应用动能定理的注意点

2024-08-24

应用动能定理的注意点(精选8篇)

篇1:应用动能定理的注意点

第七节 动能定理的应用教案

汾阳二中物理组 梁建新

目标要求

1.掌握动能定理的表达式;

2.理解动能定理的确切含义,应用动能定理解决实际问题。

3.分析解决问题理论联系实际,学习运用动能定理分析解决问题的方法、步骤。

4.通过运用动能定理分析解决问题,感受成功的喜悦,培养学生对科学研究的兴趣。教学重点

动能定理及其应用。教学难点

对动能定理的理解和应用。教学过程

一、引入课题:

教师活动:直接给出动能定理的表达式:

W112mv2mv1222有了动能的表达式后,前面我们推出的,就可以写成WEk2Ek1其中Ek2表示一个过1212mv2mv1E程的末动能2,k1表示一个过程的初动能2。上式表明,力在一个过程中对物体所作的功,等于物体在这个过程中动能的变化。这个结论,叫做动能定理。动能定理可以帮助我们解决很多实际的问题,今天我们就学习动能定理的应用。

二、推进新课:

是正功还是负功。

(3)找出研究过程中物体的初、末状态的动能(或动能的变化量)(4)根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。

2、求变力做功问题:

例3:运动员踢球的平均作用力为200N,把一个静止的质量为1kg的球以10m/s的速度踢出,水平面上运动60m后停下,则运动员对球做的功? 学生活动:学生讲解自己的解答,并相互讨论;教师帮助学生总结用动能定理解题的要点、步骤,体会。

教师点评:如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。

例4:一列货车的质量为5.0×105kg,在平直轨道以额定功率3000kw加速行驶,当速度由10m/s加速到所能达到的最大速度30m/s时,共用了2min,则这段时间内列车前进的距离是多少? 学生活动:学生讲解自己的解答,并相互讨论;教师帮助学生总结用动能定理解题的要点、步骤,体会。

教师点评:有关机械恒定功率启动类问题中涉及变力牵引力做功可以Pt求

3、多过程问题

例5:质量为m的铁球从高H处掉入沙坑,已知铁球在陷入沙坑的过程中受到沙子的平均阻力为铁球重力的20倍,则铁球在沙中下陷深度h为多

教师点评:一般来说,用牛顿运动定律和运动学知识能够求解的问题,用动能定理也可以求解,而且往往运用动能定理求解更加简捷。可是,有些可用动能定理求解的问题,却无法应用牛顿运动定律和运动学知识求解。

三、课堂拓展:

1.质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了()

A.28J B.64J C.32J D.36J 2.质量为m的小球被系在轻绳一端,在竖直平面内作半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续作圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()

3.在平直公路上,汽车由静止开始作匀速运动,当速度达到vm后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则()A.F:f = 1:3 B.F:f = 4:1 C.W1:W2= 1:1 D.W1:W2 = 1:3

四、板书设计:

1、动能定理A内容 B表达式C适用范围

2、应用动能定理的一般思维程序:

五、教学反思

1.一般来说,用牛顿运动定律和运动学知识能够求解的问题,用动能定理也可以求解,而且往往运用动能定理求解更加简捷。可是,有些可用动能定理求解的问题,却无法应用牛顿运动定律和运动学知识求解。2.动能定理反映的是物体两个状态的动能变化与合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨道、做功的力是恒力还是变力等诸多因素不必加以追究,力可以是各种性质的力,既可以同时作用,也可以分段作用,只要求出在作用过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。2014、6、11

篇2:应用动能定理的注意点

(一)知识回顾

1、总功的两种求法

W 总= F合·S cosθ(各力均为恒力时)

W 总=W1+W2 +…(运动中受力变化时)

2、动能定理的表述:

W合=Ek 表达式为:

外力对物体所做的功等于物体动能的变化。

(二)动能定理的应用1、2、3、4、5、常规题(匀变速直线运动)多过程问题 求变力做功问题 求解曲线运动问题 其他问题

(三)典型例题分析 例

1、恒力直线运动

一架喷气式飞机,质量

m5.0103kg

,起

s5.3102m飞过程中从静止开始滑跑的路程为 时,达到起飞速度

v60m/s

。在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力F。

2、多过程问题

铁球从1m高处掉入沙坑,已知铁球在下陷过程中受到沙子的平均阻力为铁球重力的20倍,则铁球在沙中下陷深度为多少m?

3、求解曲线运动变力做功问题

某人从距地面25m高处水平抛出一小球,小球质量100g,出手时速度大小为10m/s,落地时速度大小为16m/s,取g=10m/s2,试求:

(1)人抛球时对小球做多少功?

(2)小球在空中运动时克服阻力做功多少? 动能定理是物理学的重要规律。

篇3:应用动能定理的注意点

一、强概念,剖析本质

高中生要学好动能定理的相关内容,首先要对动能定理的相关的内容有一个较为清晰和系统的认识,动能定理研究的对象只能是单个物体,那么根据其具体概念在进行动能具体分析时,授课教师就应该引导学生强化对概念的掌握,从而进一步剖析出物理动能定理相关内容的本质。

例如动能定理的典型分析,电梯质量为Μ,地板上放置一质量为m的物体,钢索拉电梯右静止开始向上加速运动,当上升高度为Η时,速度达到v,则请问:物体动能的增加情况如何?在进行该问题分析的时候,有些同学可能学会额外考虑重力,其实重力只是其中一个力,那电梯受到的力有钢索提供的向上的拉力Τ1、物体m的向下的压力Τ2、电梯的重力G,所以在进行问题分析时过于复杂化,实际进行该问题解答时,根据动能定理的定义,可直接得出:Ek=1÷2m V2,授课教师就应该引导学生在牢固强化理解物理概念的基础上,对物理试题进行深度剖析,最后有所收获,快速提升。

