2019高考生物考点分析

2024-07-23

2019高考生物考点分析(精选6篇)

篇1:2019高考生物考点分析

09-10

选考部分

生物技术实践:

1、5-1微生物的利用,删除“某种微生物数量的测定”(A类)考点,新增“利用微生物发酵来生产特点产物”考点(B类)

2、删除“5-2 酶的应用”(A类)考点

3、删除“测定食品加工中可能产生的有害物质”、“蛋白质的提取和分离”、“PCR技术的基本操作和应用”三个考点

3、新增“DNA的粗提取与鉴定”(A)考点

10-11

选考部分

生物技术实践:

1、增加“某种微生物数量测定”考点(A,实验),增加“微生物在其他方面应用”考点(A)

2、增加“酶的应用”考点(A)

3、增加“测定食品加工中可能产生的有害物质”、“蛋白质的提取和分离”、“PCR技术的基

本操作和应用”三个考点(A)

11-12

必考部分

1、删除“多种多样的细胞”考点(B),新增“原核细胞和真核细胞结构的区别”考点(B)、“线粒体和叶绿体的结构和功能”考点(B)、“核糖体、高尔基体、内质网、中心体、液泡、溶酶体的主要功能”考点(A)

2、扩充考点“细胞呼吸”为“细胞呼吸的基本过程及其原理的应用”(C)

3、扩充考点“细胞的衰老和凋亡与人体健康的关系”为“细胞的衰老和凋亡以及与人体健

康的关系”,难度由B降为A4、“癌细胞的主要特征及防治”考点难度降为A5、“动物的受精过程”考点难度降为A6、“生物进化与生物多样性的形成”考点难度降为A7、“植物激素的应用”考点变更为“生长素的应用”,难度升为C8、“生态系统中的信息传递”考点难度降为A9、删除“通过模拟实验探究膜的透性”考点

10、删除“模拟尿糖的检测”、“探究水族箱中群落的演替”考点

选考部分

1、删除“生物技术实践”实验部分考点

2、删除“DNA的粗提取与鉴定”考点

3、考点“基因工程的应用”难度降为A

12-13

必考部分

考点“癌细胞的主要特征及防治”难度提升为B

选考部分

考点“简述生态工程的原理”难度降为A

篇2:2019高考生物考点分析

名词:

1、过度繁殖:任何一种生物的繁殖能力都很强,在不太长的时间内能产生大量的后代表现为过度繁殖。

2、自然选择:达尔文把这种适者生存不适者被淘汰的过程叫作自然选择。

3、种群:生活在同一地点的同种生物的一群个体,是生物繁殖的基本单位。个体间彼此交配,通过繁殖将自己的基因传递给后代。

4、基因库:种群全部个体所含的全部基因叫做这个种群的基因库,其中每个个体所含的基因只是基因库的一部分。

5、基因频率:某种基因在整个种群中出现的比例。

6、物种:指分布在一定的自然区域,具有一定的形态结构和生理功能,而且在自然状态下能互相交配,并产生出可育后代的一群生物个体。

7、隔离:指同一物种不同种群间的个体,在自然条件下基因不能自由交流的现象。包括:a、地理隔离:由于高山、河流、沙漠等地理上的障碍,使彼此间不能相遇而不能交配。(如:东北虎和华南虎)b、生殖隔离:种群间的个体不能自由交配或交配后不能产生可育的后代。

语句:

1、达尔文自然选择学说的内容有四方面:过度繁殖;生存斗争;遗传变异;适者生存。

2、达尔文认为长颈鹿的进化原因是:长颈鹿产生的后代超过环境承受能力(过度繁殖);它们都要吃树叶而树叶不够吃(生存斗争);它们有颈长和颈短的差异(遗传变异);颈长的能吃到树叶生存下来,颈短的因吃不到树叶而最终饿死了(适者生存)。2、现代生物进化理论的基本内容也有四点:种群是生物进化的单位;突变和基因重组产生进化的原材料;自然选择改变基因频率;隔离导致物种形成。

3、种群基因频率改变的原因:基因突变、基因重组、自然选择。生物进化其实就是种群基因频率改变的过程。4、基因突变和染色体变异都可称为突变。突变和基因重组使生物个体间出现可遗传的差异。

5、种群产生的变异是不定向的,经过长期的自然选择和种群的繁殖使有利变异基因不断积累,不利变异基因逐代淘汰,使种群的基因频率发生了定向改变,导致生物朝一定方向缓慢进化。因此,定向的自然选择决定了生物进化的方向。(实例——桦尺蠖在工业区体色变黑:a、从宏观上看:19世纪中期桦尺蠖的浅色性状与环境色彩相似,属于保护色,较能适应环境而大量生存;黑色性状与环境色彩差异很大,不能适应环境,易被捕食者捕食,因此,突变产生后,后代的个体数受到限制。19世纪中期到20世纪中期,由于地衣死亡,桦尺蠖栖息的树干裸露并被烟熏黑,使得黑色性状与环境色彩相似而大量生存,浅色性状与环境色彩差异很大,易被捕食者捕食而大量被淘汰。表现为适者生存,不适者被淘汰。B、从微观来看:19世纪中期以前,由于黑色基因(S)为不利变异基因,控制的性状不能适应环境而受到限制,因此,当时种群中浅色基因(s)的频率为95%,黑色基因(S)的频率为5%。到20世纪中期由于黑色基因(S)控制的性状能适应环境而大量生存并繁殖后代,浅色基因(s)控制的性状不能适应环境而大量被淘汰,使后代数量大量减少。浅色基因(s)的频率下降为5%,黑色基因(S)的频率上升为95%。结果是淘汰了不利变异的基因并保留了有利变异基因,通过遗传逐渐积累。)

6、物种的形成:物种形成的方式有多种,经过长期地理隔离而达到生殖隔离是比较常见的方式。(如,加拉帕戈斯群岛上的14种地雀的形成过程,就是长期的地理隔离导致生殖隔离的结果。)

7、现代生物进化理论的基本观点是:进化的基本单位是种群,进化的实质是种群基因频率的改变。物种形成的基本环节是:突变和基因重组——提供进化的原材料,自然选择——基因频率定向改变,决定进化的方向。隔离——物种形成的必要条件。

篇3:2019高考生物考点分析

考点1 由数列的前几项求通项公式

根据数列的前几项求它的一个通项公式, 通过观察每一项的特点, 分析出项与n之间的关系、规律, 可使用添项、通分、分割等办法, 转化为一些常见数列的通项公式来求.对于正负符号的变化, 可用 (-1) n或 (-1) n+1来调整.

例1写出下面各数列的一个通项公式:

(2) 3, 33, 333, 3333, ….

解析: (1) 奇数项为负, 偶数项为正, 因此通项公式的符号为 (-1) n;各项绝对值的分母组成数列2, 4, 6, 8, …;而各项绝对值的分子组成的数列中, 奇数项为1, 偶数项为3, 即奇数项为2-1, 偶数项为2+1, 所以该数列的一个通项公式为.

(2) 这个数列的前4 项可以写成 (1/3) (10-1) , (1/3) (100-1) , (1/3) (1 000-1) , (1/3) (10 000-1) , 所以该数列的一个通项公式为.

考点2 由an与Sn的关系求通项公式

有些数列给出{an}的前n项和Sn与an的关系式Sn=f (an) , 利用该式写出Sn-1=f (an-1) (n≥2) , 两式作差, 再利用an=Sn-Sn-1导出an与an-1 (n≥2) 的递推式, 从而求出an.请注意:对n=1时的情况的讨论.

例2 若各项均不为零的数列{an}的前n项和为Sn, 且, 其中a1=1, 求an.

因为an≠0, 所以an+1-an-1=2.

从而a2 m+1=1+2 (m+1-1) =2m+1, a2 m=2+2 (m-1) =2m, m∈N*.

综上可知, an=n (n∈N*) .

考点3 由递推公式求通项公式

递推公式和通项公式是数列的两种表示方法, 它们都可以确定数列中的任意一项, 只是由递推公式确定数列中的项时, 不如通项公式直接.由递推公式求通项公式常见的方法有:累加法、累乘法以及构造法等.

例3已知数列{an}中, a1=1, an+1=2an+3, 求an.

所以{bn}是以b1=4为首项, 2为公比的等比数列, 则bn=4×2n-1=2n+1.

所以an=2n+1-3.

考点4 等差数列的基本运算

等差数列的通项公式及前n项和公式共涉及五个量a1, an, d, n, Sn, 如果知道其中三个就能求另外两个.

例4已知等差数列{an}的前n项和为Sn, 且满足, 则数列{an}的公差是____.

考点5 等差数列的判断和证明

判断数列{an}为等差数列的常见方法有四种:

(1) 定义法:对于n≥2的任意自然数, 验证an-an-1为同一常数. (2) 等差中项法:验证2an-1=an+an-2 (n≥3, n∈N*) 成立. (3) 通项公式法:验证an=pn+q. (4) 前n项和公式法:验证Sn=An2+Bn.其中在解答题中常应用定义法和等差中项法, 而通项公式法和前n项和公式法主要适用于选择题、填空题中的简单判断.

又, 所以数列{bn}是以为首项, 1为公差的等差数列.

考点6 等差数列的性质

等差数列的常见性质有: (1) an=am+ (n-m) d (n, m∈N*) . (2) 若{an}为等差数列, 且k+l=m+n (k, l, m, n∈N*) , 则ak+al=am+an. (3) 若{an}是等差数列, 公差为d, 则ak, ak+m, ak+2m, … (k, m∈N*) 是公差为md的等差数列. (4) 数列Sm, S2m-Sm, S3m-S2m, … 也是等差数列.

例6已知等差数列{an}中a4=2, an+2+an+5=2an+1+10, 则{an}的通项公式an=_____.

解析:令数列{an}的公差为d.

由an+2+an+5=2an+1+10, 得an+1+d+an+1+4d=2an+1+10, 即5d=10, 得d=2.

又a4=2, 所以an=a4+ (n-4) d=2+ (n-4) ×2=2n-6.

考点7 等差数列前n项和的最值

求等差数列前n项和Sn的最值的两种方法: (1) 函数法:利用等差数列前n项和的函数表达式Sn=an2+bn, 通过配方或借助图象求二次函数最值的方法求解. (2) 邻项变号法:①当a1>0, d<0时, 满足的项数m使得Sn取得最大值Sm;②当a1<0, d>0时, 满足的项数m使得Sn取得最小值Sm.

例7 已知数列{an}的通项公式是an= (1-k) n+13k-3, bn=an2-a2n+1.若数列{bn}的前n项和为Sn, 是否存在实数k, 使Sn当且仅当n=12时取得最大值?若存在, 求出k的取值范围;若不存在, 说明理由.

解析:存在满足题意的实数k.

由题意, 得bn=a2n-a2n+1= (an+an+1) (an-an+1) =-2 (1-k) 2n+25k2-30k+5.

由题意知, 当且仅当n=12时Sn最大, 则b12>0, b13<0,

故k的取值范围为 (- ∞, -19) ∪ (21, +∞) .

考点8 等比数列的基本运算

等比数列中有五个量a1, n, q, an, Sn, 一般可以“知三求二”, 通过列方程 (组) 求关键量a1和q, 问题可迎刃而解.等比数列的前n项和公式涉及对公比q的分类讨论, 当q=1时, {an}的前n项和Sn=na1;当q≠1时, {an}的前n项和.

例8 设数列{an}是等比数列, 前n项和为Sn, 若S3=3a3, 则公比q=____.

解析:当q=1时, 满足S3=3a1=3a3.

当q≠1时, S3=a1 (1+q+q2) =3a1q2, 解得.

综上, 或q=1.

考点9 等比数列的判定与证明

等比数列的常用判定方法有: (1) 定义法:若 (q为非零常数, n∈N*) 或 (q为非零常数, 且n≥2, n∈N*) , 则{an}是等比数列. (2) 等比中项法:若数列{an}中, an≠0且a2n+1=an·an+2 (n∈N*) , 则数列{an}是等比数列. (3) 通项公式法:若数列通项公式可写成an=c·qn-1 (c, q均是不为0的常数, n∈N*) , 则{an}是等比数列. (4) 前n项和公式法:若数列{an}的前n项和Sn=k·qn-k (k为常数且k≠0, q≠0且q≠1) , 则{an}是等比数列.其中前两种方法是判定等比数列的常用方法, 常用于证明, 而后两种方法常用于选择题、填空题中的判断.

例9 已知数列{an}中, a1=1, , 又bn=a2n+a2n-1, n∈N*.判断数列{bn}是否为等比数列.

又, 所以{bn}是以3/2为首项, 1/2为公比的等比数列.

考点10 等比数列的性质

等比数列的常用性质有: (1) 若m+n=p+q=2k (m, n, p, q, k∈N*) , 则am·an=ap·aq=ak2; (2) 若数列{an}, {bn} (项数相同) 是等比数列, 则{λan} (λ≠0) , , {an2}, {an·bn}等仍然是等比数列; (3) 在等比数列{an}中, 等距离取出若干项也构成一个等比数列, 即an, an+k, an+2k, an+3k, … 为等比数列, 公比为qk; (4) 公比不为-1 的等比数列{an}的前n项和为Sn, 则Sn, S2n-Sn, S3n-S2n仍成等比数列, 其公比为qn, 当公比为-1时, Sn, S2n-Sn, S3n-S4n不一定构成等比数列.

