基于无线传感网络的道路照明系统

2024-07-03

基于无线传感网络的道路照明系统(共6篇)

篇1:基于无线传感网络的道路照明系统

基于无线传感网络的道路照明系统

杨兵

(徐州建筑职业技术学院,江苏 徐州 221116)

摘 要 :为了实现道路科学照明、绿色照明的关键问题是能够测量和控制到每一盏路灯,无线传感网络是解决这一问题最好的技术之一。选择Freescale公司MC13213芯片,设计了一种嵌入式无线通信模块,使整条道路的每一盏路灯自主联网,接受控制中心的指令,反馈路灯的各种状态,根据环境光强度和时段自动调节照明亮度,在保证道路照明质量和视觉舒适的情况下,节约电能。

关键词 :无线传感网络 ;道路照明;MC13213;ZigBee技术

中图分类号:TPXXX 文献标识码:A 文章编号:1234-567X(2010)一89—00XX—05

Road Lighting System Based on W ireless Sensor Networks

Yang Bing(Xuzhou Institute of Architectural Technology, Xuzhou, Jiangsu 221116)Abstract:The ability to measure and control each street—lamp is the key issue to realize road scientific lighting and green lighting.W ireless sensor network is one of the best technologies to solve this problem.MC13213 chip is used to design an embedded wireless communication module in this paper.Each street lamp on the whole road could independent network,receive instruction from control center,send various states feedback of street lamps and automatically adjust lighting levels according to the ambient light intensity.This technology could ensure the quality of road lighting.visual comfort and save energy 20%~30% .

Key words:wireless sensor network;road lighting;MC13213;ZigBee technology

0 引言

随着城市经济和规模的发展,各种类型的道路越来越长,机动车数量迅速增加,夜间交通流量也越来越大,道路照明质量直接影响交通安全和城市发展[1-2]。如何提高道路照明质量、降低能耗、实现绿色照明已成为城市照明的关键问题。道路照明的首要任务是在节约公共能源的基础上,提供安全和舒适的照明亮度,达到减少交通事故、提升交通运输效率的目的。由于基础设施的条件有限,目前普遍缺少路灯级的通信链路,路灯控制方式一般只能对整条道路统一控制,无法控制到每一盏灯[3]。本文基于无线传感网络,设计了一种嵌入式无线通信模块,实现了每盏路灯的无线自主组网,使每一盏路灯都能遥测和遥控,并达到路灯的亮度(或照度)在 30%~100%无级可调,可根据环境光强度和时段,在保证道路照明质量、辨认可靠且视觉舒适的情况下,节约电能 20%~30%。系统结构

基于无线传感网络道路照明系统的结构如图 1所示,通过在每盏路灯嵌入一个无线通信模块,使它们自组网络,接受控制中心的命令并将路灯的状态反馈给控制中心;HG-2控制箱采用ZigBee技术与所管辖道路的所有路灯通信,采用GPRS与控制中心通信,根据控制中心的指令或时间和照亮度对每盏路灯发出控制命令[路灯开启、关闭、照明度(功率大小)等],自动调节整条道路的功率平衡;控制中心由服务器、大屏显示、Center View中央控制系统软件平台等组成,Center View中央控制系统软件平台采用3D设计,通过缩放变换以俯视的角度观察和控制整个城市、一个街道、一条道路甚至一盏路灯的照明情况;移动计算工具(笔记本电脑、PDA、手机)和路灯维护车也能通过控制中心进行远程遥测和遥控。无线通信模块

无线通信模块的MCU为Freesclae公司MC13213,MC13213采用SiP技术在9mm×9ram的LGA封装内集成了MC9S08GT主控MCU和MC1320x射频收发器。MC13213拥有4kB的RAM、60kB的FLASH,具有1个串行外设接口SPI(Serial Peripheral Interface)、2个异步串行通信接口SCI(Serial Communications Interface)、1个键盘中断模KBI(Keyboard Interrupt)、2个定时器/脉宽调制模块TPM(Timer/PWM)、1个8通道10位的模数转换器ADC(Analog/Digital Converter)以及多达32个的GPIO口等,如图2所示。

无线通信模块采用ZigBee技术、IEEE 802.15.4协议,通信覆盖半径可达150m,能与在其覆盖范围内的任何路灯节点自组网络及进行通信。除了实现路灯的物物相联以外,还可调节电子镇流器的功率输出(30%~100%),实现节能和绿色照明,检测供电线路的电流、电压、功率因数以及每一盏灯的工作状态,当发生故障(如灯具损坏、灯杆撞击、人为破坏)时实时向监控中心和相关部门报警等。无线通信模块还进行了防雨、防潮、防雷电、防电磁干扰设计,并充分考虑了安装方便、维护简单和可恢复性(接入两根线就实现了路灯级的无线控制,拆除两根线又恢复到原来的状态),可以嵌入在路灯的不同位置(灯杆底部、灯杆内、灯罩内)。控制中心软件设计

控制中心的软件设计平台为Windows 2003,开发工具是微软Visual Studio6.0,数据库使用SQL Server 2005,与地理信息系统相结合,在获取了街道、建筑物以及路灯的位置、形状等特征信息后,设计以路灯为主体的3维虚拟城市,在控制中心大屏幕上动态显示道路的照明效果,并可以通过平移、放大、缩小等几何变换,观察整个城市、街道甚至每一盏路灯的照明情况。该软件主要有5个功能模块:系统设置、智能控制、电量核算、故障处理和紧急预案。系统设置中的区域设置有市、区、街道和电控箱4种;路灯设置有路灯的位置、型号、生产单位、施工单位、维护责任人、安装日期、清洗维护日期等;亮灯方式设置有全开、全关、单号路灯开、单号路灯关、双号路灯开、双号路灯关、1/3路灯开、1/3路灯关、1/4路灯开、1/4路灯关、智能控制等11种控制方式;时段设置可根据不同的城市不同的季节设置不同时段的亮灯方式。智能控制有两方面内容:①针对安装了电 子型路灯的路段,根据季节变化和天气状况,通过实时采样环境光强度,对路灯的照明亮度进行智能调节 ;② 在夜间,特别是深夜当检测到汽车和行人的流量十分稀少时,在不影响辨认可靠的情况下,适当降低道路的照明亮度,节约电耗。电量核算能对市、区、街道、电控箱甚至每盏路灯进行用电量的统计和核算。故障处理是对灯具损坏、断电、断相、过流、过压、三相不平衡以及人为破坏等情况,在第一时间向监控中心报警后迅速生成故障报告;故障处理的另一个功能是按路段和时段(年、季度、月)统计亮灯率、故障率、每次故障处理的效率

(平均修理时间)。紧急预案是对一些突发事件制定紧急预案,在特殊情况下,尽可能提供合适的道路照明,保证人民生命财产的安全。图3是控制中心软件的运行界面之一。实际应用

无线传感网络的道路照明系统自2009年5月以来在某国家级工业园区进行了安装和测试,安装环境为同一条道路两边的各100盏路灯,道路左边的100盏路灯采用无线传感智能控制,共增加成本8250.00元人民币,道路右边的100盏路灯采用常规的控制方式(半夜后单双号间隔开灯),测试结果如附表所示。

从附表中可以看出,采用无线传感网络的智能控制,100盏路灯在9l天中节约电能4506度,在产品投人的半年内就可以收回全部投资。使电耗降低的因素有以下几个方面:① 开启关闭时间的调整,道路右边的路灯控制方式是根据季节设定开闭时问(定时控制)并且是全功率开全功率闭(深夜半功率);道路左边的路灯控制方式是环境光强度和季节自动控制开闭时间,开启时,由于路面上尚有较强的环境光,路灯以补光的方式工作,逐渐增加照明强度,路灯关闭控制类似。② 由于深夜时居民用电负荷减少,低压电网电压升高,常规控制方式

