

实验 四、中心极限定理得验证(一)

实验 原理 在实际应用中,我们可以把产生得随机数序列瞧成随机过程中得一个样本函数。如果平稳随机序列满足各态历经性,则统计自相关序列可用时间自相关序列

代替。当数据得样本数有限时,也只能用有限个数据来估计时间自相关序列,统计自相关序列得估值。若各态历经序列X(n)得一个样本有 N 个数据,由于实序列自相关序列就是对称得,自相关函数得估值为

(二)实验目得 在随机信号理论中,自相关函数就是非常重要得概念。在实际系统仿真中也会经常计算自相关函数.通过本试验学生可以亲自动手计算自相关函数,加深对概念得理解,并增强实际动手能力.(三))实验结果

分析:分别生成均值为 0 与1,方差为 1 得高斯随机数,由图形可以明显瞧出两者自相关函数得差异。

附:源程序 N=256;xn=random(’norm',0,1,1,N);Rx=xcorr(xn,'biased”);m=-N+1:N-1;subplot(2,1,1);plot(m,Rx);title(“均值为0,方差为1得高斯分布得自相关函数'); axis([—N N—1 —0、5 1、5]); N=256;xn=random(’norm’,1,1,1,N);Xk=fft(xn,2*N); Rx=ifft((abs(Xk)、^2)/N); m=-N:N—1;subplot(2,1,2); plot(m,fftshift(Rx));title(’均值为 1,方差为 1 得高斯分布得自相关函数’);axis([-N N—1-0、5 1、5]);实验五、功率谱密度(一)实验 原理 一般把平稳随机序列得功率谱定义为自相关序列得傅里叶变换。如果自相关序列就是周期序列, X(n)得功率谱与自相关序列得关系为

ﻩ 与实平稳过程一样,实平稳序列得功率谱也就是非负偶函数,即

可以证明,功率谱还可表示为

当 X(n)为各态历经序列时,可去掉上式中得统计均值计算,将随机序列 X(n)用它得一个样本序列 x(n)代替。在实际应用中,由于一个样本序列得可用数据个数 N 有限,功率谱密度也只能就是估计

式中,X(x(n)得傅里叶变换.这就是比较简单得一种估计方法,这种功率谱密度得估计方法称为周期图方法。如果直接利用数据样本做离散傅里叶变换,可得到 X(FFT 算法实现,所以得到了广泛得应用。

(二)实验目得 在随机信号理论中,功率谱密度与自相关函数一样都就是非常重要得概念.在实际系统仿真中也会经常计算。通过本试验学生可以亲自动手,加深对概念得理解,并增强实际动手能力。

(三)实验结果

附:源程序 N=256;x1=random(”normal’,0,1,1,N);Sx1=abs(fft(x1)、^2)/N;subplot(2,1,1);plot(10*log10(Sx1));title(“均值为0,方差为 1 得高斯分布得功率谱密度'); xlabel(’f/Hz’)ylabel(”Sx1/dB’)

x2=random(’normal“,1,1,1,N); Sx2=abs(fft(x2)、^2)/N;subplot(2,1,2);plot(10*log10(Sx2));title(”均值为 1,方差为 1 得高斯分布得功率谱密度’);xlabel(’f/Hz')

ylabel(“Sx2/dB')实验 六、随机信号经过 线性系统前后信号仿真

(一))实验原理

需要先仿真一个指定系统,再根据需要仿真输入得随机信号,然后使这个随机信号通过指定得系统.通过对实际系统建模,计算机可以对很多系统进行仿真。在信号处理中,一般将线性系统分解为一个全通放大器(或衰减器)与一个特定频率响应得滤波器。由于全通放大器可以用一个常数代替,因此线性系统得仿真往往只需设计一个数字滤波器。滤波器设计可采用 MATLAB 提供得函数,也可

利用相应得方法自行设计。MATLAB提供了多个设计滤波器得函数,可以很方便地设计低通、带通、高通、多带通、带阻滤波器。

((二)实验 目得

系统仿真就是信号仿真处理得一个重要部分,通过该实验要求学生掌握系统仿真得基本概念,并学会系统得仿真方法。

((三))实验 结果

1、低通滤波器

2、带通滤波器

3、高通滤波器 4、多带通滤波器

5、带阻滤波器

附:源程序 1、X(n)