例10 等比数列{an}中, 前n项和为Sn, 且S10=10, S30=70, 则S20=____.

解析:易得等比数列{an}中, q≠ -1, S10, S20-S10, S30-S20成等比数列,

所以 (S20-S10) 2=S10 (S30-S20) , 即 (S20-10) 2=10 (70-S20) , 解得S20=30或-20.

又S20= (1+q10) S10>0, 所以S20=30.

考点11分组法求和

一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成, 则求和时可用分组求和法, 分别求和后再相加减.

例11 等比数列{an}中, a1, a2, a3分别是下表第一、二、三行中的某一个数, 且a1, a2, a3中的任何两个数不在下表的同一列.

(1) 求数列{an}的通项公式;

(2) 若数列{bn}满足bn=an+ (-1) nln an, 求数列{bn}的前n项和Sn.

解析: (1) 当a1=3时, 不合题意;当a1=2时, 当且仅当a2=6, a3=18时, 符合题意;当a1=10时, 不合题意.

因此a1=2, a2=6, a3=18, 所以公比q=3.

故an=2·3n-1 (n∈N*) .

(2) 因为bn=an+ (-1) nln an=2·3n-1+ (-1) nln (2·3n-1) =2·3n-1+ (-1) n[ln 2+ (n-1) ln 3]=2·3n-1+ (-1) n (ln 2-ln 3) + (-1) nnln 3,

所以Sn=2 (1+3+…+3n-1) +[-1+1-1+…+ (-1) n]· (ln 2-ln 3) +[-1+2-3+…+ (-1) nn]ln 3.

综上所述,

考点12错位相减法求和

如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的, 那么这个数列的前n项和即可用此法来求, 如等比数列的前n项和公式就是用此法推导的.在应用错位相减法求和时, 若等比数列的公比为参数, 应分公比等于1和不等于1两种情况求解.

例12 已知等差数列{an}的前n项和为Sn, 且满足a2=3, S6=36.

(1) 求数列{an}的通项公式;

(2) 若数列{bn}是等比数列且满足b1+b2=3, b4+b5=24, 设数列{an·bn}的前n项和为Tn, 求Tn.

解析: (1) 因为数列{an}是等差数列, 所以S6=3 (a1+a6) =3 (a2+a5) =36, 则a2+a5=12.

由于a2=3, 所以a5=9, 从而d=2, a1=a2-d=1, 所以an=2n-1.

(2) 设数列{bn}的公比为q.

因为b1+b2=3, b4+b5=24, 所以, 得q=2.

从而b1+b2=b1 (1+q) =3b1=3, 所以b1=1, bn=2n-1.

所以an·bn= (2n-1) ·2n-1.

所以Tn=1×1+3×2+5×22+…+ (2n-3) ·2n-2+ (2n-1) ·2n-1,

则2Tn=1×2+3×22+5×23+ … + (2n-3) ·2n-1+ (2n-1) ·2n.

两式相减, 得 (1-2) Tn=1×1+2×2+2×22+…+2·2n-2+2·2n-1- (2n-1) ·2n,

即-Tn=1+2 (21+22+ … +2n-1) - (2n-1) ·2n=1+2 (2n-2) - (2n-1) ·2n= (3-2n) ·2n-3.

所以Tn= (2n-3) ·2n+3.

考点13裂项相消法求和

裂项相消法是指把数列的通项拆成两项之差, 在求和时中间的一些项可以相互抵消, 从而求得其和. 常见的裂项方法有:.

例13 已知公差大于零的等差数列{an}的前n项和为Sn, 且满足a2·a4=65, a1+a5=18.设, 是否存在一个最小的常数m, 使得b1+b2+…+bn<m对于任意的正整数n均成立?若存在, 求出常数m;若不存在, 说明理由.

解析:因为{an}为等差数列, 所以a1+a5=a2+a4=18.

又a2·a4=65, 所以a2, a4是方程x2-18x+65=0的两个根.

又数列{an}的公差d>0, 所以a2<a4.所以a2=5, a4=13.可知a1=1, d=4.

所以Sn=2n2-n.

所以存在m=1/2使得b1+b2+…+bn<m对于任意的正整数n均成立.

考点14 等差数列与等比数列的综合问题

解决等差数列与等比数列的综合问题, 关键是厘清两个数列的关系.如果同一数列中部分项成等差数列, 部分项成等比数列, 就要把成等差数列和成等比数列的项分别抽出来, 研究这些项与序号之间的关系;如果两个数列是通过运算综合在一起的, 就要从分析运算入手, 把两个数列分割开, 再根据两个数列各自的特征进行求解.

例14 已知{an}是等差数列, 满足a1=3, a4=12, 数列{bn}满足b1=4, b4=20, 且{bn-an}为等比数列.

(1) 求数列{an}和{bn}的通项公式;

(2) 求数列{bn}的前n项和.

解析: (1) 设等差数列{an}的公差为d.

所以an=a1+ (n-1) d=3n.

设等比数列{bn-an}的公比为q.

所以bn-an= (b1-a1) qn-1=2n-1.从而bn=3n+2n-1.

(2) 由 (1) 知bn=3n+2n-1.

令cn=3n, dn=2n-1.

数列{cn}的前n项和为, 数列{dn}的前n项和为.

所以数列{bn}的前n项和为.

考点15 等差数列与等比数列的实际应用

数列应用题的常见模型有:等差模型、等比模型以及递推数列模型等.建模思路是:从实际出发, 通过抽象概括建立数学模型, 通过对模型的解析, 再返回实际中去.

例15 为了加强环保建设, 提高社会效益和经济效益, 某市计划用若干年时间更换一万辆燃油型公交车.每更换一辆新车, 则淘汰一辆旧车, 更换的新车为电力型车和混合动力型车.第一年年初投入了电力型公交车128辆, 混合动力型公交车400辆, 计划以后电力型车每年的投入量比上一年增加50% , 混合动力型车每年比上一年多投入a辆.

(1) 求经过n年, 该市被更换的公交车总数S (n) ;

(2) 若该市计划用7年的时间完成全部更换, 求a的最小值.

解析: (1) 设an, bn分别为第n年投入的电力型公交车、混合动力型公交车的数量.

依题意知, 数列{an}是首项为128, 公比为1+50% =3/2的等比数列;数列{bn}是首项为400, 公差为a的等差数列.

数列{bn}的前n项和.

所以经过n年, 该市更换的公交车总数

又a∈N*, 所以a的最小值为147.

配套练习:

1.若数列{an}的前n项和, 则{an}的通项公式是an=____.

2.若数列{an}中, a1=3 且an+1=an2 (n是正整数) , 则它的通项公式是an=____.

3.设Sn是公差不为0的等差数列{an}的前n项和, 若a1=2a8-3a4, 则.

4.已知数列{an}中, 若a1=1, (n ∈ N*) , 则该数列的通项为.

5.设等差数列{an}的前n项和为Sn, 若a1=-11, a4+a6= -6, 当Sn取最小值时, n=____.

6.已知{an}是等差数列, a1=1, 公差d≠0, Sn为其前n项和, 若a1, a2, a5成等比数列, 则S8=____.

7.已知等比数列{an}的首项a1=1, 公比q=2, 则a12+a22+…+an2=___.

8.写出下面各数列的一个通项公式:

(2) a, b, a, b, a, b, … (其中a, b为实数) .

9.设{an}是等差数列, 且a1-a4-a8-a12+a15=2, 求a3+a13及S15的值.

10.已知{an}是等比数列, Sn是其前n项和, a1, a7, a4成等差数列, 求证:2S3, S6, S12-S6成等比数列.

11.已知等比数列{an}中, 首项a1=3, 公比q>1, 且3 (an+2+an) -10an+1=0 (n∈N*) .

(1) 求数列{an}的通项公式;

(2) 设是首项为1, 公差为2的等差数列, 求数列{bn}的通项公式和前n项和Sn.

12.设等差数列{an}的公差为d, 点 (an, bn) 在函数f (x) =2x的图象上 (n∈N*) .

(1) 若a1=-2, 点 (a8, 4b7) 在函数f (x) 的图象上, 求数列{an}的前n项和Sn;

(2) 若a1=1, 函数f (x) 的图象在点 (a2, b2) 处的切线在x轴上的截距为, 求数列的前n项和Tn.

13.正项数列{an}的前n项和Sn满足Sn2- (n2+n-1) Sn- (n2+n) =0.

(1) 求数列{an}的通项公式;

(2) 令, 数列{bn}的前n项和为Tn, 证明:对于任意的n∈N*, 都有Tn< (5/64) .

14.设数列{an}的前n项和为Sn, 点 (an, Sn) 在直线上.

(1) 求数列{an}的通项公式;

(2) 在an与an+1之间插入n个数, 使这n+2个数组成公差为dn的等差数列, 求数列的前n项和Tn.

15.自祖国大陆允许台湾农民到大陆创业以来, 在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园, 台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务.某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂, 第一年各种经费12万美元, 以后每年增加4万美元, 每年销售蔬菜收入50万美元, 设f (n) 表示前n年的纯利润 (f (n) =前n年的总收入-前n年的总支出-投资额) .

(1) 从第几年开始该台商获利?

(2) 若干年后, 该台商为开发新项目, 有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时, 以16万美元出售该厂, 问哪种方案最合算?

参考答案:

8. (1) 这个数列的前4项的绝对值都等于序号与序号加1的积的倒数, 且奇数项为正, 偶数项为负, 所以它的一个通项公式为.

(2) 这是一个摆动数列, 奇数项是a, 偶数项是b,

所以此数列的一个通项公式为

9.a3+a13=-4, S15=-30.

10.证明略.

12. (1) 由已知, 得.解得d=a8-a7=2.

所以.

(2) 函数f (x) =2x在 (a2, b2) 处的切线方程为, 它在x轴上的截距为.由题意, 得, 解得a2=2.

所以d=a2-a1=1.从而an=n, bn=2n.

13. (1) 由Sn2- (n2+n-1) Sn- (n2+n) =0, 得[Sn- (n2+n) ] (Sn+1) =0.

由于{an}是正项数列, 所以Sn+1>0.所以Sn=n2+n.

当n≥2时, an=Sn-Sn-1=2n,

当n=1时, a1=S1=2适合上式.

所以an=2n.

14. (1) 由Sn=23an-1, 得.

两式相减, 得, 即an=3an-1 (n∈N*, n≥2) .

又, 得a1=2.

所以数列{an}是首项为2, 公比为3 的等比数列.

所以an=2·3n-1 (n∈N*) .

(2) 由 (1) 知an+1=2·3n, an=2·3n-1.

因为an+1=an+ (n+1) dn,

15.由题意知, 每年的经费是以12为首项, 4为公差的等差数列.

由题意, 得.

(1) 获取纯利润就是要求f (n) >0, 因此有-2n2+40n-72>0, 解得2<n<18.

又n∈N*, 可知从第三年开始获利.

(2) ①平均利润为, 当且仅当n=6时取等号.

故此方案共获利-2×62+40×6-72+48=144 (万美元) , 此时n=6.

②f (n) =-2n2+40n-72=-2 (n-10) 2+128, 当n=10时, [f (n) ]max=128.

故此方案共获利128+16=144 (万美元) , 此时n=10.

比较两种方案, 第①种方案只需6年, 第②种方案需要10年, 故选择第①种方案.

(安徽余其权)

六、不等式部分

考点1 比较两个数的大小

作差比较法的目的是判断差的符号, 而作商比较法的目的是判断商与1的大小, 两种方法的解题关键是变形.

例1 设a, b∈[0, +∞) , , 则A, B的大小关系是 ( ) .

(A) A≤B (B) A≥B

(C) A<B (D) A>B

解析:由题意, 得, 且A≥0, B≥0, 可得A≥B.故选B.

考点2 不等式的性质

不等式的性质是判断不等式是否成立的重要依据.

例2 若a>b>0, c<d<0, e<0, 求证:.

证明:因为c<d<0, 所以-c>-d>0.

又因为a>b>0, 所以a-c>b-d>0.

所以 (a-c) 2> (b-d) 2>0.

考点3 一元二次不等式的解法

若一元二次不等式含有参数, 则需要进行分类讨论, 讨论的顺序是:二次项的系数、根的存在、两根的大小关系.

例3 关于x的不等式x2- (a+1) x+a<0的解集中, 恰有3个整数, 则a的取值范围是 ( ) .

(A) (4, 5)

(B) (-3, -2) ∪ (4, 5)

(C) (4, 5]

(D) [-3, -2) ∪ (4, 5]

解析:原不等式可能为 (x-1) (x-a) <0, 当a>1时, 得1<x<a, 则4<a≤5;当a<1时, 得a<x<1, 则-3≤a< -2.所以a∈[-3, -2) ∪ (4, 5].故选D.

考点4一元二次不等式恒成立问题

一元二次不等式恒成立的条件:

(1) 不等式ax2+bx+c>0 (a≠0) 对任意实数x恒成立, 则

(2) 不等式ax2+bx+c<0 (a≠0) 对任意实数x恒成立, 则

例4 “0<a<1”是“ax2+2ax+1>0 的解集是实数集R”的 ( ) .

(A) 充分不必要条件

(B) 必要不充分条件

(C) 充要条件

(D) 既不充分又不必要条件

解析:当a=0时, 1>0, 显然成立;

所以ax2+2ax+1>0的解集是实数集R的充要条件为0≤a<1.