下的路灯(道路右边)异常明亮、眩目,往往造成过度照明,不仅大大增加耗电,同时也导致灯具、电器实际使用寿命迅速下降,大量增加维护量和维护费用;深夜控制模式(道路左边),采用降功率照明,不但降低耗电,还能改善道路照明质量和视觉舒适度,延长灯具、电器的实际使用寿命。③ 道路照明的智能控制,对学校、居民密集的小区、道路转弯处、事故多发地带等特殊路段,适当提高照明亮度,其余路段则适当降低照明亮度。结 论

先进的道路照明不但可以提升城市的形象、提高交通运输效率、减少交通事故,还能节约大量的公共电能消耗。但对于大多数城市来说,由于缺少必需的基础设施(路灯级的通信链路),无法实现先进控制方法。无线传感网络(物联网)的出现和应用,有效地解决了以上问题。本文基于无线传感网络,选择Freescale公司的MC13213芯片,设计了一种嵌入式无线通信模块,使整条道路的每一盏路灯自主联网,实现了路灯的遥测、遥控,对节约公共资源,建设数字化和节约型城市有较高的实际应用价值。

参 考 文 献

[1]杨春宇,胡英奎,陈仲林.用中间视觉理论研究道路照明节能[J].照明工程学报,2008,19(4):44—47. [2]张惠玲,王晓雯.城市道路照明设置与节能探讨[J].重庆交通大学学报(自然科学版),2007,26(10):lO6—109 [3]卢秀和,王 琪,陈 军,等.城市照明智能调光方法的研究[J].电力电子技术,2007,41(10):34—36.

篇2:基于无线传感网络的道路照明系统

题目 基于无线传感器网络的公园游客跟踪系统设计

报告人

指导老师

二○一六年十二月 基于无线传感器网络的公园游客跟踪系统设计

摘要:利用无线传感器网络对具有声音特性的公园游客进行跟踪的特点,研究了基于时延估[1][2][3]计的声源定位方法。选择广义互相关法作为时延估计算法,并改进球形插值法用于声源定位,从而减小了算法复杂度;设计了一个面向目标跟踪的声学无线传感器网络原型系统。利用所设计的原型系统能实现对移动的游客进行跟踪,而且跟踪精度较高。

关键词:声源定位; 目标跟踪; 时延估计; 无线传感网络

1. 课程设计任务

本文拟采用基于时延估计的声源定位方法,设计了一个游客定位与跟踪系统。把在公园三个角作为基站,同时也作为参考节点。首先利用广义互相关法,计算出目标到各个节点与参考节点之间的时延;然后根据时延,采用改进的球形插值法得出目标的方位;最后将该系统应用到一个移动的公园游客跟踪实验中。

1.1 课程设计题目

本课程设计关于游客跟踪,拟采取配备声音传感器的传感器网络,对声源进行定位及跟踪。由于声音传感器具有体积小、成本低的优点,配备了声音传感器的传感器网络可以对跟踪,尤其适合对处于电磁干扰区的低空或地面目标的定位[4]。并且目前,利用声音传感器网络进行目标的定位与跟踪是目前的一个研究热点。在每一个节点上配置一个声音传感器,一个节点对可以计算出声源的方位角,利用2个或多个节点对,根据三角法计算目标的位置;然后利用卡尔曼滤波估计声源的运动趋势,而选择合适的节点集合计算声源位置。但该方法计算声源方位角时,需假设声源符合远场条件[5]。

1.2 设计的要求

为满足对公园游客安全实施监控要求,防止游客(尤其是小孩子)丢失,所以设计一个基于无线传感器网络的公园游客跟踪系统。在每一个进园游客身上佩戴一个传感器,能够根据环境自主完成目标监测、发现、识别、定位与跟踪等任务。无线传感器网络(wireless sensor networks,WSN)是由大量具有感知、计算和无线通信能力的传感器节点通过自组织方式构成的网络。由于WSN具有随机布设、自组织和隐蔽性强等特点,目前能够广泛应用于军事、工业和商业等领域[6]。2. 关键技术及总体方案

2.1 无线传感器网络目标定位跟踪原理

基于无线传感器网络的目标跟踪通常包括侦测、定位和通知三个阶段。1)侦测阶段。在一个配备了声音传感器的无线传感器网络监测区域中,传感器节点对声音信息进行周期的采集。当游客进入某个区域时,某个传感器节点发现声音强度超过阈值,则唤醒其他节点处理突发事件,启动目标定位与跟踪任务。

2)定位阶段。目标附近的节点被唤醒。被唤醒的节点利用基于声音传感器阵列的声源定位技术对目标进行定位。

3)通知阶段。当计算出目标位置之后,需唤醒其他节点,使其加入到跟踪行李额。同时需把目标的位置信息发送到汇聚节点,汇聚节点对数据进行进一步的融合处理后将数据发送到指挥中心。就可以实时对游客的位置进行定位。

2.2 声源定位于跟踪方法研究

基于时延估计的声源定位方法因其定位精度相对较高、实时性较强而成为近年来的研究热点,而得到了广泛的应用[7]。该方法主要分为时延估计和目标定位两个主要步骤,如图1所示。

传感器节点接收声源信号估计各节点与参考节点之间的声源信号到达时间延迟利用时延数据进行声源定位

图1 基于时延估计的声源定位方法示意图

1)时延估计方法的研究

假设两个声音传感器接收信号的离散事件信号模型为:

(1)式中,为声源信号;和为互不相关的高斯白噪声;和、也互不相关;和为声波的衰减系数;和分别为声波从生源到声音传感器1和声音传感器2的传播时间,为两个声音传感器间的时延。时延估计算法主要包括基本互相关法、广义互相关法和最小均方差法(LMS)等[8]。

基本互相关法的主要特点是方法简单,但该方法嘉定信号与噪声及噪声与噪声之间均互不相关,这在某些情况下不一定能得到满足,而且时延估计的精度较低。广义互相关法在功率谱域对信号进行加权,突出相关的信号部分而抑制受噪声干扰的部分,以便使相关函数在时延处的峰值更为明显,从而在一定程度上提高了时延估计精度[9]。LMS法用一个通道的信号去逼近另一个,使系统的均方差达到最小,在收敛的情况下给出时延估计,它不需要输入信噪比等先验知识;但是LMS法是一个迭代学习过程,运算量要大于广义互相关法,其估计精度随滤波器长度增加而提高,及核算复杂度也随之迅速增长,不适合跟踪快速移动的声源和对实时性要求较高的场合。

本文考虑到传感器节点的性能,采用广义互相关法。两信号之间的广义互相关法(GCC)函数为:

(2)

式中,为广义互相关法加权函数;为接收信号、为互功率谱。

本文选择的互功率谱相位(CSP)加权函数为广义互相关加权函数。所加噪声是均值为0的高斯白噪声,采样频率为16KHz。

2.3 具体设计实施方案(基于时延估计的声源定位方法)由广义互相关法求得时延后,根据估计的时延值对生源进行定位。定位主要有目标函数空间搜索定位法和几何定位法。目标函数空间搜索法计算量较大,实时性差,容易出现局部极值点,不适合应用于传感器节点。几何定位法分为线性插值法和球形插值法。线性插值法对声音传感器的摆放位置没有严格的要求,但其计算量稍大。由于传感器节点是素及分布的,因此,本文利用球形插值法进行目标定位,并在球形插值法的基础上,对其进行改造,减少其运算量,降低算法复杂度[10]。球形插值法首先设定一个参考节点,求得其他节点相对参考节点的时延,然后根据时延和各节点的矢量位置得到一个误差方程组,求其最小二乘解[11]。

设系统由N+1个配备了声音传感器的节点组成,分别位于处。不失一般性,设参考节点位于坐标原点,其位置矢量处。不失一般性,设参考节点位于坐标原点,其位置矢量,声源位置矢量,各节点、声源到源点的距离分别为和,各节点与参考节点到声源的距离差用表示[12]。节点与声源的几何关系如图2所示。由图可知,节点与参考节点到声源S的距离差为[13]:

(3)可得:

(4)即:

(5)

Z声源sRs参考节点m0yRiRs+di节点mix

图2传感器节点-声源几何模型

由于是由延时估计得到的,所以存在一定的误差,因此(5)式不为0,应为[14]:(6)(7)其中:

(8)

为减少一般球形插值法的运算量,将(7)式改写为:

(9)其中:

(10)(11)当:

(12)

式(8)的均方差最小,即:

(13)

根据逆矩阵的定义,由式(10)可得:

(14)声源的位置为:

(15)

式(9)中ATA始终是一个4×4的矩阵,整个式子求解所需的乘法和加法的数量不大,运算复杂度仅为O(N),而一般球形插值法的运算复杂度为O()。当节点数量较多时,改进的球形插值法的运算复杂度将显著小于球形插值法[15]。

3. 总结

目标定位与跟踪是无线传感器网络的重要应用之一。本文在每个游客身上配置一个声音传感器,分析了无线传感器网络的目标定位和跟踪原理,讨论了时延估计方法和声源定位方法。根据相关算法的性能,选择CSP广义互相关法作为时延估计算法,并改进了球形插值法用于声源定位。利用公园的三点确立连接点,搭建了目标跟踪原型系统,来对园区内的游客进行实时的定位和监控。实验结果表明,利用广义互相关法和改进的球形插值法进行目标跟踪的精度较高。

4. 主要参考文献

[1] YICK J, MUKHERJEE B, GHOSAL D.Wireless sensor network survey [J].Computer Networks, 2008, 52(12): 2292-2330.572 电 子 科 技 大 学 学 报 第 40 卷

[2] AKYILDIZ L F, SU W, SANKARASUBRAMANIAM Y, et al.Wireless sensor networks: a survey [J].Computer Networks, 2002, 38(4): 393-422.[3] SHENG X, YU H.Sequential acoustic energy based source localization using particle filter in a distributed sensor network[C]//IEEE International Conference on Acoustics , Speech , and Signal Processing.United States: IEEE Press, 2004: 961-972.[4] 李石坚, 廖备水, 吴健.面向目标跟踪的传感器网络设计、实现和布局优化[J].传感技术学报, 2007, 20(12):2622-2630.LI Shi-jian, LIAO Bei-shui, WU Jian.Sensor network designing、implementing and optimal deploying for target tracking[J].Chinese Journal of Sensors and Actuators, 2007, 20(12): 2622-2630.[5] CHEN W, HOU J C, SHA L.Dynamic clustering for acoustic target tracking in wireless sensor networks [J].IEEE Transactions on Mobile Computing, 2004, 3(3): 258-271.[6] ZHANG J, WALPOLA M, ROELANT D, et al.Self-organization of unattended wireless acoustic sensor networks for ground target tracking [J].Pervasive and Mobile Computing, 2009, 5(2): 148-164.[7] PRIYANTHA N B, CHAKRABORTY A, BALAKRISHNAN H.The cricket location-support system[C]//ACM International Conference on Mobile Computing and Networking.New York: ACM Press, 2000: 32-43.[8] KIM D H, LEE S H, PARK K S, et al.Development of an AOA location method using covariance estimation[C]// Proceedings of Communication Systems and Networks.Anaheim, CA USA: ACTA Press, 2007: 14-18.[9] 陈积明, 张艳平, 曹向辉, 等.基于声强的无线传感器网络目标跟踪方法研究[J].电子与信息学报, 2009, 31(11): 2791-2794.CHEN Ji-ming, ZHANG Yan-ping, CAO Xiang-hui, et al.Acoustic energy based scheme for target tracking in wireless sensor networks [J].Journal of Electronics and Information Technology, 2009, 31(11): 2791-2794.[10] 孙立民, 李建中, 陈渝, 等.无线传感器网络[M].北京:清华大学出版社, 2005.SUN Li-min, LI Jian-zhong, CHEN Yu, et al.Wireless sensor networks [M].Beijing: Tsinghua University Press, 2005.[11] OMOLOGO M, SVAIZER P.Acoustic source location in noisy and reverberant environment using CSP analysis[C]// International Conference on Acoustics, Speech, and Signal Processing.[S.l.]: IEEE, 1996: 921-924.[12] 王宏禹,邱天爽.自适应噪声抵消和时间延迟估计[M].大连: 大连理工大学出版社, 1999.WANG H Y, QIU T S.Adaptive noise offset and time delay estimation [M].Dalian : Dalian University of Technology Press, 1999.[13] YOUN D H, N.A, CARTER G C.On using the LMS algorithm for time delay estimation [J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1992, 30(5): 798-801.[14] 陈宗海.系统仿真技术及其应用[M].合肥: 中国科技大学出版社, 2010: 24-28.CHEN Zong-hai.System simulation technology and application [M].Hefei: University of Science and Technology of China Press, 2010: 24-28.[15] SCHAU H C, ROBINSON A Z.Passive source localization employing intersecting spherical surfaces from time-of-arrival differences [J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(8): 1223-1225.Design of park visitor tracking system based on

篇3:基于无线传感网络的道路照明系统

关键词:ZigBee,短距离无线通信,无线网络,照明控制

1 课题背景

当代社会, 城市路灯照明/景观照明建设不仅带给人们光明与视觉享受, 也成为展现城市魅力的重要窗口, 但在带来明亮、绚丽色彩的同时也带来了诸多, 如:管理、费用、用电、电缆被盗等问题。

灯光照明用电消耗约占总用电量的20%, 降低用电消耗是节约能源的重要途径。目前我国为实现可持续发展, 大力发展绿色照明。关于绿色照明目前市场上主要是针对LED节能光源产品进行开发, 而城市照明系统是一个具有潜力的绿色照明系统, 通过智能照明控制装置, 合理调整照明时间, 不仅可以节省照明系统20%以上的用电量, 照明灯具的使用寿命也得到了较大幅度的延长, 同时也降低了管理费用。

但是, 当前国内外对于路灯照明系统科学高效的控制和资源整合产品较少, 功能不全, 而基于短距离无线通信技术的LED路灯远程控制方案正是根据目前国内现状而生的产物。LED照明技术是一种高效能、环保、安全、耐用的新型照明技术。普通路灯用的荧光灯和HID灯虽价格便宜, 但光效低、寿命短、维护工作量大, 若使用LED, 不仅光效高, 且寿命长, 目前水平可连续工作时间10 000 h以上, 大幅减小维护工作量。另外LED光源还具有使用低压电源、耗能少、适用性强、稳定性高、响应时间短、体积小、对环境无污染、坚固耐用、多色发光等优点, 虽价格较贵, 但仍被认为其将取代现有照明器件。

Zig Bee[1]技术是一种新兴的短距离低速率低功耗的无线网络技术。Zig Bee的基础是IEEE 802.15.4协议。该技术在完全采用IEEE802.15.4标准的物理层和媒体接入控制层的基础上规定了网络层和支持的应用服务。Zig Bee可以工作在868 MHz, 915 MHz和2.4 GHz3个频段上。国内采用2.4GHz频段。该频段是全球通用的免付款、免申请的工业、科学、医学 (ISM) 频段。其数据传输速率为250 kbit·s-1。Zig Bee技术的标准传输距离为75 m, 在增加了RF发射功率后, 可增加到1~3 km。

基于Zig Bee技术和LED光源的路灯系统, 是一种自动化成度高、高效节能的城市照明系统。LED光源是一种高效能、环保、安全、耐用的新型照明光源, 而无线控制技术[2]可以对路灯照明系统进行科学高效的控制和资源整合, 合理调整照明时间, 不仅可以节省照明系统的用电量, 还可以延长照明灯具的使用寿命, 减少日常维护的开支。

2 无线LED路灯远程控制方案设计

为使设计的系统能够满足路灯控制的要求, 具备较强的应用价值, 对项目进行了详细了解了路灯照明和控制领域的发展现状和需求, 分析了Zig Bee无线传感器网络在路灯控制领域的应用前景。根据已知的情况, 完成项目的需求分析, 对产品的功能和结构做出了整体性规范。