从初中到高中,最基础的是离不开受力分析,知道受几个力,才知道能量之间的转化,才能熟练运用动能定理,所以基础很重要,动能定理的应用不只是记住公式就足够的,而应该在理解概念的基础上对习题的本质进行较为深入和透彻的剖析和理解。

二、巧分析,活学活用

物理动能的中心问题就是受力,一切围绕着物体受力来分析,所谓合久必分,分久必合,在进行物理学试题解答的时候,对物理模型的建立和巧妙分析是进行物理试题解答关键,许多物理问题集中体现着活学活用理念。

例如某物体以400J的初动能从斜面底端向上运动,当它通过斜面伤的a点时,其动能减少了160J,机械能减少了67J,最终到达最高点b,那么我们来分析下着一系列的能量变化。机械能减少,说明有能量损失,那么动能损失的能量一方面克服重力做功,我们设为W1,一方面克服摩擦力做功,我们设为W2,那么W1+W2=160J,而对于该物体来说,势能也是机械能的一部分,所以机械能损失间接说明了W2=67J,所以W1=160-W2=160-67=93J,从底端到M点合外力做功为-67J,从底端到M点重力做功为93J,那么总的来说初始机械能为400J,能量是守恒的,那么通过沿斜面向上运动,则能量被用于克服摩擦力、重力,在M点的动能为400-160=240J,随着向上运动,在N点停止,所以此时动能为0J,能量全部被用于克服重力合摩擦力。

针对该题而言,也可以进行受力分析,即把重力沿垂直于与斜面和平行于斜面两个方向分解,一个垂直于斜面向下,一个平行于斜面向下,那么摩擦力是平行于斜面向下的,另外该物体还受到斜面给予的垂直于斜面向上的支持力,该支持力和重力垂直于斜面的分力正好合力为0(因为物体在斜面上平稳运动),所有的力都分解好了,所以物体受力一目了然,如果教师能全面分析这类问题,那么为想每个学生都能在遵循能量守恒的基础上活学活用动能定理,进而熟练的进行受力分析,而不是头脑模糊的胡乱做题。重在理解。

三、建模型,分条缕析

物理问题涉及的多是单个运动物体或者是单个系统的状态变化(静止、运动、上升、下降、弧形运动等),那么对于我们来说,看起始状态和结束状态非常重要,进行物理模型构建,分条缕析地对每个物理过程进行细致化分析,对学生保持头脑清醒,捋清解题思路至关重要。

例如:质量为m的小木块A以一水平速度v。冲上质量为M、长为L、置于光滑水平面的木块B,并正好不从B木块上掉下,A、B间动摩擦因数为μ,求此过程A、B物体组成的系统减少的动能。我们来分析,对于A、B物体组成的系统而言,起始状态能量为A的动能,而B物体与地面之间无摩擦,所以终末状态是动能不变。现在分析过程,A正好不从B木块掉下,这是什么状态?能同时停止吗?根据能量守恒是不能的,那即为A相对于B来说静止,二者以共同速度运动,我们设为v,现在分开单独分析,对于A而言,克服和B之间的摩擦力做功,我们设为W,而对于B而言,置于光滑水平面,所以和水平面之间的摩擦力为0,那么和A之间的摩擦力是唯一促使它运动的力,所以W全部转化为木块B的动能,所以对于A、B物体组成的系统减少的动能为0。

所以我们做物理题目先要看看该物体或者系统的起始和终末状态,头脑中形成一个大概体系,下一步再去针对性的分析过程和状态变化,先有轮廓再有细节,在进行有条不紊的分析,这会给学生营造一个良好的解题环境,尤其在考试,不至于紧张的乱成一团。

根据授课教师在教学中遇到的实际问题,现提出以下几点要求:强概念,剖析本质;巧分析,活学活用;建模型,分条缕析。最终提高学生的学习效率,提高学生的积极性,树立学生信心,提高教学成绩。

摘要:理解动能和动能定理,能用动能定理解释生活和生产中的现象对高中生来说必不可少,能利用动能定理解释变力做功、多过程问题、物理系统问题是高中生能在高考中取胜的必备法宝。

关键词:动能定理,综合应用,高中物理

参考文献

[1]刘伟荣.正确认识动能定理及题型整合[J].数理化解题研究,2014(06)

篇4:动能定理的三点应用

1.若是恒力作用下的匀变速直线运动,不涉及加速度和时间,用动能定理求解一般比用牛顿运动定理和运动学公式简便。

例1 在海滨游乐场里有一种滑沙的游乐活动。如图1所示,人坐在滑板上从斜坡的高处由静止开始滑下,滑到斜坡底端B点后沿水平的滑道再滑行一段距离到C点停下来。若某人和滑板的总质量m=60.0kg,滑板与斜坡滑道和水平滑道间的动摩擦因数相同,大小为μ=0.50,斜坡的倾角θ=37°。斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g取10m/s2。若出于场地的限制,水平滑道的最大距离为L=20.0m,则人在斜坡上滑下的距离AB应不超过多少?(sin37°=0.6,cos37°=0.8)