所以“0<a<1”是“ax2+2ax+1>0的解集是实数集R”的充分不必要条件.故选A.

考点5 二元一次不等式 (组) 表示的平面区域

确定二元一次不等式 (组) 表示的平面区域的方法是“直线定界, 特殊点定域”;注意:当不等式中带等号时, 边界为实线, 不带等号时, 边界应画为虚线, 特殊点常取原点.

考点6 求目标函数的最值

求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数有: (1) 截距型:形如z=ax+by. (2) 距离型:形如z= (x-a) 2+ (y-b) 2. (3) 斜率型:形如.

解析:由约束条件所得的可行域如图2所示, 而z=x2+y2+2x +2y +2= (x+1) 2+ (y+1) 2表示可行域内一点 (x, y) 到点 (-1, -1) 的距离的平方.由图易知点A (1, 2) 是满足条件的最优解, 则z= (x+1) 2+ (y+1) 2的最小值为13.

考点7 线性规划的实际应用

解线性规划应用题的基本步骤是: (1) 转化———设元, 写出约束条件和目标函数, 从而将实际问题转化为线性规划问题; (2) 求解———解这个纯数学的线性规划问题; (3) 作答———将数学问题的答案还原为实际问题的答案.

例7 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元, 每桶乙产品的利润是400元.公司在生产这两种产品的计划中, 要求每天消耗A, B原料都不超过12千克.通过合理安排生产计划, 从每天生产的甲、乙两种产品中, 公司共可获得的最大利润是 ( ) .

(A) 1 800元 (B) 2 400元

(C) 2 800元 (D) 3 100元

解析:设某公司生产甲产品x桶, 生产乙产品y桶, 获利为z元, 则x, y满足的线性约束条件为目标函数z=300x+400y.

作出可行域, 如图3中四边形OABC的边界及其内部整点.作直线l0:3x+4y=0, 平移直线l0经可行域内点B时, z取最大值.由得B (4, 4) , 满足题意.

所以zmax=4×300+4×400=2 800.故选C.

考点8 利用基本不等式证明不等式

利用基本不等式证明不等式时要从整体上把握运用基本不等式, 对不满足使用基本不等式条件的可通过“变形”来转换, 常见的变形技巧有:拆项, 并项, 也可乘上一个数或加上一个数, “1”的代换法等.

例8 已知a>0, b>0, a+b=1, 求证:.

证明:因为a+b=1, a>0, b>0,

考点9 利用基本不等式求最值

利用基本不等式求最值时应注意“一正、二定、三相等”, 即: (1) 非零的各数 (或式) 均为正, (2) 和或积为定值, (3) 等号能否成立, 这三个条件缺一不可.

例9 若点A (1, 1) 在直线2mx+ny-2=0 上, 其中mn > 0, 则的最小值为____.

解析:因为点A (1, 1) 在直线2mx+ny-2=0上, 所以2m+n=2.

考点10 基本不等式的实际应用

利用基本不等式求解实际应用题需认真阅读, 从中提炼出有用信息, 建立数学模型, 转化为数学问题求解.当运用基本不等式求最值时, 若等号成立的自变量不在定义域内时, 就不能使用基本不等式求解, 此时可根据变量的范围用对应函数的单调性求解.

例10 在一个交通拥挤及事故易发生路段, 为了确保交通安全, 交通部门规定, 在此路段内的车速v (单位:km/h) 的平方和车身长l (单位:m) 的乘积与车距d成正比, 且最小车距不得少于半个车身长.假定车身长均为l (单位:m) 且当车速为50km/h时, 车距恰为车身长, 问交通繁忙时, 应规定怎样的车速, 才能使在此路段的车流量Q最大? (车流量=车速/ (车距+车身长) )

解析:由题意, 得d=kv2l.因为当v=50时, d=l, 所以l=k×502l, 得.所以.又当.

综上所述, 当且仅当v=50km/h时, 车流量Q取得最大值.

配套练习:

1.已知c>0, 0<b<a<1, 且M=abc, N=bac, 则M, N的大小关系是 ( ) .

(A) M>N (B) M<N

(C) M=N (D) 不能确定

2.已知函数f (x) = (x-2) (ax+b) 为偶函数, 而且在 (0, +∞) 上单调递增, 则f (2-x) >0的解集为 ( ) .

(A) {x|x>2或x<-2}

(B) {x|-2<x<2}

(C) {x|x<0或x>4}

(D) {x|0<x<4}

3.已知存在实数a满足ab2>a>ab, 则实数b的取值范围是____.

4.在平面直角坐标系中, 不等式组 (a为常数) 表示的平面区域的面积是9, 那么a=____.

5.实数x, y满足不等式组, 则z=|x+2y-4|的最大值为____.

6.已知A, B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时, 在乙机器上加工1小时;B产品需要在甲机器上加工1小时, 在乙机器上加工3小时.在一个工作日内, 甲机器至多只能使用11小时, 乙机器至多只能使用9小时.A产品每件利润300元, B产品每件利润400元, 则这两台机器在一个工作日内创造的最大利润是____元.

7.已知不等式mx2-2x-m+1<0, 是否存在实数m对所有的实数x, 不等式恒成立?若存在, 求出m的取值范围;若不存在, 请说明理由.

8.设a, b∈R+, 且a+b=1, 求证:.

9.已知x>0, y>0, 且满足3x+2y=12, 求lg x+lg y的最大值.

10.小王大学毕业后, 决定利用所学专业进行自主创业.经过市场调查, 生产某小型电子产品需投入年固定成本3万元, 每生产x万件, 需另投入流动成本W (x) 万元, 在年产量不足8万件时, ;在年产量不小于8万件时, .每件产品售价为5元, 通过市场分析, 小王生产的商品能当年全部售完.

(1) 写出年利润L (x) (万元) 关于年产量x (万件) 的函数解析式 (注:年利润=年销售收入-固定成本-流动成本) .

(2) 年产量为多少万件时, 小王在这一商品的生产中所获利润最大?最大利润是多少?

参考答案:

1.A. 2.C. 3.b<-1.

4.1.在平面直角坐标系内画出不等式组表示的平面区域, 如图1.

直线x+y=0与直线x-y+4=0的交点坐标是 (-2, 2) , 点 (-2, 2) 到直线x=a (其中a>-2) 的距离为a+2.

直线x=a与x+y=0, x-y+4=0的交点坐标分别是 (a, -a) , (a, 4+a) .

结合图形及题意知, 即 (a+2) 2=9.又易知a>-2, 因此a=1.

5.21.作出不等式组表示的平面区域, 如图2中阴影部分所示.

, 即其几何含义为阴影区域内的点到直线x+2y-4=0 的距离的槡5倍.由得点B的坐标为 (7, 9) , 显然点B到直线x+2y-4=0的距离最大, 此时zmax=21.

6.1 700.设生产A产品x件, B产品y件, 则x, y满足约束条件生产利润为z=300x+400y.画出可行域, 如图3中阴影部分 (包含边界) 内的整点.

显然z=300x+400y在点A处取得最大值, 由方程组解得则zmax=300×3+400×2=1 700.故最大利润是1 700元.

7.不存在满足题意的m (理由略) .

8.因为a, b∈R+, 且a+b=1,

故原不等式得证.

9.lg x+lg y的最大值是lg 6.

10. (1) 已知每件商品售价为5元, 则x万件商品销售收入为5x万元.

依题意得, 当0<x<8 时, ;

此时, 当x=6时, L (x) 取得最大值L (6) =9万元.

此时, 当且仅当时, 即x=10 时, L (x) 取得最大值15万元.

因为9<15, 所以当年产量为10 万件时, 小王在这一商品的生产中所获利润最大, 最大利润为15万元.

(安徽王刚)

七、立体几何部分

考点1 考查空间几何体的结构特征

主要考查柱、锥、台等几何体的结构特征或其中基本的线面关系, 题型一般为选择题或填空题.求解时, 须严格依据相关几何体的结构特征.

例1 如图1, 若 Ω 是长方体ABCD -A1B1C1D1被平面EFGH截去几何体EFGHC1B1后得到的几何体, 其中E为线段A1B1上异于B1的点, F为线段BB1上异于B1的点, 且EH∥A1D1, 则下列结论中不正确的是 ( ) .

(A) EH∥FG

(B) 四边形EFGH是矩形

(C) Ω是棱柱

(D) Ω 是棱台

分析:判断选项A是否正确, 只需依据线面平行的判定和性质定理.运用其中判定出的位置关系和棱柱的结构特征, 进而可以判定选项C正确.判断选项B是否正确, 需运用空间垂直关系.判断选项D是否正确, 可依据棱台的结构特征.

解:因为EH ∥A1D1, B1C1∥A1D1, 所以EH ∥B1C1.因为B1C1平面BCC1B1, 所以EH∥平面BCC1B1.因为平面EFGH ∩ 平面BCC1B1=FG, 所以EH∥FG.因此A正确.又由棱柱的结构特征, 易知C也正确.

易知四边形EFGH是平行四边形.因为A1D1⊥ 平面ABB1A1, 所以A1D1⊥EF.因为EH ∥ A1D1, 所以EH ⊥ EF, 所以四边形EFGH是矩形.因此B正确.

无论 Ω 怎么放置, 都不能做到所有的侧棱交于一点, 所以 Ω 不是棱台.所以D不正确.

故选D.

评注:研究几何体的结构和截面问题, 一要依据相关几何体的结构特征;二要依据空间位置关系的判定和性质定理.

考点2 考查三视图

三视图是高中数学的新增内容, 因而其中的考查题型也比较丰富, 主要有:简单几何体的三视图问题、三视图的识别问题、三视图的应用问题.其中, 运用三视图求几何体的表 (侧) 面积、体积是三视图中的一类热点题型.求解上述问题的主要依据是三视图的画法规则, 主要运用的数学思想是转化思想和数形结合思想.

例2 某三棱锥的三视图如图2所示, 则该三棱锥最长棱的棱长为____.

分析:依据三视图画出该三棱锥的直观图, 即可确定最长棱的棱长, 进而依据空间位置关系, 运用勾股定理求解.

解:观察三视图, 可知该三棱锥的直观图如图3 所示, 其最长棱为VC.

由三视图中的数据可知, .

例3某几何体的三视图如图4所示, 则它的体积是 () .

分析:先由三视图确定几何体的形状, 然后由三视图中的长度得出几何体中的相应长度, 即可运用相关几何体的体积公式求这个几何体的体积.

解:观察三视图可知, 该几何体为一个组合体, 它是一个四棱柱正中挖去一个圆锥, 如图5所示.

又由三视图可知, 四棱柱与圆锥的高都是2, 四棱柱的底面是边长为2的正方形, 圆锥的底面是半径为1的圆.

所以该几何体的体积是.故选A.

考点3 考查几何体的表面积和体积

主要考查求柱、锥、台、球或简单组合体的表 (侧) 面积、体积或其他特征量问题, 题型多为选择题或填空题, 有时也作为解答题的一步.解答此类问题的主要依据是相应的计算公式, 主要的求解方法是代入法和解方程法.

例4 设甲、乙两个圆柱的底面积分别为S1, S2, 体积分别为V1, V2.若它们的侧面积相等, 且.

分析:先由侧面积相等, 得出两个圆柱底面半径与高之间的关系式, 进而由底面积之比得出两底面半径之间的关系式, 即可求出它们的体积之比.

解:设甲圆柱的半径和高分别为r1, h1, 乙圆柱的半径和高分别为r2, h2.依题意, 可得2πr1h1=2πr2h2, 所以r1h1=r2h2.由.

例5 一个六棱锥的体积为2 槡3, 其底面是边长为2的正六边形, 侧棱长都相等, 则该六棱锥的侧面积为____.

分析:先求出六棱锥的底面积, 进而求出它的高, 再求出它的斜高 (即侧面等腰三角形的底边上的高) , 即可求其侧面积.

解:该六棱锥的底面积为, 所以它的高h=.它的侧面是由6个全等的等腰三角形组成的, 其中每个三角形底边上的高, 所以该六棱锥的侧面积为.

例6 圆柱形容器内盛有高度为8cm的水, 若放入三个相同的球 (球的半径与圆柱的底面半径相同) 后, 水恰好淹没最上面的球 (如图6所示) , 则球的半径是____cm.

分析:先设出球的半径, 然后根据球的体积与水的体积之和等于圆柱的体积, 列方程求半径.

解:设球的半径为r, 依题意, 得, 即, 解得r=4cm.所以球的半径是4cm.

考点4 考查异面直线

主要考查异面直线的判断和两条异面直线所成的角的求解, 题型多为选择题或填空题, 有时也命制解答题.求解的主要依据是相关的定义, 运用的主要数学思想是转化思想.

例7 直三棱柱ABC-A1B1C1中, 若∠BAC=90°, AB =AC=AA1, 则异面直线BA1与AC1所成的角等于 ( ) .

(A) 30° (B) 45°

(C) 60° (D) 90°

分析:作出图形, 并在其中作出两条异面直线所成的角, 进而运用三角形知识求解.

解:作出直三棱柱ABC-A1B1C1, 如图7所示.

延长CA至点D, 使得AD=CA, 连结BD, A1D.

因为C1A1=AD, C1A1∥AD, 所以四边形ADA1C1是平行四边形.所以A1D∥C1A.所以∠DA1B (或它的补角) 就是异面直线BA1与AC1所成的角.