2.1 控制系统应用需求

根据调查, 目前路灯控制方式有人工控制方式、时控方式、电力载波控制、GPRS控制等。这些控制方法各有利弊。以电力线载波方式为例, 将路灯控制信号调制在输电线上控制路灯, 会在用电高峰时刻控制信号占用电力线容量, 使得控制信号无法正常传送到线路上, 不仅在用电高峰状态下不能实现路灯控制, 严重时还会影响整体照明亮度。

基于无线传感网络的无线LED[3]远程路灯控制系统正是应对现有路灯控制手段不足而设计的。目前LED路灯和无线控制器的价格较高, 远程控制无线LED路灯系统的造价与传统有线控制的白炽灯或荧光灯价格相差较大, 在设计和制造的过程中必须通过各种途径降低制造成本。

LED驱动只占LED照明系统成本的一小部分, 但它关系到整个系统性能的可靠性和效率。LED驱动的主要要求有:驱动器应该要有较高的功率转换效率, 目前高的功率转换效率可达80%~90%。驱动电路要满足安全要求, 有完善的保护电路, 如低压锁存、过压保护、过热保护、输出开路或短路保护。驱动器可对LED的亮度进行调节, 提供PWM或线性调光[4,5]。

无线组网选用的无线协议和传输模块, 必须要经济可靠、功耗低, 方便远程控制。Zig Bee网络是一个短距离的数据网络, 其网络中转和节点设置是难点。为保证网络设置的健壮性和可靠性, 应该使用Zig Bee网状拓扑结构, 使网络有充分冗余。Zig Bee是一个低速率低功耗的WSN网络, 工作在2.4 GHz公共频段, 外界干扰大, 抗干扰性能主要依靠协议机制保证, 所以设计通信协议时需要考虑到抗干扰性和可靠性, 确保控制准确可靠[6]。

2.2 硬件平台需求分析

系统中各个节点组成了系统数据传输的硬件平台, 是实现路灯检测控制功能的基本保障。所以在设计总体方案前, 需要对节点硬件应具备的性能做出分析。首先, MCU是整个硬件节点的核心, 其性能应当满足: (1) 处理速度快、拥有较大的储存空间、功耗低、集成度高, 减少外围器件和可靠性好。 (2) 无线收发模块负责数据的传输, 其应该为数据可靠、稳定的传输提供保证。除了上述两方面外, 节点上使用的传感器也是必须考虑的因素, 因为其直接影响着传感器节点的体积和性能。最后在搭建硬件平台时, 还应考虑系统的扩展性和成本问题。

2.3 软件平台和路灯节能控制策略

无线LED远程路灯控制系统网络的软件是在无线通信协议的基础上开发的。其协议应该支持多设备加入、自动组网、路由转发跳转。节点应能自动采集路灯运行情况的各种数据, 并可靠地传输数据。当传输距离超过了通信距离时, 能够以多跳方式传输数据[7,8,9]。

从以上方向可以看出, 选择一种合适的无线通信协议, 对于整个系统的性能至关重要。然而, 目前具有良好组网性能的短距离通信协议较少, 而且许多使用费用较高。Zig Bee技术的出现, 为人们构建无线传感器网络提供了一种理想的选择。采用Zig Bee无线网络, 通过众多节点的无线组网从而构成一个基于Zig Bee的无线传感器网络 (WSN) , 这样不仅省去了架设线路的费用, 维护管理开支也相对较低。

为减少路灯电能消耗, 可以通过光敏传感器根据周围亮度的高低, 调节路灯功率的大小, 远程控制隔盏照明。除了针对单盏路灯基于时间和亮度的节能控制, 还可通过大区域道路照明的节能策略算法, 达到节能的目的。例如可设定程序自动执行也可人工随机管理在晚上6点钟将马路上的单号灯或者双号灯开关;到晚上24点以后, 调节到半亮度或1/3亮度状态以节约电能;早上5点钟全部关闭;使用光敏传感器, 在阴雨天或沙尘暴等恶劣天气下及能见度极低时, Zig Bee控制器可自行控制开启其照明状态;另外及时位置报警功能可使路灯受损坏时无需人工巡视道路检测即可自动提示给检测人员进行准确定位, 取代了人车传统的巡视道路这一大成本投入的老模式, 使得现代无线技术更加节能和“人性化”。无线路灯控制器可将采集电流、电压、功率因素等参数, 通过无线智能控制方式传输到控制中心, 为节能等评估打下基础。

2.4 系统指标要求

容纳路灯数:每个无线LED路灯远程控制系统控制路灯应不>1000盏。控制范围应覆盖至少1 km2。

组网延时:在单个协调器情况下, 组网用时在20 s以内。控制延时:信息在路灯和协调器之间的传输延时应在10 s以内, 保证控制的实时性。

数据传输速率:在无遮挡物环境下10 m左右速率为250 kbit·s-1;空旷环境下30~75 m距离速率为40 kbit·s-1;300 m速率为20 kbit·s-1。节能率:在使用节能算法前, 使用LED节能路灯应比普通路灯节能50%。使用节能控制算法后应比系统未使用节能算法前节能30%以上。可靠性:通信误码率小于1%。

无线控制网络应有较高的可靠性, 在一个路由节点故障时, 应能及时启用备用的路由链路, 保障协调器对终端节点的有效控制。路灯的故障率应该<5%。

3 无线LED路灯远程控制系统构建

硬件分3部分组成:安装在路灯杆上的终端控制节点, 控制中心的监控系统, 负责实现终端控制节点和控制中心通信的路由节点。系统构建如图1所示。

控制中心的监控系统由PC机和无线收发模块组成, 主要负责建立和管理路灯控制网络, 显示路灯状况信息和发送控制命令, 协调整个路灯系统的运作。路灯终端节点包括LED电源驱动, 为大功率LED提供电力, 并能根据MCU控制信号控制LED的工作情况;光敏传感器和温度传感器直接将LED工作状况传输给控制模块;功率检测模块检测LED功率情况和供电故障并向上报警;无线模块负责传输数据。节点框架图如图2所示。

(1) 前端节点子网。将模型放到WSN模型中, 安装在路灯杆上的终端控制节点即为WSN中的终端节点 (RFD) , 控制中心监控系统为协调器 (COORD) , 实现COORD与RFD之间无线通信的为路由转发节点 (ROUTER) 。

设计采用星型网络, 一个网络中只有一个协调器, 负责建立网络和管理网络, 显示状况信息和发送控制命令。网络中的终端节点为路灯控制终端, 在WSN对应的模型为RFD, 路灯终端节点配置在路灯灯杆上, 装有路灯控制器和无线模块, 接收控制命令和发送路灯的实时状况。网络中的路由转发节点, 在WSN对应模型为ROOTER, 也是配置在路灯灯杆上, 也可对路灯实现控制。与终端节点不同, 其还要负责路由转发终端节点的数据。其硬件结构与终端节点差别较小。

(2) 远程监控网络。远程网络使用Zig Bee+GRPS网络的混合网络。由于Zig Bee无线网的标准传输距离只有75 m, 即使使用扩展天线也只有200 m, 要实现覆盖整个城市的WSN较为困难。如果使用中继路由的方式实现, 则成本较高、网络过大、可靠性无法保证, 且不利于控制。所以将城市路灯组网划分成若干个小的子网, 每个子网覆盖几个到十几个街区, 各个子网中有几百盏路灯, 子网内部使用Zig Bee建立的WSN控制路灯, 其终端和协调器之间最多路由跳转2~3次, 保证网络可靠性。子网和中央控制中心使用GPRS网络来传输数据。该网络结构如图3所示。

4 结束语

本文主要分析了LED照明技术和Zig Bee协议组网技术, 设计了一种无线LED路灯远程控制系统, 构建了底层为路灯控制节点, 中间为路由模块, 顶层是计算机控制终端。设计使用TI公司的LED恒流源控制器UCC28810EVM-002, CC2480/Zig Bee模块和MSP430控制器构架了无线控制平台。此外文中还论证了无线路灯控制网络拓扑结构的建立和下位机固件流程图、工作模式和上位机节能策略。

目前的LED路灯系统主要使用有线线路控制, 本项目的新颖之处在于使用了无线控制模块, 可以在城市信息控制中心整合控制全城的路灯照明系统, 实时了解整个城市的照明情况, 实现LED路灯的故障监测和远程监控管理, 方便调控城市照明和日常维护。该网络经一次性布置后, 可在长期内可靠运行。路灯节点的数量、位置可随时变更, 使得调控路灯变得更加方便、科学。无线LED路灯远程控制系统为解决诸多问题提供一个良好平台。

参考文献

[1]李文仲, 段朝玉.ZigBee无线网络技术入门与实战[M].北京:北京航空航天大学出版社, 2007.