解析

根据动能定理得:mgsinθSAB-。即AB不应超过50m。

点评

此题也可以用牛顿第二定律与匀变速直线运动规律来求解,但用动能定理求解比用牛顿运动定律求解更方便。

2.应用于变力作用的运动过程。

如果所研究的问题中有多个力做功,其巾只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能的增量也比较容易计算时,巧用动能定理就可以灵活求出这个变力所做的功。

例2 如图2所示,质量为,m的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F作用下,以恒定速率νo竖直向下运动,物体由静止开始运动到绳与水平方向夹角θ=45°的过程中,绳中拉力对物体做的功为()。

物体由静止开始运动,绳中拉力对

物体是变力,所做的功等于物体增加的动能。物体运动到绳与水平方向夹角θ=45°时的速率设为ν,有νcos45°=νo,则。所以绳的拉力对物体做的功为。答案为B。

点评

本题涉及运动的合成与分解、功、动能定理等多方面知识,要求我们理解动能定理的含义,并能够应用矢量的分解法则计算瞬时速度。

例3 如图3,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图4所示,图像为半圆。则小物块运动到x0处时的动能为()。

解析

由于水平面光滑,所以拉力F即为合外力,F随位移x的变化图像包围的面积即为F做的功,设x0处的动能为Ek,由动能定理得,由图知x0=2Fm,故,所以选项C正确。

3.应用于分析多过程运动问题。

在用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速、减速的过程),可以分段考虑,也可以全程考虑,如能对整个过程列式,则可使问题简化。

例4 如图5所示的装置由AB、BC、CD三段轨道组成,轨道交接处均巾很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为h1=4.30m、h2=1.35m。现让质量为m的小物块自A点由静止释放。已知小物块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。求:

(1)小物块第一次到达D点时的速度大小;

(2)小物块第一次与第二次通过C点的时间间隔;

(3)小物块最终停止的位置距B点的距离。

解析

(1)对于小物块从A到B到C再

到D的过程由动能定理得:

将,h1、h2、s、μ、g代人得:VD=3m/s。

(2)对于小物块从A到B再到C的过程,由动能定理得:

将代入得:。

小物块沿CD段上滑的加速度大小

小物块沿CD段上滑到最高点的时间

由于对称性可知小物块从最高点滑回C点的时间t2=t1=ls。

故小物块第一次与第二次通过C点的时间间隔t=t1+t2=2s。

(3)对小物块运动全过程利用动能定理,设小滑块在水平轨道上运动的总路程为s总,有。将,代入得

故小物块最终停止的位置距B点的距离为2sS=1.4m。

点评

动能定理反映的是物体两个状态的动能变化与在这两个状态之间外力所做总功的量值关系,应用动能定理解答运动问题时,只需要考虑力在整个位移内做的功和这段位移始末两状态的动能变化,无需注意物体的运动性质、运动轨迹及运动状态变化的细节。

例5 如图6所示,AB与CD为两个对称斜面,其上部都足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧的圆心角为120°,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=1Om/s2)

解析

由于物体在斜面上受到摩擦阻力作用,所以物体的机械能将逐渐减少,最后物体在BEC圆弧上做永不停息的往复运动,即物体运动至B点或C点时速度均为O。由于在物体只在BEC圆弧上做永不停息的往复运动之前的运动过程中,重力所做的功为,摩擦力所做的功为,由动能定理得

解得s=280 m。

点评

对于物体来回往复运动的问题,若能由动能定理对整个过程列式求解,可以不考虑运动过程的细节,能大大简化数学运算。

跟踪练习:

1.如图7,汽车通过轻质光滑的定滑轮,将一个质量为m的物体从井中拉出,绳与汽车连接点距滑轮顶点高h,开始绳绷紧,滑轮两侧的绳都竖直,汽车以νo向右匀速运动,运动到跟汽车连接的细绳与水平方向夹角θ=30°,则()。

A.从开始到绳与水平方向夹角为30°时,拉力做功mgh

B.从开始到绳与水平方向夹角为30°时,拉力做功

C.从开始到绳与水平方向夹角为30°时,拉力做功

D.在绳与水平方向夹角为30°时,绳对滑轮的作用力为

篇5:动能 动能定理教案

动能 动能定理

一.教学目标

1.知识目标

(1)理解什么是动能;(2)知道动能公式Ek12mv,会用动能公式进行计算; 2(3)理解动能定理及其推导过程,会用动能定理分析、解答有关问题。2.能力目标

(1)运用演绎推导方式推导动能定理的表达式;(2)理论联系实际,培养学生分析问题的能力。3.情感目标

培养学生对科学研究的兴趣

二.重点难点

重点:本节重点是对动能公式和动能定理的理解与应用。

难点:动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。

通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识。

三.教具

投影仪与幻灯片若干。多媒体教学演示课件

四.教学过程

1.引入新课

初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。

2.内容组织

(1)什么是动能?它与哪些因素有关?(可请学生举例回答,然后总结作如下板书)物体由于运动而具有的能叫动能,它与物体的质量和速度有关。

举例:运动物体可对外做功,质量和速度越大,动能就越大,物体对外做功的能力也越强。所以说动能表征了运动物体做功的一种能力。

(2)动能公式

动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。

下面研究一个运动物体的动能是多少?

如图:光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。

在恒定外力F作用下,物体发生一段位移s,得到速度v,这个过程中外力做功多少?物体获得了多少动能?

v212mv 外力做功W=Fs=ma×

2a2由于外力做功使物体得到动能,所以动能与质量和速度的定量关系:

用Ek表示动能,则计算动能的公式为:Ek它的速度平方的乘积的一半。

由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。它在国际单位制中的单位也是焦耳(J)。一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。

下面通过一个简单的例子,加深同学对动能概念及公式的理解。

试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)① 物体甲的速度是乙的两倍;

② 物体甲向北运动,乙向南运动; ③ 物体甲做直线运动,乙做曲线运动;

④ 物体甲的质量是乙的一半。

总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。

(3)动能定理

12mv就是物体获得的动能,这样我们就得到了212mv。即物体的动能等于它的质量跟2①动能定理的推导

将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?