设AB=AC=AA1=a, 则可求得, 所以△A1BD是正三角形.所以∠DA1B=60°.

所以异面直线BA1与AC1所成的角等于60°.故选C.

评注:求两条异面直线所成的角的一般步骤是:找 (作) ———说———求.若所给的图形中有两条异面直线所成的角, 则要先把它找出来, 若没有, 则需先作出来, 然后再说明哪个角是两条异面直线所成的角, 最后根据平面几何知识把它求出来.两条异面直线所成的角的范围是 (0, π/2], 即两条异面直线所成的角只能是锐角或直角.求解时, 一定要注意依据此范围, 准确确定两条异面直线所成的角.

考点5 考查空间中点、直线、平面位置关系的判定

主要考查空间平行与垂直的判定, 题型多为选择题, 多以判断命题正误的形式出现.判断时, 可以依据相关位置关系的定义、判定或性质定理, 也可以依据其他已被证明了的正确的结论.

例8 设l, m是两条不同的直线, α是一个平面, 则下列命题正确的是 ( ) .

分析:先把题中的符号语言翻译成文字语言, 然后借助空间想象进行判定.

解:选项A中命题可叙述为:若一条直线垂直于一个平面内的一条直线, 则这条直线垂直于这个平面.这个命题显然错误, 因为这条直线有可能在平面内、与平面平行或相交但不垂直.选项B中命题可叙述为:若两条平行线中的一条垂直于一个平面, 则另一条也垂直于同一平面.这个命题正确.选项C中命题可叙述为:若一条直线平行于一个平面, 则它与这个平面内的任意一条直线都平行.这个命题不正确, 因为这两条直线还有可能是异面直线.选项D中命题可叙述为:平行于同一个平面的两条直线平行.这个命题不正确, 因为这两条直线还有可能相交或是异面直线.故选B.

考点6 考查空间中点、直线、平面位置关系的证明

主要考查空间平行与垂直的证明, 题型为解答题, 这类问题是高考立体几何解答题的一个考查热点.解答此类问题主要依据空间平行与垂直的定义、性质、判定和性质定理, 运用的主要数学思想是转化思想.

例9 如图8, 正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC, , CE=EF=1.

(1) 求证:AF ∥ 平面BDE;

(2) 求证:CF⊥平面BDE.

分析: (1) 欲证AF∥平面BDE, 只需在平面BDE内找到一条与AF平行的直线即可. (2) 欲证明CF⊥平面BDE, 只需证明CF垂直于平面BDE内的两条相交直线, 可用菱形的性质和面面垂直的性质定理寻找这两条直线.

证明: (1) 如图8, 设AC ∩BD =O, 连结OE.

因为, 所以AC=2.所以OA=1.所以EF=OA.

又因为EF∥OA, 所以四边形OAFE是平行四边形.所以AF∥OE.

因为AF平面BDE, OE平面BDE, 所以AF∥平面BDE.

(2) 连结OF.

因为EF =OC, EF ∥OC, 所以四边形OFEC是平行四边形.又因为CE=EF, 所以四边形OFEC是菱形.所以CF⊥OE.

因为平面ACEF ⊥ 平面ABCD, 平面ACEF∩平面ABCD=AC, BD⊥AC, 所以BD⊥平面ACEF.所以CF⊥BD.

因为OE∩BD=O, 所以CF⊥平面BDE.

考点7 考查空间位置关系的证明与计算的综合问题

主要考查空间平行与垂直关系的证明与几何体表 (侧) 面积或体积的计算, 大都是这两类问题的拼盘问题, 各个击破即可.题型一般为解答题.

例10 在如图9所示的几何体中, 四边形ABCD是正方形, MA⊥平面ABCD, PD∥MA, E, G, F分别为MB, PB, PC的中点, 且AD=PD=2 MA.

(1) 求证:平面EFG⊥平面PDC;

(2) 求三棱锥P - MAB与四棱锥P-ABCD的体积之比.

分析:要证明平面EFG⊥平面PDC, 根据面面垂直的判定定理, 只需在一个平面内找到一条与另一个平面垂直的直线.经考察, 平面EFG中的直线GF可当此任.四棱锥P-ABCD的体积易求, 求三棱锥P-MAB体积的关键是找出它的高, 找高时, 需用定理:若一条直线与一个平面平行, 则该直线上所有的点到平面的距离相等.

解: (1) 证明:因为MA⊥平面ABCD, PD∥MA, 所以PD⊥平面ABCD.所以BC⊥PD.

又因为四边形ABCD是正方形, 所以BC⊥CD.

因为PD∩CD=D, 所以BC⊥平面PDC.

因为G, F分别为PB, PC的中点, 所以GF∥BC.所以GF⊥平面PDC.

因为GF平面EFG, 所以平面EFG⊥平面PDC.

(2) 设MA=a.

因为PD⊥平面ABCD, 所以.

因为DA⊥AB, DA⊥MA, MA∩AB=A, 所以DA⊥平面AMB.

易知PD∥平面AMB, 所以DA等于三棱锥P-MAB的高.

所以三棱锥P - MAB与四棱锥P-ABCD的体积之比为1/4.

考点8 考查空间角的求解

主要考查求两条异面直线所成的角、直线与平面所成的角及二面角 (三角函数值) , 题目多为解答题, 偶尔也命制填空题或选择题, 其中二面角是个考查重点.求空间角, 一般常用向量法, 即把空间角转化为相关向量所成的角.具体转化途径如下:设直线l, m的方向向量分别为a, b, 平面α, β的法向量分别为u, v.如果l, m是两条异面直线, 那么它们所成的角θ (余弦值) 可用cosθ=|cos〈a, b〉|求解, 此处之所以取cos〈a, b〉的绝对值, 是因为两条异面直线所成的角只能是锐角或直角, 而两个方向向量所成的角有可能是钝角, 故只有加上绝对值, 才能确保求出的角 (余弦值) 是两条异面直线所成的角 (余弦值) ;直线l与平面α 所成的角θ (正弦值) 可用sinθ=|cos〈a, u〉|求解, 此处取绝对值的理由同前;平面α, β构成的二面角θ 可用cosθ=±|cos〈u, v〉|求解, 取“+”号还是“-”号, 要视二面角是锐角还是钝角来确定.

例11 如图10, 在长方体ABCD -A1B1C1D1中, E, F分别是棱BC, CC1上的点, CF=AB=2CE, AB∶AD∶AA1=1∶2∶4.

(1) 求异面直线EF与A1D所成角的余弦值;

(2) 证明:AF ⊥ 平面A1ED;

(3) 求二面角A1-ED-F的正弦值.

分析:建立空间直角坐标系. (1) 异面直线EF与A1D所成角的余弦值是它们的方向向量夹角的余弦值的绝对值. (2) 先证明与平面A1ED内的两个不共线的向量垂直, 进而依据线面垂直的判定定理证明AF⊥ 平面A1ED. (3) 先求出二面角A1-ED-F的两个半平面所在平面的法向量, 进而求出这两个法向量的夹角的余弦值, 再将其转化为二面角的余弦值, 最后求其正弦值.

解:建立如图10所示的空间直角坐标系.不妨设AB=1, 则A (0, 0, 0) , D (0, 2, 0) , E (1, 3/2, 0) , F (1, 2, 1) , A1 (0, 0, 4) .

(1) 设异面直线EF与A1D所成的角为α.

由 (2) 可知是平面A1ED的一个法向量.

考点9 考查空间位置关系的探索性问题

主要考查空间平行或垂直的探索性问题, 题型多为解答题.立体几何中常见的探索性问题有四类: (1) 条件反溯型.此类问题是根据某一结论, 反溯应具备的条件.即具备什么条件 (如:点在何处、某线段多长或某数值是多少) 时, 才能有某平行或垂直关系.解法是先以结论为条件, 反向分析, 分析出条件后, 再正向论证. (2) 结论探索型.即在某些条件下, 能否推出某一结论或具有怎样的结论.解法是直接推证或检验. (3) 存在判断型. (4) 条件重组型.即给出一些条件, 把它们组成一个真命题.解法是依据有关定理进行试验、重组.

例12 如图11, 在正方体ABCD -A1B1C1D1中, E是棱DD1的中点.

(1) 求直线BE和平面ABB1A1所成的角的正弦值.

(2) 在棱C1D1上是否存在一点F, 使B1F∥ 平面A1BE?证明你的结论.

分析:建立空间直角坐标系. (1) 直线BE和平面ABB1A1所成的角的正弦值, 是直线BE的方向向量与平面ABB1A1的法向量夹角的余弦值的绝对值. (2) 先假设点F存在, 并设出其坐标.因为当B1F∥平面A1BE时, 与平面A1BE的法向量垂直, 据此可求点F坐标中的参数.若能求出适合题意的坐标, 说明存在;否则, 不存在.

解:建立如图11所示的空间直角坐标系.不妨设AB=2, 则A (0, 0, 0) , B (2, 0, 0) , D (0, 2, 0) , E (0, 2, 1) , A1 (0, 0, 2) , B1 (2, 0, 2) .

(1) 易知是平面ABB1A1的一个法向量, .设直线BE和平面ABB1A1所成的角为θ, 则.

所以直线BE和平面ABB1A1所成的角的正弦值为2/3.

设在棱C1D1上存在一点F (t, 2, 2) (0≤t≤2) , 使B1F∥平面A1BE, 则有.

因为, 所以 (t-2, 2, 0) · (1, 1/2, 1) =0, 即, 解得t=1.所以F (1, 2, 2) , 即点F是棱C1D1的中点.

所以在棱C1D1上存在一点F, 使B1F∥平面A1BE, 它是棱C1D1的中点.

评注:本题是一个存在判断型的探索性问题, 解答此型问题的一般思路是:假设存在, 然后采用反探法探求.反探法的起点可以是已知条件, 也可以是要探求的位置关系.总之, 从哪儿开始探求方便, 就从哪儿开始.

配套练习:

1.如图1, 已知点E, F分别是正方体ABCD -A1B1C1D1的棱AB, AA1的中点, 点M, N分别是线段D1E与C1F上的点, 则与平面ABCD垂直的直线MN有 ( ) .

(A) 0条 (B) 1条

(C) 2条 (D) 无数条

2.已知平面α, β和直线l, 若α⊥β, α∩β=l, 则 ( ) .

(A) 垂直于平面β的平面一定平行于平面α

(B) 垂直于直线l的直线一定垂直于平面α

(C) 垂直于平面β的平面一定平行于直线l

(D) 垂直于直线l的平面一定与平面α, β都垂直

3.在空间中, 已知直线a, b和平面α, β, 下列命题中正确的是 ( ) .

(A) 若a∥α, b∥a, 则b∥α

4.一个几何体的三视图如图2所示, 其中俯视图与侧视图均为半径是2的圆, 则这个几何体的体积是 () .

5.如图3, 在四面体ABCD中, 若截面PQMN是正方形, 则下列命题中错误的是 () .

(A) AC⊥BD

(B) AC∥平面PQMN

(C) AC=BD

(D) 异面直线PM与BD成45°角

6.在如图4 所示的空间直角坐标系O-xyz中, 一个四面体的顶点坐标分别是 (0, 0, 2) , (2, 2, 0) , (1, 2, 1) , (2, 2, 2) .给出图5所示的四个图, 则该四面体的正 (主) 视图和俯视图分别为 ( ) .

(A) ①和② (B) ③和①

(C) ④和③ (D) ④和②

7.如图6, 在平面四边形ABCD中, AB=AD=CD=1, , BD⊥CD, 将其沿对角线BD折成四面体A′-BCD, 使平面A′BD⊥平面BCD, 若四面体A′-BCD的顶点在同一个球面上, 则该球的体积为 () .

8.如图7, 在直棱柱ABC-A1B1C1中, 点D1, F1分别是A1B1, A1C1的中点, 若BC=CA=CC1, 则BD1与AF1所成角的余弦值是 ( ) .

9.如图8, 在三棱柱ABC-A1B1C1中, AA1⊥平面ABC, AA1=AC=2, BC=1, , 则此三棱柱的侧 (左) 视图的面积为____.

10.如图9, 在四面体ABCD中, E, F分别为AB, CD的中点, 过EF任作一个平面α 分别与直线BC, AD相交于点G, H, 则下列结论正确的是____ (填序号) .

①对于任意的平面α, 都有直线GF, EH, BD相交于同一点;

②存在一个平面β, 使得点G在线段BC上, 点H在线段AD的延长线上;

③对于任意的平面α, 都有S△EFG=S△EFH;

④对于任意的平面α, 当G, H在线段BC, AD上时, 几何体ACEGFH的体积是一个定值.

11.如图10, 在 △ABC中, ∠ABC=45°, ∠BAC=90°, AD是BC上的高, 沿AD把△ABD折起, 如图11, 使∠BDC=90°.

(1) 证明:平面ADB⊥平面BDC;

(2) 设BD=1, 求三棱锥D-ABC的表面积.

12.如图12, AB是圆的直径, PA垂直于圆所在的平面, C是圆上的点.

(1) 求证:平面PAC⊥平面PBC;

(2) 若AB=2, AC=1, PA=1, 求二面角C-PB-A的余弦值.

13.如图13, 在角梯形ABCD中, AB ⊥AD, AD∥BC, F为AD的中点, E在BC上, 且EF∥AB, 已知AB=AD=CE=2, 现沿EF把四边形CDFE折起, 如图14, 使平面CDFE⊥平面ABEF.