N=2000;fs=400;Nn=random(”normal',0,1,1,N); t=(0:N—1)/fs;fi=random(’unif’,0,1,1,2)*2*pi;xn=sin(2*pi*50*t+fi(1))+Nn;Rx=xcorr(xn,“biased’); m=—N+1:N-1;Sx=abs(fft(xn)、^2)/N; f=(—N/2:N/2-1)*fs/N;subplot(211),plot(m,Rx); xlabel(’m’)

ylabel(”Rx(m)’)title(’xn 得自相关函数“);subplot(212),plot(f,fftshift(10*log10(Sx(1:N))));xlabel(’f/Hz”)ylabel(“Sx/dB”)title(’xn 得功率谱密度’);2、低通滤波器 h=fir1(100,0、4);H=fft(h,2*N);HW=abs(H)、^2;Rx=xcorr(xn,’biased');Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));

f=(-N:N—1)*fs/(2*N); m=(—N:N-1);subplot(311);plot((-N:N—1)/N,fftshift(abs(HW(1:2*N))));title('低通滤波器“);subplot(312),plot(m,Ry);xlabel(”m“)ylabel(”Ry(m)')title(’xn 经低通滤波器得自相关函数’); subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N)))); axis([—200 200 —20 20]);xlabel(“f/Hz’)ylabel('Sy/dB”)title('xn 经低通滤波器得功率谱密度“); 3、带通滤波器 h=fir1(100,[0、1 0、5]);H=fft(h,2*N);HW=abs(H)、^2; Rx=xcorr(xn,”biased“); Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW; Ry=fftshift(ifft(Sy)); f=(-N:N-1)*fs/(2*N);m=(-N:N—1);subplot(311);plot((—N:N-1)/N,fftshift(abs(HW(1:2*N)))); title(’带通滤波器”); subplot(312),plot(m,Ry);xlabel(’m“)ylabel(’Ry(m)’)title(”xn 经带通通滤波器得自相关函数“); subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N)))); axis([—200 200 -20 20]);xlabel(’f/Hz”)ylabel(“Sy/dB’)title(’xn 经带通滤波器得功率谱密度’);4、高通滤波器 h=fir1(100,0、6,’high’); H=fft(h,2*N); HW=abs(H)、^2;Rx=xcorr(xn,”biased“);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));f=(-N:N-1)*fs/(2*N);m=(—N:N—1);

subplot(311);plot((-N:N—1)/N,fftshift(abs(HW(1:2*N))));title('高通滤波器”);subplot(312),plot(m,Ry);xlabel(“m’)ylabel(’Ry(m)”)title('xn 经高通通滤波器得自相关函数’);subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N))));axis([-200 200 —20 20]); xlabel(“f/Hz’)ylabel(”Sy/dB“)title('xn 经高通滤波器得功率谱密度');5、多带通滤波器 h=fir1(100,[0、1,0、3,0、5,0、7]); H=fft(h,2*N); HW=abs(H)、^2; Rx=xcorr(xn,'biased’);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));f=(—N:N—1)*fs/(2*N);m=(—N:N-1);subplot(311);plot((—N:N—1)/N,fftshift(abs(HW(1:2*N)))); title(’多带通滤波器’); subplot(312),plot(m,Ry); xlabel('m’)ylabel(”Ry(m)“)

title(”xn 经多带通通滤波器得自相关函数“);subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N))));axis([-200 200 —20 20]);xlabel(’f/Hz”)

ylabel(“Sy/dB’)

title(’xn 经多带通滤波器得功率谱密度”); 6、带阻滤波器 h=fir1(100,[0、1,0、4],’stop’);H=fft(h,2*N);HW=abs(H)、^2;Rx=xcorr(xn,’biased“);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N);Sy=Sx、*HW; Ry=fftshift(ifft(Sy));f=(—N:N-1)*fs/(2*N);m=(-N:N—1); subplot(311);plot((—N:N-1)/N,fftshift(abs(HW(1:2*N))));

title(”带阻滤波器“); subplot(312),plot(m,Ry); xlabel(’m’)