外力F做功:W1=Fs 摩擦力f做功:W2=-fs 外力做的总功为:

2v2v121212W总=Fsfsmamv2mv1Ek2Ek1Ek

2a22可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。其中F与物体运动同向,它做的功使物体动能增大;f与物体运动反向,它做的功使物体动能减少。它们共同作用的结果,导致了物体动能的变化。

问:若物体同时受几个方向任意的外力作用,情况又如何呢?引导学生推导出正确结论并板书:

外力对物体所做的总功等于物体动能的增加,这个结论叫动能定理。

用W总表示外力对物体做的总功,用Ek1表示物体初态的动能,用Ek2表示末态动能,则动能定理表示为:W总=Ek2Ek1Ek

②对动能定理的理解

动能定理是学生新接触的力学中又一条重要规律,应立即通过举例及分析加深对它的理解。

a.对外力对物体做的总功的理解

有的力促进物体运动,而有的力则阻碍物体运动。因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W总=W1+W2+„=F1·s+F2·s+„=F合·s,所以总功也可理解为合外力的功。

b.对该定理标量性的认识

因动能定理中各项均为标量,因此单纯速度方向改变不影响动能大小。如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。

c.对定理中“增加”一词的理解 由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少。因而定理中“增加”一词,并不表示动能一定增大,它的确切含义为未态与初态的动能差,或称为“改变量”。数值可正,可负。

d.对状态与过程关系的理解

功是伴随一个物理过程而产生的,是过程量;而动能是状态量。动能定理表示了过程量等于状态量的改变量的关系。

(4)例题讲解或讨论

主要针对本节重点难点——动能定理,适当举例,加深学生对该定理的理解,提高应用能力。

例1.一物体做变速运动时,下列说法正确的是()A.合外力一定对物体做功,使物体动能改变 B.物体所受合外力一定不为零

C.合外力一定对物体做功,但物体动能可能不变 D.物体加速度一定不为零

此例主要考察学生对涉及力、速度、加速度、功和动能各物理量的牛顿定律和动能定理的理解。只要考虑到匀速圆周运动的例子,很容易得到正确答案B、D。

例2.在水平放置的长直木板槽中,一木块以6.0米/秒的初速度开始滑动。滑行4.0米后速度减为4.0米/秒,若木板槽粗糙程度处处相同,此后木块还可以向前滑行多远?

此例是为加深学生对负功使动能减少的印象,需正确表示动能定理中各物理量的正负。解题过程如下:

设木板槽对木块摩擦力为f,木块质量为m,据题意使用动能定理有: -fs1=Ek2-Ek1,即-f·4=-fs2=0-Ek2,即-fs2=-

2m(4-6)212

m4 2二式联立可得:s2=3.2米,即木块还可滑行3.2米。

此题也可用运动学公式和牛顿定律来求解,但过程较繁,建议布置学生课后作业,并比较两种方法的优劣,看出动能定理的优势。

例3.如图,在水平恒力F作用下,物体沿光滑曲面从高为h1的A处运动到高为h2的B处,若在A处的速度为vA,B处速度为vB,则AB的水平距离为多大?

可先让学生用牛顿定律考虑,遇到困难后,再指导使用动能定理。

A到B过程中,物体受水平恒力F,支持力N和重力mg的作用。三个力做功分别为Fs,0和-mg(h2-hl),所以动能定理写为:

122m(vBvA)2m122(vBvA)〕解得

s〔g(h2h1)

F2Fs-mg(h2-h1)=从此例可以看出,以我们现在的知识水平,牛顿定律无能为力的问题,动能定理可以很方便地解决,其关键就在于动能定理不计运动过程中瞬时细节。

通过以上三例总结一下动能定理的应用步骤:(1)明确研究对象及所研究的物理过程。

(2)对研究对象进行受力分析,并确定各力所做的功,求出这些力的功的代数和。(3)确定始、末态的动能。(未知量用符号表示),根据动能定理列出方程

W总=Ek2Ek1

(4)求解方程、分析结果 我们用上述步骤再分析一道例题。

例4.如图所示,用细绳连接的A、B两物体质量相等,A位于倾角为30°的斜面上,细绳跨过定滑轮后使A、B均保持静止,然后释放,设A与斜面间的滑动摩擦力为A受重力的0.3倍,不计滑轮质量和摩擦,求B下降1米时的速度大小。

让学生自由选择研究对象,那么可能有的同学分别选择A、B为研究对象,而有了则将A、B看成一个整体来分析,分别请两位方法不同的学生在黑板上写出解题过程:

解法一:对A使用动能定理 Ts-mgs·sin30°-fs=

2mv 2对B使用动能定理(mg—T)s =三式联立解得:v=1.4米/秒

mv

且f =0.3mg 2解法二:将A、B看成一整体。(因二者速度、加速度大小均一样),此时拉力T为内力,求外力做功时不计,则动能定理写为:

mgs-mgs·sin30°-fs=f =0.3mg 解得:v=1.4米/秒

可见,结论是一致的,而方法二中受力体的选择使解题过程简化,因而在使用动能定理时要适当选取研究对象。

3.课堂小结

1.对动能概念和计算公式再次重复强调。

2.对动能定理的内容,应用步骤,适用问题类型做必要总结。

3.通过动能定理,再次明确功和动能两个概念的区别和联系、加深对两个物理量的理解。

(北大附中

田大同)