(1) 求证:AD∥平面BCE;

(2) 求证:AB⊥平面BCE;

(3) 求三棱锥C-ADE的体积.

14.如图15, 在四棱锥P-ABCD中, 底面ABCD为矩形, PD⊥底面ABCD, AD=PD=2, CD=4, E为CD的中点.

(1) 在棱PB上是否存在一点F, 使得直线EF∥平面PAD;

(2) 求直线AE与平面PAB所成的角.

15.如图16, 正方形ABCD所在的平面与圆O所在的平面相交于CD, 线段CD为圆O的弦, AE垂直于圆O所在的平面, 垂足E是圆O上异于C, D的点, AE=3, 圆O的直径为9.

(1) 求证:平面ABCD⊥平面ADE;

(2) 求二面角D-BC-E的余弦值.

16.如图17, 在四棱柱ABCD-A1B1C1D1中, 侧棱AA1⊥ 底面ABCD, AB∥DC, AA1=1, AB=3k, AD=4k, BC=5k, DC=6k, k>0.

(1) 求证:CD ⊥ 平面ADD1A1;

(2) 若直线AA1与平面AB1C所成角的正弦值为6/7, 求k的值.

17.已知某几何体的直观图和三视图如图18所示, 其正 (主) 视图为矩形, 侧 (左) 视图为等腰直角三角形, 俯视图为直角梯形.

(1) 求证:BN⊥平面C1B1N;

(2) 求二面角C-NB1-C1的余弦值.

18.如图19, 已知四棱锥P-ABCD的底面ABCD是边长为2 的正方形, PD ⊥ 底面ABCD, E, F分别为棱BC, AD的中点.

(1) 若PD=1, 求异面直线PB和DE所成角的余弦值.

(2) 若二面角P-BF-C的余弦值为, 求四棱锥P-ABCD的体积.

19.如图20, 在梯形ABCD中, AD=DC=CB=1, ∠ABC=60°, 四边形ACFE为矩形, 平面ACFE⊥平面ABCD, CF=1.

(1) 求证:BC ⊥ 平面ACFE;

(2) 点M在线段EF上运动, 设平面MAB与平面FCB所成二面角的平面角为θ (θ≤90°) , 试求cosθ的取值范围.

参考答案:

1.B. 2.D. 3.D. 4.B. 5.C.

6.D.先在坐标系中作出一个以O为一个直角顶点, 且棱长为2的正方体, 然后在这个正方体中作出这个四面体, 不难发现该四面体的正 (主) 视图和俯视图分别为④和②.

7.A.依题意可知, A′B⊥A′C, 所以BC是外接球的直径, 且.所以球的半径为.所以球的体积为.

8.A.

9 .分别过C, C1点作CD⊥AB, C1D1⊥A1B1于D, D1, 则此三棱柱的侧 (左) 视图与矩形CDD1C1全等.因为AC=2, BC=1, , 所以 △ABC是直角三角形.所以.所以矩形CDD1C1的面积, 即侧 (左) 视图的面积为.

10.③④.

11. (1) 证明略.

(2) 三棱锥D-ABC的表面积为.

12. (1) 证明略.

(2) 二面角C-PB-A的余弦值为.

13. (1) 证明略.

(2) 证明略.

(3) 三棱锥C-ADE的体积为2/3.

14. (1) 建立如图1 所示空间直角坐标系Dxyz, 则E (0, -2, 0) , P (0, 0, 2) , A (2, 0, 0) , B (2, -4, 0) .

假设在棱PB上是否存在一点F, 使得直线EF∥平面PAD, 设.

易知是平面PAD的一个法向量, 所以EF⊥AB.

所以, 解得λ=1/2.

所以在棱PB上存在一点F, 它是棱PB的中点, 使得直线EF∥平面PAD.

(2) 由 (1) 可知, 当点F是PB的中点时, , 所以.所以EF⊥BP.

因为AB∩BP=B, 所以EF⊥平面PAB.所以是平面PAB的一个法向量.

设直线AE与平面PAB所成的角为θ.

所以直线AE与平面PAB所成的角是30°.

15. (1) AE垂直于圆O所在的平面, CD在圆O所在的平面上, 所以AE⊥CD.

又因为CD⊥AD, AD∩AE=A, 所以CD⊥平面ADE.

⊥ADE.因为CD平面ABCD, 所以平面ABCD⊥平面ADE.

(2) 因为CD⊥平面ADE, DE平面ADE, 所以CD⊥DE.

所以CE为圆O的直径, 即CE=9.

设正方形ABCD的边长为a, 则在Rt△CDE中, DE2=CE2-CD2=81-a2, 在Rt△ADE中, DE2=AD2-AE2=a2-9.所以81-a2=a2-9, 解得a2=45.所以.

如图2, 建立空间直角坐标系Dxyz, 则A (-6, 0, 3) , , E (-6, 0, 0) .

设二面角D-BC-E的大小为θ, 观察图2, 易知θ为锐角.

所以二面角D-BC-E的余弦值为.

16. (1) 如图3, 过点B作BE∥AD, 交DC于点E.

因为AB∥DC, BE∥AD, 所以四边形ABED是平行四边形.

所以DE=AB=3k, BE=AD=4k, 所以EC=6k-3k=3k.

所以BE2+EC2=BC2.所以 △BEC是直角三角形, 且∠BEC是直角.所以CD⊥BE.

又因为BE∥AD, 所以CD⊥AD.

因为AA1⊥底面ABCD, 所以CD⊥AA1.

因为AA1∩ AD = A, 所以CD ⊥ 平面ADD1A1.

(2) 建立如图4 所示的空间直角坐标系Dxyz, 则A (4k, 0, 0) , C (0, 6k, 0) , A1 (4k, 0, 1) , B1 (4k, 3k, 1) , 所以.

整理, 得k2=1.

因为k>0, 所以k=1.

17. (1) 如图5, 建立空间直角坐标系Bxyz, 则B1 (0, 8, 0) , C (0, 0, 4) , C1 (0, 8, 4) , N (4, 4, 0) .

所以.所以BN ⊥B1N, BN⊥C1N.

因为B1N ∩C1N = N, 所以BN ⊥ 平面C1B1N.

(2) 由 (1) 可知C1B1N的一个法向量为.

设平面CNB1的一个法向量为n= (x, y, 1) .因为, 所以由解得x=y=1/2.所以.

设二面角C-NB1-C1的大小为θ, 观察图形, 易知θ为锐角.

所以二面角C-NB1-C1的余弦值为.

18.如图6, 建立空间直角坐标系Dxyz, 则B (2, 2, 0) , C (0, 2, 0) , E (1, 2, 0) , F (1, 0, 0) .

(1) 若PD=1, 则P (0, 0, 1) , 所以.

设异面直线PB和DE所成的角为θ, 则.

所以异面直线PB和DE所成角的余弦值为.

(2) 设PD=h, 则P (0, 0, h) , 所以, 它是平面CBF的一个法向量.

所以四棱锥P-ABCD的体积为.

19. (1) 在梯形ABCD中, 因为AB∥CD, AD=DC=CB=1, ∠ABC=60°, 所以AB=2.

所以AB2=AC2+BC2, 则BC⊥AC.

因为平面ACFE ⊥ 平面ABCD, 平面ACFE∩平面ABCD=AC, BC平面ABCD, 所以BC⊥平面ACFE.

(2) 建立如图7 所示的空间直角坐标系Cxyz, 令, 则, B (0, 1, 0) , M (λ, 0, 1) , 所以.

所以.

易知n= (1, 0, 0) 是平面FCB的一个法向量, 所以.

因为, 所以当λ=0时, cosθ取得最小值;当时, cosθ取得最大值1/2.

所以cosθ的取值范围是.

(山东马继峰)

八、平面解析几何部分

考点1 直线与圆的方程

直线与圆的方程是进一步研究圆锥曲线的基础.纵观近年来全国各地高考对该部分内容的考查, 充分体现了课标和考纲的要求, 考查的重点:一是依据给出的几何要素求直线、圆的方程 (多是直线与圆、圆锥曲线的综合) ;二是判断直线与圆、圆与圆的位置关系, 讨论直线与圆的相交、相切问题;三是计算弦长、面积, 考查与圆有关的最值;四是求以圆为载体的曲线轨迹方程等.题型多为考查“三基”的中、低档客观题, 也有难度较大的综合性解答题.注重基础知识之间的内在联系, 注重挖掘基础知识的能力因素, 注重运算推证的准确熟练程度, 注重对数形结合、化归与转化等数学思想方法的考查.

例1过点引直线l与曲线相交于A, B两点, O为坐标原点, 当△AOB的面积取最大值时, 直线l的斜率等于 () .

评注:本题关涉圆的弦长的计算问题, 是直线与圆的方程中的常见题型.弦长可以通过求出直线与圆的交点坐标, 利用两点间的距离公式直接求得;抑或在直线斜率存在的前提下设其为k, 将直线与圆的方程联立消去y后得到关于x的一元二次方程, 则弦长 (x1, x2为方程的两根) , 间接求出;还可以像本例那样, 利用半弦、弦心距及半径构成的直角三角形, 借助勾股定理解得.

例2 过点 (3, 1) 作圆 (x-1) 2+y2=1的两条切线, 切点分别为A, B, 则直线AB的方程为 ( ) .

(A) 2x+y-3=0 (B) 2x-y-3=0

(C) 4x-y-3=0 (D) 4x+y-3=0

解析:经判断切线的斜率存在, 设切线的方程为y-1=k (x-3) .由圆心 (1, 0) 到切线的距离, 可求得k=0或k=4/3.于是可求得两个切点A, B的坐标分别为 (1, 1) , , 所以直线AB的方程为2x+y-3=0.故选A.

例3 圆心在曲线 (x>0) 上, 与直线2x+y+1=0相切, 且面积最小的圆的方程为 ( ) .

(A) (x-1) 2+ (y-2) 2=25

(B) (x-1) 2+ (y-2) 2=5

(C) (x-2) 2+ (y-1) 2=25

(D) (x-2) 2+ (y-1) 2=5

解析:先探求半径最小时的条件, 由此确定圆心和半径即可.设圆心的坐标为 (a>0) , 则半径, 当且仅当, 即a=1时取等号, 也就是当a=1时圆的半径最小, 此时, C (1, 2) , 可得符合条件的圆的方程为 (x-1) 2+ (y-2) 2=5.故选B.

评注:上述求解过程中, 首先根据点到直线的距离公式表示圆的半径, 再利用基本不等式求出半径的最小值, 从而突破了圆的面积最小这一关键要素.如果不能将“直线与圆相切”与“圆的面积最小”二者有机勾连, 就难以找到问题的解决路径, 并且容易陷入盲目与混乱.

例4 已知过点A (0, 1) 且斜率为k的直线l与圆C: (x-2) 2+ (y-3) 2=1交于M, N两点.

(1) 求k的取值范围;

(2) , 其中O为坐标原点, 求|MN|.

解析: (1) 由题意, 可设直线l的方程为y=kx+1, 即kx-y+1=0.因为直线l与圆C: (x-2) 2+ (y-3) 2=1交于M, N两点, 所以圆心C (2, 3) 到直线l的距离小于半径1, 即.解得.所以k的取值范围是.

(2) 设M (x1, y1) , N (x2, y2) .将y=kx+1代入方程 (x-2) 2+ (y-3) 2=1, 整理, 得 (1+k2) x2-4 (k+1) x+7=0, 所以.因为, 所以, 解得k=1.所以l的方程为y=x+1.易知圆心在直线l上, 故|MN|=2.

评注:解决此类问题可通过直线方程与圆锥曲线方程组成的二元二次方程组的解的情况来探求.

例5 在平面直角坐标系xOy中, 点A (0, 3) , 直线l:y=2x-4.设圆C的半径为1, 圆心在l上.

(1) 若圆心C也在直线y=x-1上, 过点A作圆C的切线, 求切线的方程;

(2) 若圆C上存在点M , 使MA=2 MO, 求圆心C的横坐标a的取值范围.

解析: (1) 易得圆心坐标C (3, 2) , 圆的方程为 (x-3) 2+ (y-2) 2=1.由于切线斜率不存在时, 不合题意, 因此可设切线方程为y=kx+3.所以.解得k=0或.故切线的方程为y=3或.

(2) 设C (a, 2a-4) , 则圆C的方程为 (x-a) 2+ (y-2a+4) 2=1.设M (x0, y0) , 由题意 (x0-a) 2+ (y0-2a+4) 2=1.因为MA =2 MO, 所以x02+ (y0-3) 2=4x02+4y02, 即x02+ (y0+1) 2=4.又因为点M存在, 圆 (x-a) 2+ (y-2a+4) 2=1 与圆x2+ (y+1) 2=4 有交点, 即两圆相交或相切, 所以 (2-1) 2≤d2≤ (2+1) 2, 即1≤ (a-0) 2+[ (2a-4- (-1) ]2≤9, 解得, 即为所求.

评注:这是一道涉及直线与圆、圆与圆位置关系的综合问题.第 (1) 问考查求圆的切线方程的一般方法;第 (2) 问解法比较灵活, 需将几何等式MA=2 MO转化为代数等式 (即一个圆的方程) , 进而把所求问题转化为“已知两圆的位置关系, 通过圆心距变化范围, 探求参数取值范围”问题, 这要求我们熟练掌握知识、技能和相关思想方法.