[2]崔莉, 鞠海玲, 苗勇, 等.无线传感器网络研究进展[J].计算机研究与发展, 2005, 42 (1) :163-174.

[3]吴淑梅, 霍彦明, 徐梅, 等.LED光源在照明中的应用[J].现代显示, 2008 (7) :55-58.

[4]王殊.无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社, 2007.

[5]王雅芳.大功率LED照明电路特性与驱动设计[J].电子与封装, 2009, 9 (4) :20-24.

[6]蒋挺, 赵成林.紫蜂技术及其应用[M].北京:北京邮电大学出版社, 2006.

[7]王立刚, 建天成, 李晶晶.智能LED照明系统的研究与设计[J].黑龙江大学学报, 2009, 26 (4) :543-545.

[8]周志敏, 周纪海, 纪爱华.LED驱动电路设计与应用[M].北京:人民邮电出版社, 2006.

篇4:基于无线传感网络的道路照明系统

关键词:3G信号传输;道路;景观;照明无线控制系统;ARM-Linux;WCDMA 文献标识码:A

中图分类号:TP273 文章编号:1009-2374(2015)19-0022-02 DOI:10.13535/j.cnki.11-4406/n.2015.19.010

城市、乡镇道路上的路灯及各类照明景观灯设施是与我们日常生活紧密相关的市政公共设施建设,它既关系到夜间道路交通安全和百姓生活方便,又承担着美化城市,展示城市时代性魅力的重任。城市、乡镇照明的发展优化了我国的人居环境要求,但同时给耗能、耗材、管理等方面带来了昂贵代价。尤其在类似于高架桥梁、偏远乡镇以及部分楼宇的景观控制中,有些控制的信号线不能敷设,因此信号的长距离无线传输在景观照明控制系统中变得越来越重要。现如今,3G通信技术已经发展成熟,具备更快速、更完善、更稳定的网络,更低的网络运行费用也给照明系统的数据传输提供了可能。

1 系统的构成与工作原理

整个控制系统分为远程主控端和各个子系统(如图1),通过3G通信网络形成一个主从式星状网络控制系统,每个子系统为一个独立的单体照明系统。按照系统功能模块可分为以下四个部分:

图1 系统构成

1.1 远程主控端

远程主控端是整个景观照明无线控制系统的信息中心,也是系统的控制中心,主要负责对所有子系统景观照明数据协议编码、子系统运行状态监控,输出数据接入无线互联网。

1.2 3G网络接入

3G网络模块是无线通信与有线通信的界面,是实现整个景观照明无线控制系统的信息通信的桥梁,即负责接收和传送主控端发送的数据,并转为有线信号传输模式,通过路由器接入各个控制系统。

图2 远程主控端框架 图3 3G网络接入模块

1.3 控制子系统

控制子系统采用ARM嵌入式平台,通过嵌入式Linux系统实现对系统的资源管理和控制,以及对接收到的数据进行译码分配和实时传输。

1.4 数据协议输出端口

根据所需要控制的景观灯具的输入数据界面模式,控制子系统可以提供多种的输出数据模式,景观照明用的界面主要有DMX512、SPI、DALI、0~10V D/A输出协议。

图4 控制子系统 图5 输出端口模式

2 子系统设计内容

子系统设计由软件及硬件两部分组成。本子系统硬件以三星公司S3C2440A嵌入式微处理器(ARM9处理核心,64M SDRA——64M Flash,100M网卡,linux开放操作平台)、E1750通信模块(2Mbps的上传速度和7.22Mbps的下载速度,USB通用界面)和照明数据模块组成为例,图6为硬件结构。

图6 子系统硬件结构 图7 子系统工作流程

软件负责完成对照明效果的管理和控制,子系统软件核心部分主要包括bootloader、操作系统、根文件系统和用户程序。需要设计完成的主要工作包括:(1)Bootloader部分采用U-boot 1.1.6,主要负责初始化处理器及硬件设备,引导操作系统启动;(2)操作系统采用Linux 2.6.22内核,此内核拥有良好的调度、中断、内存管理等性能以及支持各种根文件系统,具备良好的可移植性;(3)根文件系统使用YAFFS2;(4)编写3G网络的接入协议。驱动采用USB-ModeSwitch+libushb针对E1750进行相应的设置,实现了在ARM-Linux下驱动WCDMA模块。输出协议模块驱动支持DM512协议,SPI串行数据协议,DALI协议,0~10V模拟输出;(5)照明控制软件设计。通过照明控制软件完成网络数据的译码,重新编码和传输到控制灯具。

3 子系统工作流程

工作流程的关键点是数据的传输。远程子系统采用同步传输模式,即远程控制中心通过3G网络传输要显示的控制效果数据传输给子系统,子系统进行边接收边进行相应解码并以相应的数据传输协议发送出去,以实现景观照明中场景效果的实现。

子系统流程如图7所示。

4 发展前景分析

长距离的无线照明控制,其系统功能是“控制”,其系统特点是控制方式“无线”。众所周知,传统照明是手动、有线路的控制,不能达到随心所欲的管理。如一盏灯出现问题,一整条线路有可能都受到影响,或者灯具的损坏无法及时发现,造成照明故障,这种现象一直困扰着照明管理者。而这种无线照明控制系统,由于采用3G无线传输技术,一方面在控制上面可以实现无线化,另一方面具备单灯控制,附带电流、电压、功率因数、功耗统计等功能,使照明管理更具人性化与智能化。景观照明讲究的是一座城市或一个区域的整体效果,包括道路绿带亮化、游园绿地亮化、建筑物立面亮化、公共设施亮化、喷泉水池以及各种非公益性的广告、字牌和店招等构成,搭载了3G信号的无线传输,解决了有线传输的线路敷设困难,可实现“随心所欲”的设计布局。另外,通过无线控制,使照明的效果更加多彩分层。

作为智能照明的一大特色,无线照明控制早在2005年就已经开始被应用在照明控制中,但由于种种技术和成本的限制,一直未能广泛应用。但是随着通讯技术、智能手机等发展,无线照明控制得到大大改善。采用3G通讯网,在每个控制点配置一个无线控制器,选用模块化、数字式的智能灯光控制模块,在控制中心(总控室)配置集中监控系统软件,管理人员就可以通过手机或电子地图界面控制和管理整个城市的景观灯,实现智能化管理。无线照明控制系统是划时代的智能技术,它把传统的照明控制与无线结合起来,开创了一种新型的管理与节能,真正实现智能化照明。LED技术是21世纪以来发展最为迅速的照明技术,它节能、环保、稳定、高效,已经大量的运用在商业照明、景观照明等领域。而无线照明控制系统因为结合了LED、通信、计算机、传感器等技术,一方面保障正常的照明功能,另一方面兼具节能、环保、智能管理等,备受瞩目。

5 结语

本文介绍了3G数据传输方式下的景观照明控制系统的设计方法,阐述了整个控制系统的设计,特别介绍了子系统的硬件和软件设计。使用3G网络和TCP/IP技术,远程控制中心通过发送相应命令和编码后的照明数据到各个子系统,子系统进行数据解码并传输到相应的输出数据接口,以实现远程的无线控制,其发展前景广阔。

参考文献

[1] Yao-Jung Wen,Agogino,A.M.Wireless networked lighting systems for optimizing energy savings and user satisfaction[J].Wireless Hive Networks Conference,2008.