篇6:7.6 《动能和动能定理》

一、教材分析

1.教材的地位和作用:动能定理是高中物理最重要的定理之一,本节课是动能和动能定理教学的第一课时,是整个动能定理教学中的基础环节,也是最重要的一个环节,这节课主要是帮助学生了解动能的表达式,掌握动能定理的内容,学会简单应用动能定理解决物理问题,体会到应用动能定理研究问题的优越性。本节课的学习和研究,不仅是为后面动能定理应用打基础,也是为以后研究机械能守恒做铺垫。因此,本节课的学习要引导学生学会用科学的学习方法获得知识,并体验到学科学的乐趣。

2.教学目标:对教材的分析表明,教学的过程不仅要满足学生的知识需要,更要为学生的能力、兴趣的发展打好基础,所以,确定本节课的教学目标为: 知识与技能:

(1)理解动能的概念,利用动能定义式进行计算;

(2)理解动能定理表述的物理意义,并能进行相关分析与计算; 过程与方法:

(1)掌握恒力作用下利用牛顿运动定律和功的公式推导动能定理;(2)体会恒力作用下牛顿运动定律理与动能定理处理问题的异同点 情感态度与价值观:

(1)感受物理学中定性分析与定量表述的关系,学会用数学语言推理的简洁美;(2)体会感受物理学的研究方法。

二、分析学情,明确两点,处理教材

1.学情分析:我所教班级的学生的普遍情况是基础扎实,思维活跃,求知欲强,但是系统性、逻辑性相对较差,分析和发现问题的能力还有待提高。

2.明确两点:基于以上学情的分析,确定本节课的两点为: 教学重点(1)动能表达式的推导。(2)动能定理解题的优越性。教学难点 动能定理的理解与深化性应用

3.教材处理:为了实现教学目标,突出教学重、难点,我对教材内容做了一些处理:(1)给学生创设物理情景,引导学生自主推导动能的表达式。

1(2)教材中直接导出动能定理,对学生接受起来有些困难,所以我设计了一个探究动能变化和什么力做功有关的表格填涂。形象的来认知动能定理。

三、教学方法和手段

作为新课程改革的实施者,教师应该充分发挥组织者、引导者和合作者的作用,在教学方法上采用设疑提问,以此激发他们的学习兴趣和求知欲,然后学生自主讨论,引导他们得出结论,最后总结出规律。通过理论探究,学生体验到科学思维的重要性,同时也增强了他们的参与意识。在教学手段上,我运用多媒体课件和实物投影辅助教学,增强了直观性和生动性,这样既有利于突出重点,又有利于突破难点。

四、教学过程设计 [导入新课]

视频

一、幽默举重视频。提问:请大家思考一下,当健壮的运动员把杠铃从地面举到高处时,杠铃的什么能量发生了变化? 学生回答。

提问:杠铃的重力势能变化由什么力做功决定?请一位同学回答。

视频

二、撑杆跳运动员撑杆跳 ,提问:在撑杆跳高运动员跳高时,有一个撑杆被压的很弯的过程,请同学们思考,在撑杆弯曲时,撑杆的什么能量发生了变化? 学生回答。

提问:弹性势能的变化有什么力做功决定?请一位同学回答。

机械能中,除了有势能,还有动能,那么动能的变化由什么力做功决定的呢?这节课我们就来研究这个问题?学习本章第七节 动能和动能定理 [新课教学]

请大家猜想一下,物体的动能大小与什么因素有关。学生活动,讨论举例说明。

通过讨论,我们知道物体动能大小和质量、速度有关,动能大小和质量、速度有什么定量关系? 下面我们就来推导动能的表达式

提问:如何推导动能表达式?从什么角度推导动能表达式?

引导学生回忆重力势能是从什么角度推导的,弹性势能是从什么角度推导的?学生思考回答。

下面请同学们看一个物理情景。光滑水平面上有一质量为m的小物块,一水平恒力F作用在物体上使物体在水平方向运动了L,运动的初速度为V1,运动的末速度为V2,下面请大家从功和能量变化角度来推导物体动能和物体质量和速度有什么样的定量关系? 过程中对学生友情提示。

学生进行研究推导演绎动能表达式。请一个学生上黑板演示。

得出动能表达式:EK1mv2 2 请同学们思考并回答:

1、动能是矢量,还是标量?

2、动能能不能为负?

3、动能表达式中v是瞬时速度,还是平均速度? 介绍动能的变化,请学生思考物体动能的变化与什么力做功有关?

二、探究动能变化与什么力做功有关?

情景一:粗糙水平面上有一质量为m的小物块,一水平恒力F作用在物体上使物体在水平方向运动了L,运动的初速度为V1,运动的末速度为V2,摩擦力大小为f,下面请大家从功和能量变化角度来推导物体动能和物体质量和速度有什么样的定量关系? 让学生用实物投影仪展示探究结果。找出动能变化与什么力做功有关?

三、动能定理

内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化 请学生读动能定理的内容,找出动能定理表达式。2 表达式:W合Ek2Ek1

3、讨论:

当合力对物体做正功时,物体的动能如何变化?

当合力对物体做负功时,物体的动能如何变化?