例6 已知动圆过定点A (4, 0) , 且在y轴上截得的弦MN的长为8.

(1) 求动圆圆心的轨迹C的方程;

(2) 已知点B (-1, 0) , 设不平行于y轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是"PBQ的角平分线, 证明直线l过定点.

解析: (1) 设圆心C的坐标为 (x, y) , MN的中点为E, 则由CA2=CM2=ME2+EC2, 得 (x-4) 2+y2=42+x2, 即y2=8x.

(2) 证明:设P (x1, y1) , Q (x2, y2) .由题意, 知y1+y2≠0, y1y2<0, 不妨设y2<0.又因为x轴是∠PBQ的角平分线, 所以tan∠PBO=tan∠QBO, 即.又y21=8x1, y22=8x2, 所以y1y2=-8.①

由①和②两式, 解得b=-k, 代入直线l的方程, 得y=k (x-1) .

故直线l恒过 (1, 0) 点, 结论获证.

评注:本例第 (1) 问是以动圆为背景, 探求抛物线的方程.求轨迹方程的常用方法有直接法、待定系数法、定义法、代入法 (相关点法) 、参数法等.第 (2) 问属于证明动直线过定点问题, 其一般方法是运用已知条件将直线方程变换成含有一个参数的点斜式形式, 进而找到直线所过的定点坐标.

考点2 圆锥曲线

圆锥曲线是高考的重点考查内容, 在近年来全国各地的高考试卷中, 该部分内容的题量大都保持一小一大或两小一大的格局, 分值在17分与24分之间.重点考查圆锥曲线的定义、方程和几何性质, 其中大多数试题的背景仍以椭圆居多, 抛物线次之, 双曲线最少.对定义、方程内容的考查注重基础.从知识点看, 在注重考查基本概念和几何性质的基础上, 加大了学科内的知识综合.从数学思想方法看, 在重视解析几何本质的同时, 既强调通性通法, 淡化特殊技巧, 又注重提供灵活运用坐标法解题的空间.文、理科试卷在圆锥曲线试题上的差异也越来越明显, 所采用的方式有:小题相同但大题不同, 曲线相同但难易有别, 题目相同但排序不同, 背景相同但设问不同, 起点相同但终点不同, 且往往以“姊妹题”的方式呈现.

例7设F1, F2是双曲线C: (a>0, b>0) 的左、右焦点, P是C上一点, 若|PF1|+|PF2|=6a, 且△PF1F2的最小内角为30°, 则C的离心率为_____.

评注:题目中的△PF1F2称为焦点三角形, 处理与其相关的问题时, 通常要用到双曲线 (椭圆) 的定义和余弦定理等知识.

例8 如图1, 在正方形OABC中, O为坐标原点, 点A的坐标为 (10, 0) , 点C的坐标为 (0, 10) .分别将线段OA和AB十等分, 分点分别记为A1, A2, …, A9和B1, B2, …, B9, 连结OBi, 过Ai作x轴的垂线与OBi交于点Pi (i∈N*, 1≤i≤9) .

(1) 求证:点Pi (i∈N*, 1≤i≤9) 都在同一条抛物线上, 并求该抛物线E的方程;

(2) 过点C作直线l与抛物线E交于不同的两点M , N, 若△OCM与△OCN的面积比为4∶1, 求直线l的方程.

解析: (1) 依题意, 过Ai (i∈N*, 1≤i≤9) 且与x轴垂直的直线方程为x=i.因为Bi (10, i) , 所以直线OBi的方程为.设点Pi的坐标为 (x, y) , 由得, 即x2=10y, 所以Pi (i∈N*, 1≤i≤9) 都在同一条抛物线上, 且抛物线E的方程为x2=10y.

(2) 易知直线l的斜率存在, 设其方程为y=kx+10.由得x2-10kx-100=0, 此时, Δ=100k2+400>0, 直线l与抛物线E恒有两个不同的交点M, N.设M (x1, y1) , N (x2, y2) , 则因为S△OCM=4S△OCN, 所以|x1|=4|x2|.又因为x1·x2<0, 所以x1=-4x2.代入解得.所以直线l的方程为, 即3x-2y+20=0或3x+2y-20=0.

评注:本题立意于抛物线的一种几何生成方式, 以求抛物线方程和直线方程设问, 需要抓住抛物线的几何性质和直线与抛物线的位置关系, 以化归与转化、数形结合以及函数与方程思想为指导, 顺利推理运算求解.

例9 如图2, 椭圆的中心为原点O, 长轴在x轴上, 离心率, 过左焦点F1作x轴的垂线交椭圆于A, A′两点, |AA′|=4.

(1) 求该椭圆的标准方程;

(2) 取垂直于x轴的直线与椭圆相交于不同的两点P, P′, 过P, P′作圆心为Q的圆, 使椭圆上的其余点均在圆Q外.若PQ⊥P′Q, 求圆Q的标准方程.

(2) 设M (x, y) 是椭圆上任意一点, 由椭圆的对称性, 又设Q (x0, 0) , 则. (*)

设P (x1, y1) , 由题意, P是椭圆上到Q的距离最小的点, 因此, (*) 式当x=x1时取最小值.

又因为x∈ [-4, 4], 所以 (*) 式当x=2x0时取最小值, 从而x1=2x0, 且|QP|2=8-x02.

因为PQ⊥P′Q, 且P′ (x1, -y1) , 所以, 即 (x1-x0) 2-y21=0.

评注:本题考查椭圆和圆的方程的求法, 对数学综合能力的要求较高.运用圆锥曲线的知识, 准确迅速地将曲线的几何特征转化为数量关系 (方程、函数等) , 是解答此类问题的关键.

考点3 圆锥曲线的综合应用

高考数学试卷对知识、方法和能力的考查不可能孤立进行, 要充分体现各要素之间的关联和综合性.依托知识之间、思想方法之间或者能力之间的交会命题, 成为体现高考考查全面性、达成考查目标的必然选择.对于解析几何内容的考查当然也概莫能外, 通常的做法是通过坐标思想一线穿珠, 动态变化蕴含其中, 自然地将圆锥曲线、直线与圆的方程、其他模块内容以及平面几何的知识进行内外交会整合, 充分彰显几何、代数与坐标方法三位一体的立体命题特色, 考查对数形结合、化归与转化等数学思想方法的理解和掌握的程度.

例10如图3, F1, F2是椭圆C1:与双曲线C2:的公共焦点, A, B分别是C1, C2在第二、四象限的公共点.若四边形AF1BF2为矩形, 则C2的离心率是 () .

解析:设AF1=m, AF2=n, 则m+n=4, , 可得mn=2.在双曲线中, , 因为m-n=2a, 所以 (2a) 2= (m-n) 2=m2+n2-2mn, 解得.所以C2的离心率.故选D.

评注:对于圆锥曲线问题, 利用定义法求解通常是首选之举.

例11已知F1, F2分别是椭圆E:的左、右焦点, F1, F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.

(1) 求圆C的方程;

(2) 设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a, b, 当ab最大时, 求直线l的方程.

解析: (1) 由题意易知, F1 (-2, 0) , F2 (2, 0) , 圆C的半径为2, 圆心C为原点O关于直线x+y-2=0的对称点.设圆心C (x0, y0) , 则有

故所求圆C的方程为 (x-2) 2+ (y-2) 2=4.

(2) 设直线l的方程为x=my+2, 则圆心到直线l的距离为, 所以.

故直线l的方程为.

评注:本题以椭圆为背景, 创设了求圆和直线方程的综合问题.解决第 (1) 问的关键是求对称点的坐标;第 (2) 问考查了圆、椭圆中弦长的求解方法, 由于涉及“最值”, 因此探求参数取值范围时, 应考虑利用基本不等式或函数.另外, 将直线l的方程设为x=my+2, 巧妙地避开了对斜率存在与否的讨论.

例12 如图4, 已知椭圆C1与C2的中心在坐标原点O, 长轴均为MN且在x轴上, 短轴长分别为2m, 2n (m>n) , 过原点且不与x轴重合的直线l与C1, C2的四个交点按纵坐标从大到小依次排列为A, B, C, D.记 λ=m/n, △BDM和△ABN的面积分别为S1和S2.

(1) 当直线l与y轴重合时, 若S1=λS2, 求λ的值.

(2) 当λ变化时, 是否存在与坐标轴不重合的直线l, 使得S1=λS2?并说明理由.

同理可得, .

又因为△BDM和△ABN的高相等, 所以.如果存在非零实数k使得S1=λS2, 则有 (λ-1) yA= (λ+1) yB, 即, 解得.所以当时, k2>0, 存在这样的直线l;当时, k2≤0, 不存在这样的直线l.

评注:本题以椭圆离心率的几何性质为背景, 将控制椭圆扁平程度的伸缩量融入三角形的面积关系之中进行设问, 主要考查运用方程与不等式等基础知识和坐标法研究直线与椭圆的位置关系问题.尽管伸缩量λ 和直线方程中的参数k都在变化, 但只要抓住两个三角形始终保持等高的特征, 借助图形的对称性, 就能将其面积比S1∶S2转换成对应线段长的比|BD|∶|AB|, 再逐步将k用λ 表示出来, 就可对直线l的存在条件作出准确的分析判断.

例13如图5, 已知曲线C1:, 曲线C2:|y|=|x|+1, P是平面上一点, 若存在过点P的直线与C1, C2都有公共点, 则称P为“C1-C2型点”.

(1) 在正确证明C1的左焦点是“C1-C2型点”时, 要使用一条过该焦点的直线, 试写出一条这样的直线的方程 (不要求验证) ;

(2) 设直线y=kx与C2有公共点, 求证|k|>1, 进而证明原点不是“C1-C2型点”;

(3) 求证:圆x2+y2=1/2内的点都不是“C1-C2型点”.

解析: (1) C1的左焦点为, 过F的直线与C1交于, 与C2交于, 故C1的左焦点为“C1-C2型点”, 且直线可以为.

(2) 证明:直线y=kx与C2有交点, 则由得 (|k|-1) |x|=1.若方程有解, 则须|k|>1.直线y=kx与C1有交点, 则由得 (1-2k2) x2=2.若方程有解, 则须k2<1/2.故直线y=kx至多与曲线C1和C2中的一条有交点, 即原点不是“C1-C2型点”.

(3) 证明:显然过圆x2+y2=1/2内一点的直线l若与曲线C1有交点, 则斜率必存在;根据对称性, 不妨设直线l的斜率存在且与曲线C2交于点 (t, t+1) (t≥0) , 则l:y- (t+1) =k (x-t) , 即kx-y+ (1+t-kt) =0.若直线l与圆内部有交点, 则, 化简得.①

由① ②, 得, 推得k2< 1, 但此时, 因为t≥ 0, [1+t (1-k) ]2≥1, , 即 ① 式不成立.

当k2=1/2时, ①式显然不成立.

综上, 若直线l与圆x2+y2=1/2内有交点, 则不可能同时与曲线C1和C2有交点, 即圆内的点都不是“C1-C2型点”.

评注:本例利用双曲线和四条射线作背景, 将直观与对称、具体与抽象完美结合, 把射线、直线、圆和双曲线融为一体, 起点的举例说明、中间的衔接过渡、终点的结论证明, 从特殊到一般、从具体到抽象、从尝试到论证, 体现着数学探究的具体过程.该题又属信息迁移型题目, 主要考查学生的阅读理解能力、知识迁移能力和后续学习的潜能.

配套练习:

1.直线l:y=kx+1与圆O:x2+y2=1相交于A, B两点, 则“k=1”是“△ABC的面积为1/2”的 () .

(A) 充要条件

(B) 必要不充分条件

(C) 充分不必要条件

(D) 既不充分又不必要条件

2.垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是 ( ) .

3.已知F是双曲线C:x2-my2=3m (m>0) 的一个焦点, 则点F到C的一条渐近线的距离为 ( ) .

4.已知抛物线C:y2=8x的焦点为F, 准线为l, P是l上一点, Q是直线PF与抛物线C的一个交点, 若, 则|QF|= ( ) .

5.已知圆C1: (x-2) 2+ (y-3) 2=1, 圆C2: (x-3) 2+ (y-4) 2=9, M, N分别是圆C1, C2上的动点, P为x轴上的动点, 则|PM|+|PN|的最小值为 ( ) .

6.若圆C经过坐标原点和点 (4, 0) , 且与直线y=1相切, 则圆C的方程是____.

7.一个圆经过椭圆的三个顶点, 且圆心在x轴的正半轴上, 则该圆的标准方程为____.

8.已知椭圆C: (a>b>0) 的左焦点为F, C与过原点的直线相交于A, B两点, 连结AF, BF.若|AB|=10, |AF|=6, cos∠ABF=4/5, 则C的离心率e=___.

9.已知F是双曲线C:的右焦点, P是C左支上一点, , 当△APF的周长最小时, 该三角形的面积为____.

10.如图, 抛物线E:y2=4x的焦点为F, 准线l与x轴的交点为A.点C在抛物线E上, 以C为圆心, CO为半径作圆, 设圆C与准线l交于不同的两点M , N.

(1) 若点C的纵坐标为2, 求|MN|;

(2) 若|AF|2=|AM|·|AN|, 求圆C的半径.

11.已知点P (2, 2) , 圆C:x2+y2-8y=0, 过点P的动直线l与圆C交于A, B两点, 线段AB的中点为M , O为坐标原点.