[2] Ismail,M.H.,Matalgah,M.M.Performance evaluation of WCDMA high speed downlink packet access/frequency division duplex mode[J].Wireless Communications and Networking Conference, 2005.

[3] Yoowattana,S.,Nantajiwakornchai,C.,Sangworasil,M.A design of embedded dmx512 controller using FPGA and XILKernel[J].Industrial Electronics & Applications,2009.

篇5:基于无线传感网络的道路照明系统

二、项目基本情况 2.1项目实施背景

随着城市建设的发展,作为展现城市形象的城市照明系统受到了各地政府的高度重视。针对城市照明的特点,我公司设计了城市照明控制系统的一整套解决方案,可以提高照明质量、节约能源、提升运行管理水平。

目前的城市照明灯光大多采用分散手控和时控方式为主,即在路灯配电箱中安装定时器,按预定的时间自行开关灯,时控方式以时间为唯一开关灯依据,不论在任何季节气象条件下,均只能在规定地统一时刻开关灯。随季节变化,需要人工干预来调整开关时间;而有些景观灯开关通常是人工手动控制方法,人工控制方式是根据开关灯时间表由值班人员手动进行开关灯操作。现行的方法既不能及时调整开关灯的时间,更无法及时反映照明设施的运行情况,并且故障率高、维修困难。另外,电力载波控制具有易受电力线强磁场干扰,通信环境恶劣,信号衰减强、时变性大等缺点。传统的路灯照明控制方式的运行、操作结果不能集中监视、记录和统计,达不到量化管理的要求。在路灯控制方面,ZIGBEE技术结合传感器技术组成的网络可以解决传统控制方法中存在的问题,使得路灯监控脱离了人工干预,实现自动化控制。基于物联网技术的城市照明控制系统在吸收消化了国外同类产品技术的基础上,通过自主开发,融合“物联网”技术,实现了路灯人多年的单灯智能控制与检修的梦想。

2.2项目基本情况

基于物联网的道路照明系统的结构,通过在每盏路灯嵌入一个无线通信模块,使它们自组网络,接受控制中心的命令并将路灯的状态反馈给控制中心;HG-2控制箱采用ZIGBEE技术与所管辖道路的所有路灯通信,采用GPRS与控制中心通信,根据控制中心的指令或时间和日照亮度对每盏路灯发出控制命令(路灯开启、关闭、照明度(功率大小)等),自动调节整条道路的功率平衡;控制中心由服务器、大屏显示、CenterView中央控制系统软件平台等组成,CenterView中央控制系统软件平台采用3D设计,通过缩放变换以俯视的角度观察和控制到整个城市、一个街道、一条道路、甚至一盏路灯的照明情况;移动计算工具(笔记本电脑、PDA、手机)和路灯维护车也能通过控制中心进行远程遥测和遥控。

2.3项目参与人员

三、项目技术报告 3.1项目关键技术

一、模块设计

无线通信模块的MCU为FREESCLAE公司MC13213。MC13213采用SIP技术在9x9mm的LGA封装内集成了MC9S08GT主控MCU和MC1320x射频收发器。MC13213拥有 3 4KB的RAM、60KB的FLASH,具有1个串行外设接口,2个异步串行通信接口,1个键盘中断模块,1个定时器/脉宽调制模块,1个8通道10位的模块转换器,以及多达32个的GPIO口等。

无线通信模块采用ZIGBEE技术、IEEE802.15.4协议,通信覆盖半径可达150m,能与在其覆盖范围内的任何路灯节点自组网络和进行通信,除了实现路灯的物物相联以外,还具有调节电子镇流器的功率输出(30%一100%),实现节能和绿色照明,检测供电线路的电流、电压、功率因数以及、每一盏灯的工作状态,当发生故障(如灯具损坏、灯杆撞击、人为破坏)时,实时向监控中心和相关部门报警等功能。

无线通信模块还进行了防雨、防潮、防雷电、防电磁干扰设计,并充分考虑了安装方便、维护简单和可恢复性(接入两根线就实现了路灯级的无线控制,拆除两根线又恢复到原来的状态),可以嵌入在 4 路灯的不同位置(灯杆底部、灯杆内、灯罩内)。

二、通信协议

无线通信模块的通信协议如下:对照明实施按路段顺序编号,通过命令转发和状态返回实现节点之间“手拉手”的通信。命令转发机制:每个节点通过一个位示图结构来记录哪些帧已经被转发(位示图最多可以表示256帧),如果节点接收到命令帧后,判断该帧是否已经被该节点转发,如已转发则丢弃该帧(节点只对收到的命令帧进行转发,对帧的内容不做修改),从而保证了以最快的速度控制一条线路,并且有效防止了某个节点故障影响整条线路的工作。

状态返回机制:命令帧发送到达指定节点后,该指定节点则接收该命令并立即返回状态;转发规则:只有节点号比目标节点号小才转发,状态返回过程则相反。

三、与中央监控的连接

一条传输通信链路由若干个ZIGBEE节点组成,在这些节点的中间设置一个簇节点(一条道路可以设置1个或多个簇节点),其作用是以GPRS的方式与控制中心通信(命令接受和状态返回),簇节点采用FREESCLAE公司32位CODEFIRE系列MCF52223芯片作为控制单元,GTM900B(华为GPRS通讯模块)和EM770W(华为WCDMA的3G通讯模块)作为远距离无线通信模。MCF5222x系列利用常用的V2 CODEFIRE内核构建而成,在80MHz的频率下性能高达76MIPS(Dhrystone 2.1),接口功能包括:1个Mini USB接口,支持USB OTG功能,3个2线串口,1个麦克风输入接口,1个 HEADSET输入/出接口,1个8Ω/16Ω扬声器输出接口,1个132*96点阵LED,1个5*5按键键盘,支持RTC、ADC、PIT&GPT、PWM等;GTM900B和EM770W则完成远距离的GPRS通信。

3.2系统软件设计

控制中心的软件设计平台为Windows 2003,开发工具是微软Visual Studio 2005,数据库使用SQL Server 2005,与地理信息系统相结合,在获取了街道、建筑物以及路灯的位置、形状等特征信息后,设计以路灯为主体的3维虚拟城市,在控制中心大屏幕上动态显示道路的照明效果,并可以通过平移,放大,缩小等几何变换,观察整个城市、街道甚至每一盏路灯的照明情况。该软件主要有5个功能模块:系统设置、智能控制、电量核算、故障处理和紧急预案。系统设置中的区域设置有市,区,街道和电控箱4种;路灯设置有路灯的位置、型号、生产单位、施工单位、维护责任人,安装日期、清洗维护日期等;亮灯方式设置有全开,全关,单号路灯开,单号路灯关,双号路灯开,双号路灯关,1/3路灯开,1/3路灯关,1/4路灯开,1/4路灯关,智能控制等11种控制方式;时段设置可根据不同的城市不同的季节设置不同时段的亮灯方式。

智能控制有两方面内容:

(1)针对安装了电子型路灯的路段,根据季节变化和天气状况,通过实时采样环境光强度,对路灯的照明亮度进行智能调节;

(2)在夜间,特别是深夜当检测到汽车和行人的流量十分稀少 6 时,在不影响辨认可靠的情况下,适当降低道路的照明亮度,节约电耗;

电量核算能对市、区、街道、电控箱甚至每盏路灯进行用电量的统计和核算;故障处理是对灯具损坏、断电、断相、过流、过压、三 相不平衡以及人为破坏等情况,在第一时间向监控中心报警后迅速生成故障报告;故障处理的另一个功能是按路段和时段(年、季度、月)统计亮灯率、故障率、每次故障处理的效率(平均修理时间);紧急预案是对一些突发事件制定度紧急预案,在特殊情况下,尽可能提供合适的道路照明,保证人民生命财产的安全。