学以致用使我们学习的最终目的,下面我们就用动能定理解决一下物理问题。介绍例题。

例:一架喷气式飞机,质量m =5×103kg,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞的速度 v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力? 请同学用之前学过牛顿运动定律的知识和今天讲的动能定理分别解此问题。

分别找两个同学到黑板介绍两种解法。让学生体会动能定理解题的优越性。找学生回答。课堂检测

某同学从高为h 处以速度v0 水平抛出一个铅球,求铅球落地时速度大小。(不计空气阻力)

分别找两个同学到黑板介绍两种解法。继续体会动能定理解题的优越性。巩固练习

一辆质量m、速度为vo的汽车关闭发动机后于水平地面滑行了距离L后停了下来。试求汽车受到的阻力。小结

一 动能的表达式 EK 1122mv2mv1 221mv2 2 3 二 动能定理 W合Ek2Ek1【课堂训练】

篇7:《动能和动能定理》说课稿

张胜

一、教材分析

1、内容与地位

本节是高中物理必修二第七章第7节的内容,主要讲述了动能和动能定理的推导、利用动能定理解题的步骤和方法、应用动能定理解题的优越性三大部分内容。

在讲述动能和动能定理时,没有把二者分开讲述,而是以功能关系为线索,通过恒力做功引人了动能的定义式和动能定理,这样叙述,思路简明,能充分体现功能关系这一线索。

动能定理是高中物理教学中十分重要的内容之一,是中学阶段处理功能问题使用频率最高的物理规律,他对研究恒力做功问题非常有效,对变力做功和曲线运动问题也适用, 用起来非常方便。另外,动能定理为进一步学习机械能守恒定律打下了基础,因此这一节有承上启下的作用。

2、教学目标

本节适合教师授课时间约占2/3,其余1/3时间由学生自主消化的教学模式,体现高效、互动的课改理念,以促进全体学生发展为目的。从知识与技能、过程与方法,情感态度与价值观三个方向培养学生,拟定三个教学目标:

(一)知识与技能

1.学生能写出动能的表达式并能进行简单的计算; 2.学生能推导动能定理;理解动能定理的物理意义; 3.学生能够应用动能定理解决实际问题。

(二)过程与方法

1.学生通过实验与理论探索相结合的探究过程,掌握恒力作用下动能定理的推导,进一步学习物理的研究方法;

2.学生通过分析实际问题,体会动能定理与牛顿第二定律处理问题的异同,体会变力作用下动能定理解决问题的优越性。

(三)情感态度与价值观

学生通过动能表达式和动能定理的推导,逐步形成严谨的科学态度并感受成功的喜悦,激发科学探究的兴趣。

3、教学的重点和难点

重点:对动能表达式和动能定理的理解与应用。难点:动能定理的推导,正确认识功、能的关系。解决办法:

1、为了使学生对动能定理印象深刻,可建议学生课前独立推导这一定理,并提前完成教学案里的预习自测。

2、动能定理中总功的分析与计算确实比较困难,应通过多个例题掌握利用动能定理解题的方法,掌握解题步骤,逐步提高学生从能量观点解题能力。

3、解例题之后可要求学生再用牛顿运动定律和运动学公式去解同一问题,并进行比较,可以使学生体会用动能定理处理问题的优越性,培养自信。

二、学生学情分析:

学生在初中已经简单学过动能,再加上前几节已经学过功、重力势能、和功与速度变化的关系,这一节学生接受起来就相对容易了。但是,由于前面几章学习的都是矢量,现在又学习标量,有可能一部分学生,还扭转不过来。另一方面前面几章学生都是用牛顿第二定律解题,现在学生可能一下子还适应不了,很可能还是用老一套,需要教师进行引导和对比,让学生感觉到利用动能定理解题要比利用牛顿第二定律解题简单得多。

三、教法与学法

教法:教法上采用推理、探究、讨论、归纳总结等方法。学法:终身教育的理念并非要求教育为学生提出更多的知识,而是让学生更多的掌握学习方法与途径,真正使他们学会学习。我力求指导学生掌握以下两种学习方法:

1.推导探究法:依据初中和高中所学知识,由学生自己探究推导定理,体现学生主体作用。

2.比较分析法:将所学知识进行运用,在解题过程中进行比较,发现异同,找出优越性,总结做题方法,得出结论的比较分析法。

四、教学过程设计

(一)创设情景

第一步观察实例,感知动能(动车组,龙卷风,射出枪口的子弹),第二步提出问题:动能和哪些因素有关?

实验分析:通过橡皮筋对小车做功,探究“功与物体速度的变化关系”,得出了Wv2,根据功与能量变化相关联的思想,说明动能的表达式中可能含有v2,但具体的数学表达式应当是什么?本节课我们将一起探讨这一问题。

(二)理论探究 引出概念

给质量为m物体施加一个恒力F,使物体做匀加速直线运动,在物体发生位移l的过程中,力F对物体做了功W,物体的速度由v1变为v2。

学生3人一组,互帮互助进行推理演算动能表达式和动能定理,老师在黑板上设计步骤,引导寻找总功与动能或动能的变化的关系

根据牛顿第二定律:F=ma 由运动学公式: v22-v12=2al 1212Wmv2mv1把F、l代入公式:W=Fl 得: 22

归纳总结:

1式子中的mv2就是动能,即

2动能:

动能定理:W EEK2K1

(三)对动能表达式和动能定理的理解: 对动能表达式的理解

12mv可知,动能与物体的质量和速度有关。

22、动能是一个标量,只有大小没有方向。

3、动能的单位是焦耳,和其他能量的单位一样。

4、动能是一个状态量,不同状态,只要速度大小不同,动能就不同。

5、动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动。

练习: 1.下列几种情况中,甲、乙两物体的动能相等的是()A.甲的速度是乙的2倍,乙的质量是甲的2倍 B.甲的质量是乙的2倍,乙的速度是甲的2倍 C.甲的质量是乙的4倍,乙的速度是甲的2倍

D.质量相同,速度大小也相同,但甲向东运动,乙向西运动

2.我国在1970年我国发射的第一颗人造地球卫星,质量为173 kg,运动速度为7.2 km/s,它的动能是多大?