(1) 求M的轨迹方程;

(2) 当|OP|=|OM|时, 求l的方程及△POM的面积.

12.已知点A (0, -2) , 椭圆E: (a>b>0) 的离心率为, F是E的右焦点, 直线AF的斜率为, O为坐标原点.

(1) 求E的方程;

(2) 设过点A的动直线l与E相交于P, Q两点, 当△OPQ的面积最大时, 求l的方程.

参考答案:

1.C. 2.A. 3.D. 4.B.

5.A.如图1, 作圆C1关于x轴的对称圆C1′: (x-2) 2+ (y+3) 2=1, 则|PM|+|PN|=|PM′|+|PN|.由图可知, 当C2, M′, P, N, C1′在同一直线上时, |PM|+|PN|=|PM′|+|PN|取得最小值, 即为.

8.5/7.

9..设双曲线的左焦点为F1, 由双曲线的定义知, |PF|=2a+|PF1|, 所以△APF的周长为|PA|+|PF|+|AF|=|PA|+2a+|PF1|+|AF|=|PA|+|PF1|+|AF|+2a, 由于|AF|+2a是定值, 要使△APF的周长最小, 需|PA|+|PF1|最小, 即P, A, F1共线.因为, F1 (-3, 0) , 所以直线AF1的方程为, 即, 代入, 整理, 得, 解得 (舍去) , 所以

10. (1) 易知圆心C (1, 2) , 半径为, 圆心到直线MN的距离为2, 所以可得弦长|MN|=2.

(2) 设C (a2/4, a) , M (-1, y1) , N (-1, y2) , 则圆C的半径, 从而圆C的方程为, 与准线方程x=-1联立并消去x, 得, 于是.由|AF|2=|AM|·|AN|, 易得|y1y2|=4, 所以.

11. (1) 圆C的方程可化为x2+ (y-4) 2=16, 所以圆心为C (0, 4) , 半径为4.设M (x, y) , 则, 由题设知, 所以x (2-x) + (y-4) (2-y) =0, 即 (x-1) 2+ (y-3) 2=2, 此即为M的轨迹方程.

(2) 由 (1) 可知M的轨迹是以点N (1, 3) 为圆心, 为半径的圆.由|OP|=|OM|, 得O在线段PM的垂直平分线上.又P在圆N上, 从而ON⊥PM, 如图2.因为ON的斜率为3, 所以l的斜率为, 直线l的方程为.又因为, 原点O到l的距离为, 所以.故△POM的面积为.

12. (1) 直线AF的方程为.因为, 所以a=2.又b2=a2-c2=1, 所以椭圆E的方程为.

(2) 当l⊥x轴时不符合题意.设直线l的方程为y=kx-2, P (x1, y1) , Q (x2, y2) .由.由Δ=162k2-4×12× (1+4k2) =16 (4k2-3) >0, 得.

故满足题意的直线l的方程为.

篇4:高考生物实验专题考点与考法探究

【关键词】 基础实验 变量 实验步骤

高中生物实验部分一直以来都是高考必考内容,考法多样,题型多变,可以以学生所学的任何一部分知识点为依托来考查学生的实验技能,所以可以说实验能力是生物学科最高能力层次之一,是新课改以来对学生素质教育追求的一项重要的能力目标,但也是学生失分较多的一项。

参考近几年的考纲对实验与探究能力的要求:

1、考綱规定的教材实验(包括理解实验目的、原理、方法和操作步骤,掌握相关的操作技能,并能将这些实验涉及的方法和技能进行综合运用)

2、具备验证简单生物学事实的能力,并能对实验现象和结果进行解释、分析和处理。

3、具有对一些生物学问题进行初步探究的能力(包括运用观察、实验与调查、假说演绎、建立模型与系统分析等科学研究方法)

4、能对一些简单的实验方案作出恰当的评价和修订。这说明实验设题型仍然是今后高考命题的热点。实验题虽然开放性较强,灵活多变,基础实验多且考查点较细,但仍有规律可循,本文就如何突破高考生物实验与探究题型谈谈自己的看法。

一、归纳总结课本基础实验

课本基础实验所涉及的实验方法、材料选择、试剂(或药品)的使用及作用、颜色反应(观测指标的确定)等是高考中选择题的常考点,也是进行探究实验设计的基础,所现现将课本基础实验归纳如下:

二、汇总课本中基本的实验方法

课本实验中所涉及的基本实验方法经常在非选择题或选择题中考查

1、制作DNA分子双螺旋结构模型:构建物理模型

2、种群数量增长模型:构建数学模型

3、分离各种细胞器:差速离心法

4、证明DNA进行半保留复制:密度梯度离心法 同位素标记法

5、赫尔希和蔡斯的噬菌体侵染细菌的实验:同位素标记法

6、证明光合作用产生的O2来自于H2O:同位素标记法

7、分泌蛋白的合成、加工及分泌:同位素标记法

8、分离叶绿体中的色素:纸层析法

9、摩尔根证明基因在染色体上:假说演绎法

10、萨顿提出“基因在染色体上”的假说:类比推理

11、调查土壤中不动物类群的丰富度:取样器取样法

基础实验的升华就是把其中的实验原理、实验设计方式应用在探究实验之中,在探究的每一个环节中来体现学生对基础实验的掌握、理解情况,体现高考对实验能力的要求。

三、归纳探究性实验的环节性命题及解题技巧

1、考查实验假设:

实验探究的其中一个环节,因为实验结果可能出现多种情况,所以需要对实验做出假设,这种题型比较简单,解题思路是:紧紧围绕实验目的,肯定或否定其中的一面,切忌模棱两可。

2、考查实验原理:

实验原理是课本中学习过的具有普遍意义的基本规律,是在大量观察、实践的基础上,经过归纳、概括而得出的理论依据,是贯穿整个实验的中心思想,是实验设计的依据和思路,但解题时对学生综合能力、概括能力的要求较强,学生不易得分。

解题思路:要根据实验目的,对实验自变量的作用原理(密切关注实验目的)和因变量的检测原理(有时可参考题中相关实验步骤)进行完整的描述。有了答题模板,原理的考查就变得有迹可循。

3、考查实验变量:

实验变量指实验过程中所被操作的特定因素或条件。按性质不同可分为两类:

自变量,指实验中由实验者所操纵的因素或条件。因变量,指实验中由于实验变量而引起的变化和结果。通常,前者是原因,后者是结果,实验的目的在于获得和解释这种前因后果。无关变量,指实验中除自变量以外的影响实验结果的因素或条件,也称干扰变量。

解题思路:明确变量的分类及含义,对不同的变量自然就有不同的处理方式,其中自变量主要是按照单一变量原则进行操纵;而无关变量则通过对照原则和等量原则来平衡,以及其它的条件设置成相同且最适;因变量则选择比较科学的方法进行检测或测量。

1、考查实验步骤:

解题思路:分组编号----分组施加实验条件----在相同条件下培养(放置)----观察记录----分析结果,得出结论。根据实验的复杂程度可在第二步骤中做适当的增减。

2、考查实验结果及结论

解题思路:首先要弄清楚结果与结论的区别,实验结果是实验过程中观察到的现象或收集到的数据,而实验结论是通过对实验结果的分析、比较、抽象概括而得出的定性表述。

篇5:高考生物史考点总结

细胞学说:施莱登、施旺

生物膜中发现脂类:欧文顿

提出PR-脂-PR生物膜结构:罗伯特森

流动镶嵌模型:桑格、尼克松

酿酒因为酵母存在:巴斯特

酿酒因为酵母中的物质:李比希

酿酒因为酵母中酿酶存在:毕希纳

蜡烛-植物-小鼠实验:普利斯特利

植物换气需要光照:英格豪斯

光能在植物转化成化学能:梅耶

光合作用产生淀粉:萨克斯

失踪法提出光和作用全过程:鲁宾、卡门

豌豆杂交实验:孟德尔

基因-染色体行为平行假说:萨顿

证明基因在染色体上的果蝇实验:摩尔根

小鼠-肺炎双球菌实验提出转化因子:格里菲思

提纯S型双球菌实验-小鼠实验证明DNA是转化因子:艾弗里

噬菌体标记侵染说明DNA决定蛋白质,是遗传物质:赫尔希、蔡斯

DNA反向平行双螺旋结构:克里克、沃森

中心法则提出:克里克

用进废退获得性遗传进化理论——否定神创提出进化理论,认同环境影响生物:拉马克 过度繁殖、生存斗争、遗传变异、适者生存——生物进化原因提出:达尔文

性状产生是变异的结果,提出遗传变异本质,否定获得性遗传——现代进化理论修正

内环境依靠神经系统调节——贝尔纳

内环境稳态是在神经-体验调节共同作用下,各器官、系统分工合作协调实现的——坎农 神经-体液-免疫——现代认同的稳态调节方式

狗肠实验,认为是顽固神经调节:沃森默

狗肠实验,认为是盐酸促进产生化学物质的作用;发现促胰液素:斯他林、贝利斯

胚芽鞘尖端产生刺激可以向下传递:詹森

胚芽鞘尖端刺激不均匀造成植物弯曲,认为刺激可能是化学物质刺激:拜尔

篇6:(打印版)高考生物考点总结

1.使能量持续高效的流向对人类最有意义的部分

2.能量在2个营养级上传递效率在10%—20%

3.单向流动逐级递减

4.真菌PH5.0—6.0细菌PH6.5—7.5放线菌PH7.5—8.5

5.物质作为能量的载体使能量沿食物链食物网流动

6.物质可以循环,能量不可以循环

7.河流受污染后,能够通过物理沉降化学分解 微生物分解,很快消除污染

8.生态系统的结构:生态系统的成分+食物链食物网

9.淋巴因子的成分是糖蛋白

病毒衣壳的是1—6多肽分子个

原核细胞的细胞壁:肽聚糖

10.过敏:抗体吸附在皮肤,黏膜,血液中的某些细胞表面,再次进入人体后使细胞释放组织胺等物质.11.生产者所固定的太阳能总量为流入该食物链的总能量

12.效应B细胞没有识别功能

13.萌发时吸水多少看蛋白质多少

大豆油根瘤菌不用氮肥

脱氨基主要在肝脏但也可以在其他细胞内进行

14.水肿:组织液浓度高于血液

15.尿素是有机物,氨基酸完全氧化分解时产生有机物

16.是否需要转氨基是看身体需不需要

17.蓝藻:原核生物,无质粒

酵母菌:真核生物,有质粒

高尔基体合成纤维素等

tRNA含C H O N P S

18.生物导弹是单克隆抗体是蛋白质

19.淋巴因子:白细胞介素

20.原肠胚的形成与囊胚的分裂和分化有关

21.受精卵——卵裂——囊胚——原肠胚

(未分裂)(以分裂)

22.高度分化的细胞一般不增殖。例如:肾细胞

有分裂能力并不断增的: 干细胞、形成层细胞、生发层

无分裂能力的:红细胞、筛管细胞(无细胞核)、神经细胞、骨细胞

23.检测被标记的氨基酸,一般在有蛋白质的地方都能找到,但最先在核糖体处发现放射性

24.能进行光合作用的细胞不一定有叶绿体

自养生物不一定是植物

(例如:硝化细菌、绿硫细菌和蓝藻)

25.除基因突变外其他基因型的改变一般最可能发生在减数分裂时(象交叉互换在减数第一次分裂时,染色体自由组合)

26.在细胞有丝分裂过程中纺锤丝或星射线周围聚集着很多细胞器这种细胞器物理状态叫线粒体——提供能量

27.凝集原:红细胞表面的抗原

凝集素:在血清中的抗体

28.纺锤体分裂中能看见(是因为纺锤丝比较密集)而单个纺锤丝难于观察

29.培养基:物理状态:固体、半固体、液体

化学组成:合成培养基、组成培养基

用途:选择培养基、鉴别培养基

30.生物多样性:基因、物种、生态系统

31.基因自由组合时间:简数一次分裂、受精作用

32.试验中用到C2H5OH的情况

Ⅰ.脂肪的鉴定试验:50%

Ⅱ.有丝分裂(解离时):95%+15%(HCl)

Ⅲ.DNA的粗提取:95%(脱氧核苷酸不溶)

Ⅴ.叶绿体色素提取:可替代**

33.手语是一钟镅裕揽渴泳踔惺嗪陀镅灾惺?/SPAN>

34.基因=编码区+非骗码区

(上游)(下游)

(非编码序列包括非编码区和内含子)

等位基因举例:AaAaAaAAAa

35.向培养液中通入一定量的气体是为了调节PH

36.物理诱导 :离心,震动,电刺激

化学诱导剂:聚乙二醇,PEG

生物诱导 :灭火的病毒

37.人工获得胚胎干细胞的方法是将核移到去核的卵细胞中经过一定的处理使其发育到某一时期从而获得胚胎干细胞,某一时期,这个时期最可能是囊胚

38.原核细胞较真核细胞简单细胞内仅具有一种细胞器——核糖体,细胞内具有两种核酸——脱氧核酸和核糖核酸病毒仅具有一种遗传物质——DNA或RNA

阮病毒仅具蛋白质

39.秋水仙素既能诱导基因突变又能诱导染色体数量加倍(这跟剂量有关)

40.获得性免疫缺陷病——艾滋(AIDS)