主要功能模块

1)路灯监控的“三遥”功能:实现自动运行和手动控制;使用控制平台对路灯远程遥控、自动报警、选测;

2)报警处理功能:报警内容包括:照明电器损坏、电压电流越限等;

3)自动控制方案:设置单次模式、每天模式、节约模式,实现按需照明;

4)自动校时系统:在保证集中控制器与通信服务器正常连通的情况下,系统时钟自动与通信服务器时钟同步,系统定时自动对终端设备进行精确校时;

5)远程监控和查询:通过互联网,实现对系统的远程接管和远程实时查询;

6)数据采集功能:单灯或者支路电压、电流、功率等数据参数 采集;

7)控制功能:实现分区域(组)开、关、查询功能和单灯开、关、查询功能;

8)调光功能:实现配合LED载波电源,进行定时调光功能; 9)系统具有紧急控制开关装置、提高系统控制性能; 10)报表功能:包含历史数据存储;

3.3项目硬件构成

“基于物联网的道路照明系统”主要由单灯控制器、现场基站和监控中心监控软件三个部分组成。系统先由单灯控制器组成子网,再由现场基站通过无线的方式将子网数据远传至控制中心,最后由监控中心监控软件进行数据处理及控制。

单灯控制器

安装在每盏路灯上与电源模块及灯具进行连接,负责接收现场基站发出的信号,从而进行控制路灯开关、亮度调节、温度采集、湿度采集、亮度采集等操作;该无线路灯控制器可采集电流、电压等参数,通过无线智能控制方式传输到监控中心,为节能等评估打下数字基础。

现场基站

现场基站处于监控中心和各单灯控制器组网范围间,主要负责单灯控制器的时序调整、数据记录、数据接收及发送操作等,同时它负责控制网络的运行,将监控中心的命令下达给单灯控制器,将控制器及线路信息反馈监控中心。

监控软件

监控中心监控软件运行在Windows平台上,数据库使用MS SQL数据库,基于Web方式,支持远程访问。监控软件对现场基站进行远程数据访问和监控,包括参数配置,监控命令发送、现场灯具状态收集及管理等。它能够显示路灯状态(亮度、温度、湿度、电压、电流、功率和功率因数)信息,能够远程控制路灯的开关和调节路灯的亮度,可以实现时序调度事件、读取数据记录、监视事件和报警应答等操作。

(一)ZIGBEE通信系统

在ZIGBEE技术中,其体系结构通常由层来量化它的各个简化标准。每一层负责完成所规定的任务,并由向上层提供服务。各层之间的接口通过所定义的逻辑链路来提供服务。ZIGBEE协议的体系结构主要由物理(PHY)层、媒体接入控制(MAC)层、网络/安全层以及应用层构成。

ZIGBEE标准确定了ZIGBEE网络中的三种设备:ZIGBEE协调器、ZIGBEE路由器和ZIGBEE终端设备。每个网络都必须包括一台ZIGBEE协调器,它负责建立并启动一个网络,其中包括选择合适的射频信息、唯一的网络标识符等一系列操作。ZIGBEE路由器作为远程设备之间的中继器来进行通信,能够用来拓展网络的范围,负责搜寻网络路径在任意两个设备之间建立端到端的传输。ZIGBEE终端设备作为网络中的终端节点,负责数据采集。

根据ZIGBEE规范,将网络层分为数据实体、管理实体。数据实体接口的目标是向上层提供所需的常规数据服务,管理实体接口的目标是向上层提供访问内部层参数、配置和管理数据的机制。

数据实体提供网络层的数据服务,对应用层和MAC层的接口分别为NLDE-SAP(网络层数据访问接口)、MCPS-SAP(MAC层数据访问接口),实现两个对等的应用层之间的端到端的传输。

(二)路端通信装置 路端通信装置总体框如如下:

其中AD模块和继电器模块用于路端的控制箱的控制和检测,该部分功能用户根据需求可选。如果用户控制和监测路端的路灯控制箱可以使用这些模块来实现这些功能。SPI,IIC接口便于扩展,使得硬件具有灵活性和可扩展性。

电源电路

电源电路为MCU提供3.3V工作电压,它的好坏直接决定整个系统能否稳定地工作。为了提高电源电路的抗干扰性,所有的电源引脚必须接有相应的滤波电容,在PCB布板时应将这些滤波电容尽可能地靠近相应的引脚,以抑制高频噪音,降低电源波动对系统的影响。

晶振电路

晶振电路为MCU提供工作时钟。本系统选用的是48MHz的外部有源晶振。EXTAL为晶振或外部时钟输入;XTAL为晶振输出。

PLL滤波电路

PLL滤波电路主要实现对片内PLL模块滤波的作用,VDDPLL引脚由芯片内部提供电压。片内PLL模块可以对外部接入的时钟信号进行倍频。

复位电路

复位电路实现系统上电复位以及运行时的按键复位功能。复位信号包括复位输入RSTI和复位输出RSTO。RSTI为低电平有效:正常工作时,RSTI引脚通过4.7kΩ上拉电阻接到电源正极保持高电平;若按下复位按钮,RSTI引脚接地变为低电平,芯片复位。若复位成功,RSTO会输出低电平,发光二极管点亮。注意:如果RSTI一直被拉低,MCU将无法正常工作;也不能将此引脚悬空。

3.4项目功能简介

远程控制功能:能控制交流的通断,实现远程开关灯功能;通过PWM接口,改变输入电流,实现LED灯的亮度调节。亮度调节范围从0%到99%;可实现开关时段控制(单一集中控制下的一个子网,在脱网的情况下(比如监控中心故障)也能按照某种既定的方案正常运行)。实现分组控制(比如按奇数灯号亮,偶数灯号灭)。

实时数据采集监测查询:电压、电流的实时数据;恒流模块是否正常;路灯节点时间与PC同步(可以实现后台崩溃后路灯节点的自动控制);断电监测(采用软件轮询放上获取单灯控制器工作状态判断是否断电);电源模块或灯具温度的采集;监控中心可以查询任意时间段每路路灯数据信息。

数据统计分析:可以统计灯的亮灯率;统计LED灯的用电量。报警功能:输出电压过压、输出电流过流的监测报警;恒流模块是否正常的监测报警;断电的报警。可实现通过GPRS把报警信息发到指定手机上。

数据存储及报表输出:现场监自动控制设备在服务器上的数据库中存储历史记录,数据库可以集中生成一个时间段的电流、电压、电能、亮灯率、开关时间的分析曲线和报表,并能打印出来。

3.5项目进度及完成期限

四、项目投资情况

资金投入情况:

本项目计划投资

万元,其中设备购置费

万元,软件开发费

万元,人员经费

万元。

项目的主体部分已经建设完成,接下来会在项目推广、测试方面做较多投入。

五、项目实施成果情况

管理效益

系统设置模块:系统设置主要功能是对系统中的一些可调参数及数据库中的一些内容进行增加、删除和修改等操作,使得用户能够更加灵活自主地使用软件中提供的功能。

手工控制模块:用户可以通过管理软件中的相关按钮,对路灯进行打开、关闭及调节功率等操作。系统除了实现传统路灯控制中对整条路段的控制,还可以将控制操作作用到某一盏具体的路灯上,通过无线传感网络实现了对路灯的单灯控制。时段控制模块:用户可以自定义时段控制命令,当系统打开时段控制后,一旦时间到达用户设定的边界值时,软件自动发送控制命令实现对路灯的自动化控制。在系统中最多可设定4个级别的时段划分,用户可为不同路段按其所处环境的不同,设定不同的时段级别,这种处理方法使得用户的管理更加灵活方便。