对动能定理的理解:

1、等式的左边为合力做的总功,总功的求解方法:①先求各个力的合力,再求合力的功。②先求各个力的功,再把各个力的功进行代数相加,求出总功。

2、等式的右边为△EK:若△EK>0,动能增加,合外力做正功,是其他形式的能转化为动能;△EK<0,动能减小,物体克服外力做功,是动能转化为其他形式的能。

3、做功过程是能量转化的过程,动能定理表达式中“=”的意义是一种因果关系,是一个在数值上相等的的符号,不意味着“功就是动能的增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”。

4、动能定理中的位移l和速度v必须是相对于同一个参考系。中学物理一般以地面为参考系。

5、动能定理公式两边的每一项都是标量,因此动能定理是一个标量方程。

6、动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理不论物体做什么形式的运动、受力如何,动能定理总是适用。

动能定理适用范围:

既适用于直线运动,也适用于曲线运动; 既适用于恒力做功,也适用于变力做功; 既适用于单个物体,也适用于多个物体; 既适用于一个过程,也适用于整个过程。典例分析:

例:一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑。当位移达到l=5.3×102m时,速度达到起飞速度v=60m/s。在此过程中飞机受到的平均阻力是飞机重量的0.02倍。求飞机受到的牵引力。

(要求分别利用牛顿第二定律和动能定理两种方法求解,比较两种方法的特点,找出利用动能定理解题的优势)

(四)归纳小结

(通过教材的例题作详细的讲解,并归纳出用动能定理解题的步骤。在对本节课进行总结时,应强调动能定理虽然是在物体受恒力作用且做直线运动的情况下

1、根据Ek 3 得出的,但它也适用于变力作用及物体做曲线运动的情况。并利用牛顿运动定律和运动学规律求解课本的例题,与利用动能定理的方法求解,两种解法比较得出,在没有涉及加速度和时间的问题中,利用动能定理解题会更加简捷,方便。)用动能定理解题的一般步骤: ① 确定研究对象和研究过程。

② 分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。③ 找出研究过程中物体的初、末状态的动能(或动能的变化量)。

④ 根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。

(五)布置作业: 教材 P74 2、3、4、5

五、板书设计:

第七节 《动能 动能定理》

一、动能

1、定义:物理由于运动而具有的能量叫做动能。

2、影响因素:质量和速度。

123、表达式:Ekmv

24、单位:焦耳(J)

5、说明:

①动能是标量、也是状态量。

②动能的大小与参照物的选择有关。

二、动能定理

1、内容:合力所做的功等于动能的变化叫做动能定理。

2、表达式;WEk2Ek1Ek

3、对动能定理的理解:

1、等式的左边为合力做的总功。

2、若△EK>0,动能增加,合外力做正功,是其他形式的能转化为动能;△EK<0,反之。

3、做功过程是能量转化的过程。

4、动能定理中的位移l 和速度v一般以地面为参考系。

5、动能定理是一个标量方程。

4、动能定理适用范围:

篇8:动能定理的实际应用

一、利用动能定理求风力发电机的功率

例1新疆达坂城风口的风速约为v=20m/s,设该地区空气密度ρ=1.4kg/m3,若把通过横截面积为S=20m2的风的动能全部转化为电能,则该处风力发电站的发电功率为多大?

思维点拨:取很短一段时间Δt内的空气作为研究对象,则这段时间内空气的质量:

这些空气的动能为:

由题知动能全部转化为电能:E电=Ek

所以发电功率为:

代入数据得:P=1.12×105W.

答案:1.12×105 W.

点评:在生活、生产和科技实践中,经常会遇到这样的问题,例如水轮机发电、水力采煤、风力发电、火箭喷气、血液流动等,称为连续流体问题,处理这类问题时,不便于取整体为研究对象,通常是取很短一段时间内的质量Δm作为研究对象,将其看成质点,再进行分析讨论,这是解答连续流体问题的技巧.

二、探究物体从高处落地的安全问题

最近国务院下达了保障学生安全的相关条例,保护学生安全引起了全社会的关注,学生在单杠、跳马、攀越等体育运动中,可能发生从高处落下导致骨折等事故,下面讨论安全落地的高度.

例2人从一定的高度落地容易造成骨折,一般人胫骨的极限抗压强度约为1.5×108N/m2,胫骨最小横截面积大多为3.2cm2.假若一质量为50kg的人从某一高度直膝双足落地,落地时其重心又约下降1cm,试计算一下这个高度超过多少时,就会导致胫骨骨折.(g取10m/s2)

思维点拨:胫骨最小处所受冲击力超过:F=pS=1.5×108×2×3.2×10-4N=9.6×104N时会造成骨折.

设下落的安全高度为h1,触地时重心又下降高度为h2,落地者质量为m.

由动能定理:mg(h1+h2)-Fh2=0得:

答案:高度超过1.9m时,可能会导致骨折.

安全警示:在高度超过1.9m以上的单杠上运动时,在单杠下方应备有海绵垫子,或者有同学做好保护,以访不测,其他活动(如:撑杆跳、跳伞、攀越高架等)也必须做好安全措施.