篇8:信号类课程的虚拟实验平台设计

关键词:信号类课程,虚拟实验,MATLAB,Web

1 引言

实验是电子信息类专业必不可少的课程, 是培养学生动手能力、创新能力和综合素质的关键环节。目前, 实验教学面临很多问题, 比如高校需要投入大量资金购买实验设备, 而且硬件仪器操作复杂易于损坏需要维护更新, 实验内容简单且可供选择的数量较少, 同时受到学校教学时数的限制, 致使实验教学的要求很难完全达到。为了解决在实验教学中遇到的问题和困难, 许多高校教师不断进行实验教学的改革, 建立软件仿真实验系统, 拓宽实验教学的内容, 培养学生的实践能力和创新能力[1,2,3,4]。

以信号与系统、数字信号处理为代表的信号类课程理论性强、概念抽象、公式推导繁琐, 以致学生对所学的概念、原理模糊不清, 感觉讲授的理论知识和实际应用相距甚远, 严重影响其学习效果和学习兴趣[5]。为了帮助学生更好地理解信号类课程的相关概念和基本分析方法, 克服实验内容的限制及实验设备的不足, 笔者设计了一个通过计算机和互联网就能让学生完成信号类课程实验的虚拟平台。该实验平台利用计算机模拟实验环境, 通过网络进行实验操作, 不仅可以辅助学生进行实验原理及相关知识的学习, 还有效解决了实验场地和实验仪器短缺的问题, 补充和完善了信号类课程的实验教学。

2 开发工具简介

MATLAB作为一套高性能的数值计算和可视化数学软件, 集计算、数据可视化和程序设计于一体。Matlab Web Server是MATLAB软件具有网络计算功能的重要工具包之一, 利用它可以建立远程仿真系统, 避免安装MATLAB软件, 能够随时随地的利用Internet方便快捷的进行远程仿真实验, 给实验教学带来极大的方便。Matlab Web Server的核心是可执行程序matweb.exe, 它负责解释客户机通过html页面发送的请求, 转换为运行MATLAB应用程序所需要的参数;接着启动MATLAB进程, 并将参数传递给应用程序进行计算;计算完毕, MATLAB程序还负责将计算结果以html页面的方式, 通过matweb.exe输出给客户端的浏览器并显示出来[6]。根据matweb.exe的工作过程, 只要设计好输入、输出页面和MATLAB的应用程序就可以进行仿真实验。

信号类课程的虚拟实验平台采用Dreamwerver CS5进行输入输出页面的设计。Dreamwerver CS5是Adobe公司推出的网页设计制作软件, 是一款集网页制作和网站管理于一身的所见即所得网页编辑器, 利用它可以方便地制作出跨越平台限制、跨越浏览器限制的充满动感的网页[7]。

3 虚拟实验平台的设计

3.1 虚拟实验平台的内容设计

信号类课程的虚拟实验平台是以信号与系统为基础, 同时涵盖了数字信号处理的相关内容。由于信号类课程的教学内容广泛, 实验平台采用模块化的设计思想, 围绕信号分析、系统分析和综合应用三个方面设计实验内容。每个方面设计若干个子系统, 每个子系统又有若干个实验构成, 层次清晰、简单明了。结合我院选用的信号类课程的教材, 信号分析设计了五个子系统, 分别是:连续信号的时域分析 (信号的平移、反褶、尺度变换以及两个信号的相加与相乘运算) 、连续信号的频域分析 (吉布斯现象、典型非周期信号的频谱图) 、离散信号的时域分析 (序列的平移、反褶、尺度变换以及两个序列的相加与相乘运算) 、离散信号的频域分析 (序列的傅里叶变换及离散傅里叶变换) 、信号的采样与恢复;系统分析也设计了五个子系统, 分别是:连续系统的时域分析、频域分析及s域分析, 离散系统的时域分析和z域分析;综合应用设计了五个子系统, 分别是:无限脉冲响应 (IIR) 滤波器、有限脉冲响应 (FIR) 数字滤波器、语音加密器、语音合成系统和双音多频 (DTMF) 拨号音编解码系统。

3.2 虚拟实验平台的界面设计

虚拟实验平台的界面采用多级嵌套的形式, 自上而下进行设计。先设计平台的主界面, 再设计子系统的界面, 最后设计具体的实验界面。当所有界面都设计完成, 还需要将它们有序地链接在一起以方便学生做实验时使用。由于实验平台是基于Web的虚拟实验平台, 所有的界面均是网页形式, 实验结果也以网页的形式进行显示。如图1所示是设计好的实验平台主界面。