41.已获得免疫的机体再次受到抗原的刺激可能发生过敏反应(过敏体质),可能不发生过敏反应(正常体质)

42.冬小麦在秋冬低温条件下细胞活动减慢物质消耗减少单细胞内可溶性还原糖的含量明显提高细胞自由水比结合水的比例减少活动减慢是适应环境的结果

43.用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八

44.C3植物的叶片细胞排列疏松

C4植物的暗反应可在叶肉细胞内进行也可在维管束鞘细胞内进行

叶肉细胞CO2→C4围管束鞘细胞C4→CO2→(CH2O)

45.光反应阶段电子的最终受体是辅酶二

46.蔗糖不能出入半透膜

47.水的光解不需要酶,光反应需要酶,暗反应也需要酶

48.脂肪肝的形成:摄入脂肪过多,不能及时运走;磷脂合成减少,脂蛋白合成受阻。

49.脂肪消化后大部分被吸收到小肠绒毛内的毛细淋巴管,再有毛细淋巴管注入血液

50.大病初愈后适宜进食蛋白质丰富的食物,但蛋白质不是最主要的供能物质。

51.谷氨酸发酵时

溶氧不足时产生乳酸或琥珀酸

发酵液PH呈酸性时有利于谷氨酸棒状杆菌产生乙酰谷氨酰胺。

52.尿素既能做氮源也能做碳源

53.细菌感染性其他生物最强的时期是细菌的对数期

54.红螺菌属于兼性营养型生物,既能自养也能异养

55.稳定期出现芽胞,可以产生大量的次级代谢产物

56组成酶和诱导酶都胞是胞内酶。

57.青霉菌产生青霉素青霉素能杀死细菌、放线菌杀不死真菌。

58.细菌:凡菌前加杆“杆”、“孤”、“球”、“螺旋”

真菌:酵母菌,青霉,根霉,曲霉

59.将运载体导入受体细胞时运用CaCl2目的是增大细胞壁的通透性

60.一切感觉产生于大脑皮层

61.生物的一切性状受基因和外界条件控制,人的肤色这种性状就是受一些基因控制酶的合成来调节的。

62.“京花一号”小麦新品种是用花药离体培养培育的“黑农五号”大豆新品种是由杂交技术培育的。

67.分裂间期与蛋白质合成有关的细胞器有核糖体,线粒体,没有高尔基体和内质网。

68.注意:细胞内所有的酶(非分泌蛋白)的合成只与核糖体有关,分泌酶和高尔基体,内质网有关

69.叶绿体囊状结构上的能量转化途径是光能→电能→活跃的化学能→稳定的化学能

70.一种高等植物的细胞在不同新陈代谢状态下会发生变化的是哪些选项?

⑴液泡大小√吸水失水

⑵中心体数目×高等植物无此结构

⑶细胞质流动速度√代表新陈代谢强度

⑷自由水笔结合水√代表新陈代谢强度

72.高尔基体是蛋白质加工的场所

73.HIV病毒在寄主细胞内复制繁殖的过程

病毒RNA→DNA→蛋白质

RNA→DNA→ HIV病毒

RNA→ RNA

74.流感、烟草花叶病毒是RNA病毒

75.自身免疫病、过敏都是由于免疫功能过强造成76.水平衡的调节中枢使大脑皮层,感受器是下丘脑

78.骨骼肌产热可形成ATP

79.皮肤烧伤后第一道防线受损

80.纯合的红花紫茉莉

82.自养需氧型生物的细胞结构中可能没有叶绿体可能没有线粒体(例如:蓝藻)

83.神经调节:迅速精确比较局限时间短暂

体液调节:比较缓慢比较广泛时间较长

84.合成谷安酸,谷氨酸↑抑制谷氨酸脱氢酶活性可以通过改变细胞膜的通透性来缓解

85.生产赖氨酸时加入少量的高丝氨酸是为了产生一些苏氨酸和甲硫氨酸使黄色短杆菌正常生活

86.生长激素:垂体分泌→促进生长主要促进蛋白质的合成和骨的生长

促激素:垂体分泌→促进腺体的生长发育调节腺体分泌激素

胰岛:胰岛分泌→降糖

甲状腺激素:促进新陈代谢和生长发育,尤其是对中枢神经系统的发育和功能有重要影响

孕激素:卵巢→促进子宫内膜的发育为精子着床和泌乳做准备

催乳素:性腺→促进性器官的发育

性激素 :促进性器官的发育,激发维持第二性征,维持性周期

87.生态系统的成分包括非生物的物质和能量、生产者和分解者

88.植物的个体发育包括种子的形成和萌发(胚胎发育),植物的生长和发育(胚后发育)

89.有丝分裂后期有4个染色体组

90.所有生殖细胞不都是通过减数分裂产生的91.受精卵不仅是个体发育的起点,同时是性别决定的时期

92.杂合子往往比纯合子具有更强的生命力

93.靶细胞感受激素受体的结构是糖被

靶细胞感受激素受体的物质是糖蛋白

94.光能利用率:光合作用时间、光合作用面积、光合作用效率(水,光,矿质元素,温度,二氧化碳浓度)

95.离体植物组织或器官经脱分化到愈伤组织经在分化到根或芽等器官再到试管苗

96.16个细胞的球状胚体本应当分裂4次而实际分裂5次

基细胞

受精卵→

顶细胞→16个细胞的球状胚体

97.受精卵靠近珠孔

98.细胞融合细胞内有4个染色体组

99.内胚层由植物极发育其将发育成肝脏、心脏、胰脏

胚层、外胚层由动物极发育成100.高等动物发育包括胚胎发育和胚后发育两个阶段前一个阶段中关键的时期是原肠胚时期其主要特点是具有内胚层、中胚层、外胚层并形成原肠胚和囊胚腔两个腔

101.生物体内的大量元素: C H O N P S K Ca Mg

102.生物群落不包括非生物的物质或能量

103.细胞免疫阶段靶细胞渗透压升高

104.C4植物

叶肉细胞仅进行二氧化碳→C4(正常)

仅光→活跃的化学能(NADP,ATP)

围管束鞘细胞C4→CO2→三碳化合物

(无类囊状结构薄膜)

ATP + NADP―→辅酶二+ADP

供氢供能

105.关于基因组的下列哪些说法正确

A.有丝分裂可导致基因重组×

B、等位基因分离可以导致基因重组×

C.无性生殖可导致基因重组×

D.非等位基因自由组合可导致基因重组√

106.判断:西瓜的二倍体、三倍体、四倍体是3个不同的物种×(三倍体是一个品种,与物种无关)

107.生物可遗传变异一般认为有3种

(1)将转基因鲤鱼的四倍体与正常二倍体鲤鱼杂交产生三倍体鱼苗(染色体变异)

(2)血红蛋白氨基酸排列顺序发生改变导致血红蛋白病(基因突变)

(3)一对表现型正常的夫妇生出一个既白化又色盲的男孩(基因重组)

108.目的基因被误插到受体细胞的非编码区,受体细胞不能表达此性状,而不叫基因重组(插入编码区内叫基因重组)109.判断(1)不同种群的生物肯定不属于同一物种×(例:上海动物园中的猿猴和峨眉山上的猿猴是同一物种不是同一群落)

(2)隔离是形成新物种的必要条件√

(3)在物种形成过程中必须有地理隔离和生殖隔离×(不一定有地理隔离,只需生殖隔离即可)

109.达尔文认为生命进化是由突变、淘汰、遗传造成的110.生态系统的主要功能是物质循环和能量流动

111.水分过多或过少都会影响生物的生长和发育

112.种群的数量特征:出生率、死亡率、性别组成、年龄组成113.基因分离定律:等位基因的分离

自由组合定律:非同源染色体非等位基因自由组合连锁定律

114.河流生态系统的生物群落和无机自然界物由于质循环和能量流动能够

较长时间的保持动态平衡

115.乔木层↑

灌木层↑由上到下分布

草本层↑

而为了适应环境乔木耐受光照的能力最强,当光照强度渐强时叶片相对含水量变化不大

116.被捕食者一般营养级较低所含的能量较多且个体一般较小总个体数一般较多

117.生态系统碳循环是指碳元素在生物群落和无机自然界之间不断循环的过程

118.湿地是由于其特殊的水文及地理特征且具有防洪抗旱和净化水质等特点

119.效应B细胞没有识别靶细胞的能力

120.可以说在免疫过程中消灭了抗原而不能说杀死了抗原

121.第一道防线:皮肤、粘膜、汗液等

第二道防线:杀菌物质(例如:泪液)、白细胞(例如:伤口化脓)

122.胞内酶(例如:呼吸酶)组织酶(例如:消化酶)不在内环境中

123.醛固酮和抗利尿激素是协同作用

124.肾上腺素不是蛋白质。肾上腺素是一种激素,但其化学本质既不是蛋白质也不是固醇类物质,而是氨基酸衍生物,属于胺类激素。

125.低血糖:40~60mg正常:80~120mg\dL

高血糖:130mg\dL尿糖160mgdL~180mgdL

126.淋巴因子——白细胞介素-2有3层作用

⑴使效应T细胞的杀伤能力增强

⑵诱导产生更多的效应T细胞

⑶增强其他有关免疫细胞对靶细胞的杀伤能力

127.酿脓链球菌导致风湿性心脏病

128.HIV潜伏期10年

129.三碳植物和四碳植物的光合作用曲线

130.C4植物

光反应在叶肉细胞中进行ATP NADPH进入围管束鞘细胞中,叶肉细胞CO2固定形成C4,C4被运入维管束鞘细胞形成CO2生成C3后变成糖类物质

140.将豆科植物的种子沾上与该豆科植物相适应的根瘤菌这显然有利于该作物的结瘤固氮

141.高尔基体功能:加工分装蛋白质

142.植物的组织培养VS动物个体培养

143.细胞质遗传的特点:母系遗传出现性状分离不出现性状分离比

144.限制性内切酶大多数在微生物中

DNA连接酶连接磷酸二脂键

145.质粒的复制在宿主细胞内(包括自身细胞内)

146.mRNA→一条DNA单链→双链DNA分子

蛋白质→蛋白质的氨基酸序列→单链DNA→双链DNA

147.单克隆抗体是抗体(单一性强灵敏度高)

148.厌氧型:链球菌严格厌氧型:甲烷杆菌

兼性厌氧型:酵母菌

149.生长素促进扦插枝条的生根

150.植物培养时加入:蔗糖生长素有机添加物

动物培养时加入:葡萄糖

151灭活的病毒能诱导动物细胞融合152.制备单克隆抗体需要两次筛选,筛选杂交瘤细胞,筛选产生单克隆抗体的细胞

153.细胞壁决定细菌的致病性

154.根瘤菌固氮的场所是细胞膜

155.放线菌产生抗生素,而青霉素多产生于真核生物

156.利用选择培养基可筛选:

酵母菌、青霉菌——运用的试剂是青霉素

金黄色葡萄球菌——运用的试剂是高浓度氯化钠

大肠杆菌——运用的试剂是依红美兰

157.研究微生物的生长规律用液体培养基

158.PH改变膜的稳定性(膜的带电情况)和酶的活性

159.发酵工程内容⑴选育

⑵培养基的配置:①目地要明确

②营养药协调

③PH要适宜

⑶灭菌

⑷扩大培养

⑸接种

160.发酵产品的分离和提纯⑴过滤和沉淀(菌体)

⑵蒸馏萃取离子交换(代谢产物)

161.判断:

×⑴固氮微生物的种类繁多既有原核生物又有真核生物(无真核生物)

×⑵自生固氮微生物异化作用类型全为需氧型

(反例:梭菌为厌氧性)

√⑶固氮微生物同化作用类型既有自养型,又有异样型(蓝藻,园褐固氮菌)

×⑷共生固氮微生物同化作用类型全为异养性

(蓝藻+红萍、蓝藻+真菌成为地衣)

163.诱变育种的优点提高突变频率创造对人类有力的突变化学诱变因素有硫酸二乙酯、亚硝酸、秋水仙素

164.胆汁的作用是物理消化脂类

165.酵母菌是兼性厌氧型

166.人体内糖类供应充足的情况下,可以大量转化成脂肪,而脂肪却不可能大量转化成糖类,说明营养物质之间的转化时是有条件的,且转化程度有差异。人体内主要是通过糖类氧化分解为生命提供能量,只有当糖类代谢发生障碍引起供能不足时,才由脂肪和蛋白质氧化供能。这说明三大营养物质相互转化相互制约

167.注射疫苗一般的目的是刺激机体产生记忆细胞+特定抗体

168.兴奋在神经细胞间的传递具有定向性化学递质需要穿过突触前膜突触间隙突触后膜

169.遗传规律基因分离定律和自由组合定律

170.中枢神经不包含神经中枢

171.单克隆抗体的制备是典型的动物细胞融合技术和动物细胞培养的综合应用

172.体现细胞膜的选择透过性的运输方式⑴主动运输⑵自有扩散

173.动物有丝分裂时细胞中含有4个中心粒

174.染色体除了含有DNA外还含有少量的RNA

175.蛋白质和DNA在加热时都会变性而当温度恢复常温时DNA恢复活性而蛋白质不恢复活性

176.离体的组织培养成完整的植株

⑴利用植物细胞的全能型⑵这种技术可用于培养新品种快速繁殖及植物的脱毒⑶属于细胞工程应用领域之

上一篇:上海进口食品报关流程下一篇:现代农业和信息化