三、测量自行车运动时所受的平均阻力

例3在大操场跑道上,先用力蹬自行车,使之具有一定的速度,待自行车进入直跑道后停止用力,在道路阻力作用下,自行车逐渐停止运动.

(1)要测定自行车所受的平均阻力,需测定哪些物理量?需要哪些测量仪器?

(2)测定平均阻力运用的物理原理是______,其表达式为______,表达式中各个物理量的意义是______;

(3)如何测定相关的物理量?

(4)怎样减少实验的误差?

思维点拨:设自行车和人的质量为m,停止用力后其速度为v,所受平均阻力为f,滑行距离为s,据动能定理:,其中m用磅秤测量;

v的测定方法:在停止蹬力后取一小段距离s1,用秒表测定自行车通过s1所用的时间t1,因为t1较小,自行车在这段位移上的速度可视为匀速,即:,用皮尺测得滑行总位移s,代入上述式子求出f.

答案:(1)自行车和人的质量m、停止用力后自行车速度v、滑行距离s;磅秤、秒表、皮尺;

(2)动能定理;;f为平均阻力,s为滑行总位移,v为停止蹬力时自行车的速度,m为自行车及人的总质量;

(3)略;

(4)减少误差的关键为v的测定,因为s1较小,因此计时的开始和结束一定要及时,以减小误差.

四、利用动能定理求弹性势能

例4为了测量一根轻质弹簧压缩最短时储存的弹性势能,可以采用如图1所示的装置来进行,图中桌面带有凹槽,以保证小滑块P(可视为质点)在桌面上只能沿凹槽做直线运动,小滑块受到桌面阻力不能忽略,但大小恒定,弹簧的一端连接在固定物K上,K可以沿凹槽方向移动,又能在不同位置被固定,另外提供弹簧测力计与刻度尺,请根据以上说明以及实验要求回答以下问题:

(1)简要写出实验操作步骤;(写出需要测量的物理量名称及符号,并要体现出减小实验误差的操作)

(2)用(1)中测出的物理量表示弹簧压缩最短时的弹性势能,即Ep=______;

(3)若小滑块所受桌面阻力为滑动摩擦力,利用(1)中测出的物理量能不能求出滑块与桌面之间的动摩擦因数μ?若能,请写出求μ的表达式;若不能,请说明理由.

思维点拨:求解压缩状态的弹性势能,一种是用公式法,即,用刻度尺和弹簧测力计即可,方便易行,但不符合要求(没用题中所给装置,且该公式高中教材不作介绍).

另一种是用功能关系法:弹性势能等于弹簧形变恢复过程对外做的功,由动能定理:,W弹=-ΔEp,其中s为滑块在桌面上移动的距离,由刻度尺测量;v为滑块离开桌面的速度,可由滑块离开桌面后的平抛运动求解.考虑到摩擦力未知,就需实施变换思想,改变固定物K的位置以组成方程组,即,式中,,解得:,式中s、h、x由刻度尺测量,G由弹簧测力计测量.

答案:(1)①用弹簧测力计称出小滑块重力G;②用刻度尺测出桌面到地面的高度h;③将K固定在桌面某一位置,用小滑块将弹簧压缩至最短.测量出此时K、P之间的距离L以及P到桌子右边缘的距离s1;④自由释放小滑块P,确定其在地面上的落点位置;⑤重复③④多次,找出其落点的中心位置,然后测出该中心位置到桌子右边缘的水平距离x1;⑥将K固定在桌子的另一位置,用小滑块压缩弹簧使K、P间的距离保持不变为L,测出P到桌子右边缘的距离s2;⑦类似步骤④⑤,测出相应的中心位置到桌子右边缘的水平距离x2.

(3)由f=μN=μG及实验原理中的摩擦力f的表达式可知,能求出:.

点评:新课程强调探究性学习,从探究性学习中可以学会实验设计,正确安排实验程序,分析实验数据,得出实验结果,进而培养自己的实验设计能力和探究能力.

五、动能定理与功率的综合问题

例5一列火车由机车牵引沿水平轨道行驶,经过时间t,其速度由0增大到v,已知列车总质量为M,机车功率P保持不变,列车所受阻力f为恒力,求这段时间内列车通过的路程.

思维点拨:以列车为研究对象,列车在水平方向受牵引力和阻力作用,设列车通过路程为s.

据动能定理有:

因为列车功率一定,牵引力做功:WF=Pt

所以,得

答案:

错解分析:以列车为研究对象,水平方向受牵引力和阻力f,据P=Fv,可知牵引力.

设列车通过的路程为s,据动能定理有:,由以上两式解得.

产生错解的原因是对P=Fv的公式不理解,在P一定的情况下,随着v的变化,F是变化的,同学们应对上述物理量随时间变化规律有一个定性的认识.

六、探究短跑运动中的体能消耗

例5一个体重为60kg的短跑运动员,起跑时能在1/6s,冲出1m远,能量全部由消耗体内葡萄糖提供,其热化学方程式为:C6H12O6(g)+6O2(g)=6CO2(g)+6H2O(L)+2800kJ,则该运动员在这段时间内至少要消耗体内葡萄糖多少g?

思维点拨:可将运动员的起跑看成是匀加速直线运动,则由运动学公式

得:

据能量守恒定律,运动员在这段时间内至少消耗体能:

设运动员在这段时间内至少要消耗体内葡萄糖x克.

解得:x=0.28g.

答案:运动员在这段时间内消耗葡萄糖0.28g.

上一篇:作文开头优美句子较短下一篇:优秀生考试试卷