在实验平台的主界面上以分块、列表的形式显示其构成。点击列表中的名称即可进入对应的实验系统。比如点击“离散信号的时域分析”, 就会弹出相应的页面, 如图2所示。在实验系统的页面上包含所要操作实验的名称、实验目的、实验原理和实验内容。

4 具体的实验演示

下面以离散信号的时域分析和双音多频 (DTMF) 拨号音编解码系统为例, 演示实验平台的使用方法。

4.1 离散信号的时域分析

离散信号是指在时间上依次出现的数值序列, 常用波形表示。离散信号的时域分析主要是关于离散信号的表示方法及基本运算, 包括信号的平移、反转、尺度变换等基本变换和两个信号的加减和乘法运算。为此, 我们设计了三个具体的实验, 分别是:序列的相加与相乘、序列的平移与反褶、序列的尺度变换。在图2所示的页面上点击相应实验的“单击进入”即可出现具体的实验页面, 如图3所示是“离散信号的尺度变换”实验页面。假设离散信号, 在页面上输入信号的频率ω及抽取或插入的数值a, 当a>1时f (n) 压缩, 当a<1时f (n) 扩展。若频率ω输入10, a输入3, 点击“运行”得到如图4所示的波形, 该波形验证了离散信号的尺度变换。

4.2 双音多频 (DTMF) 拨号音编解码系统

一个双音多频 (DTMF) 电话机可以对16个按键进行编码, 每个编码均是两个单频正弦信号之和, 这两个单频正弦信号分别来自两个频率组即低频组和高频组, 它们与每个按键的对应关系如表1所示[8]。在虚拟实验平台中设计的DTMF拨号音编解码系统只设计了12个按键, 舍去了表1中最右边A、B、C、D四个字母, 即高频组变为三个频率组成, 低频组不变。数字DTMF接收机通过接收的双音信号的频谱, 再现每个按键所对应的两个频率, 从而确认被发送的电话号码。

DTMF信号的编码采用查表的方式模拟产生两个不同频率的正弦波, 解码采用快速傅里叶变换 (FFT) 计算N点频率处的频谱值, 然后估算出所拨的电话号码。在进行实验操作时, 先在主界面上点击“DTMF拨号音编解码系统”弹出如图5所示的实验页面, 然后在该页面上输入四位电话号码, 接着点击“运行”即可在输出页面上显示电话号码及其频域波形, 如图6所示。

5 结论

利用仿真软件开发的信号类课程的虚拟实验平台是实验教学的有益补充, 它打破了学生学习受到的时间和空间的限制, 形成了开放式的教学环境, 充分发挥了校园网络的作用, 进一步将电子化、信息化的校园建设落实到实际教学中, 为进行网络化、个性化教育打下坚实的基础。

该实验平台内容全面, 可以直接用于实验教学, 学生通过互联网络在实验界面上输入不同的参数即可观察产生的相应图形, 将抽象的原理进行形象地解释, 增强了学生的学习兴趣。实验平台还可以辅助课堂教学, 教师将实验程序从系统中取出, 在讲授具体的概念或原理时对其进行实时仿真, 有助于教师的讲授和学生的理解, 从而提高了教学质量, 达到了改善教学效果的目的。

参考文献

[1]杨新盛.基于MATLAB的信号与系统仿真实验[J].广东白云学院学报, 2009, 16 (4) :52-56.

[2]黄琴, 熊大红.基于MATLAB的信号与系统虚拟实验系统设计[J].计算机与现代化, 2010, (12) :186-188.

[3]胡永生, 谭业武.基于MATLAB的“信号与系统”虚拟实验系统的研究[J].山西电子技术, 2012, (1) :92-94.

[4]陈真, 王延江.面向Web的信号与系统课程多媒体交互系统开发[J].中国现代教育装备, 2012, (21) :7-8.

[5]张学敏, 吕晓丽.信号类课程教学改革探索与实践[J].科技教育, 2014, (27) :181-183.

[6]何强, 何英.MATLAB扩展编程[M].北京:清华大学出版社, 2002.

[7]唯美科技工作室编著.完全实例自学Dreamweaver CS5+ASP+Access动态网页制作[M].北京:机械工业出版社, 2013.

上一篇:体育管理学考试下一篇:教师业务学习记录