路灯状态查询模块:该模块可以实现路灯实时状态的显示,主要是通过一个不断轮询系统中路灯的线程来实现的,该线程的功能就是发送单灯状态查询命令给通信软件,然后再等待通信软件返回的路灯状态命令,(1)有返回状态,分析路灯状态与数据库中的路灯控制状态是否一致,对比一致则证明路灯工作正常,对比不一致则证明路灯出现故障,标志路灯的实时状态后,继续发送下一盏路灯的单灯状态查询命令;(2)线程在系统设定的时间范围内等不到通信软件返回的状态数据,则标志返回超时后,继续发送下一条单灯状态查询命令。

路灯信息统计模块:该模块主要包括电控箱信息列表和故障信息列表两部分。(1)电控箱信息列表功能是列出各个电控箱的工作状态,电控箱工作状态主要是通过查询心跳包信息表和路灯状态表一分钟内是否有该电控箱的发送数据,来判断电控箱工作是否正常;(2)故障列表时将出现故障的路灯记录在路灯状态记录表中,方便用户对历史数据的查询及维修时维修工单的生成。

实时数据统计模块:智能路灯管理软件与城市地理信息系统相结合的,将路灯的数据信息通过数据统计和状态模拟两种方式表现出 来。数据统计功能是对系统中的路灯状态数据做相应的统计,如亮灯率和故障率等;状态模拟则是用绘图的形式,在地图上通过不同的状态颜色标志的不同状态路灯,使用户更加直观地观测到路灯的实时状态。

经济效益 节省电缆及工程量

使用本系统无需铺设一根电缆,就可以进行各种方式的路灯管理。

无网络使用费

使用全球免费的2.4GSM私有无线网络,无网络使用费用,也不会受制于公用网络的流量、阻塞等。

节约电能

只需要在每一盏灯上安装无线单灯测控器,通过采取以“时控为主,光控为辅”的控制开关方法,预置合理的开关灯场景模式,根据城市不同时段的路灯照度要求,灵活多变地调整路灯的亮灯情况,有效地减少了开灯时间,从而节约了大量的电能。

降低维护成本

系统的自动巡灯和报警功能,减少了“巡灯”人员工作时间和车辆损耗,降低维护成本。

降低运营成本

通过减少开灯时间,能有效延长灯具的使用寿命,可有效降低运行成本,进一步提高了经济效益。

六、其他材料

篇6:基于无线传感网络的道路照明系统

摘 要

物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。

ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。

本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。

关键词:物联网;ZigBee;无线传感器网络

物联网简介

物联网概念

“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。

最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。

技术架构

从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。

网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。应用层是物联网的“社会分工”-结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化,这类似于人的社会分工。

应用层解决的是信息处理和人机交互的问题。网络层传输而来的数据在这一层进入各类信息系统进行处理,并通过各种设备与人进行交互。这一层也可按形态直观地划分为两个子层。一个是应用程序层,进行数据处理,它涵盖了国民经济和社会的每一领域,包括电力、医疗、银行、交通、环保、物流、工业、农业、城市管理、家居生活等,其功能可包括支付、监控、安保、定位、盘点、预测等,可用于政府、企业、社会组织、家庭、个人等。这正是物联网作为深度信息化的重要体现。另一个是终端设备层,提供人机接口。物联网虽然是“物物相连的网”,但最终是要以人为本的,还是需要人的操作与控制,不过这里的人机界面已远远超出现时人与计算机交互的概念,而是泛指与应用程序相连的各种设备与人的交互。图1为物联网网络构架。

图1 物联网网络构架

关键技术

一、感知层

    传感器技术:感知物资信息 RFID技术:智能识别

微机电系统(MEMS):采集信息 GPS/GIS技术:全球定位/地理信息系统

二、网络层

   无线传感器网络(WSN)技术

Wi-Fi(Wireless Fidelity,无线保真技术)

通信网、互联网、3G网络、IPV6(让世界的第一粒都拥有一个IP地址)

 GPRS网络(基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接)

三、应用层

      企业资源计划(ERP:Enterprise Resource Planning)专家系统(Expert System)

云计算(Cloud Computing)系统集成(System Integrate)行业应用(Industry Application)资源打包(Resource Package)

广电网络、NGB(下一代广播电视网)

应用领域

1.城市市政管理应用 2.农业园林 3.医疗保健 4.智能楼宇 5.交通运输

图2为物联网网络架构及物联网应用领域。

图2 物联网网络架构及物联网应用领域

基于ZigBee的无线传感器网络

物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议。

无线传传感器网络简介

电系统(MEMS)、片上系统(SOC)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。

无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。

无线传感器网络(wireless sensor networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监测、感知和采集,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。

所谓无线传感器网络由大量部署在目标区域内的,具备感知、无线通信与计算能力的微小传感器节点所构成的分布式网络系统。传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统以及节点应用程序等组成)、通信单元(由无线通信模块组成)、以及供电单元(电池、太阳能或其他方式)。传感器网络可以根据当时的情况通过自组织方式构成动态的网络拓扑结构。传感器网络节点间一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到互联网,使用户可以远程访问。

无线网络技术按照传输范围来划分,可以分为无线广域网(WWAN),无线城域网(WMAN),无线局域网(WLAN)和无线个人域网(WPAN)。其中的无线个人域网就是所谓的短距离无线网络,各种短距离无线传输技术层出不穷:蓝牙(Bluetooth)、ZigBee、Wi-Fi、无线USB,无载波通信技术(UWB)等, 其中蓝牙(Bluetooth)、UWB和ZigBee是最受产业界关注的三种标准。Bluetooth虽然成本低,成熟度高,具有多种规范,但是其传输距离有限,仅为10米,只能组成最多8个节点的星状网,电池也仅能维持数周。UWB虽然可以实现高达几百Mbps的传输速率,但是其覆盖距离仅为10米,这决定了它主要被用作消费产品中的视频和高速数据解决方案,目前UWB没有网状网络能力。Wi-Fi虽然传输速度可以达到11Mbps,传输距离达到100米,但是其价格相对教昂贵,且功耗大,组网能力差。ZigBee技术专注于低成本,低功耗和低速率的无线通信市场,因此非常适合应用于物联网无线传感器网络中来。

ZigBee技术概述

ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术。ZigBee协议规范使用了IEEE 802.15.4定义的物理层(PHY)和媒体介质访问层(MAC),并在此基础上定义了网络层(NWK)和应用层(APL)架构。

基于ZigBee技术的无线传感器网络应用在ZigBee联盟和IEEE 802.15.4组织的推动下,结合其他无线技术可以实现无所不在的网络。它不仅在工业、农业、军事、环境、医疗等传统领域具有极高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。IEEE 802.15.4标准 1.物理层(PHY)规范

物理层定义了物理无线信道和与 MAC 层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务是从无线物理信道上收发数据,物理层管理服务维护一个由物理层相关数据组成的数据库。物理层功能相对简单,主要是在硬件驱动程序的基础上,实现数据传输和物理信道的管理。数据传输包括数据的发送和接收;管理服务包括信道能量监测(energy detect,ED),链接质量指示(Link quality indication,LQI)和空闲信道评估(clear channel assessment,CCA)等。2.媒体介质访问层(MAC)规范

MAC 层提供两种服务:MAC层数据服务和 MAC 层管理服务。前者保证 MAC 协议数据单元在物理层数据服务中的正确收发,而后者从事 MAC层的管理活动,并维护一个信息数据库。

MAC 层的主要功能包括如下7个方面:

1.网络协调者产生并发送信标帧(beacon);

2.设备与信标同步;

3.支持RAN 网络的关联(association)和取消关联(disassociation)操作 4.为设备的安全性提供支持;

5.信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制;

6.处理和维护保护时隙(GTS)机制;

7.在两个对等的 MAC 实体之间提供一个可靠的通信链路。ZigBee技术简介

ZigBee 协议标准采用分层结构,每一层为上层提供一系列特殊的服务:数据实体提供数据传输服务;管理实体则提供所有其他的服务。所有的服务实体都通过服务接人点 SAP 为上层提供接口,每个 SAP 都支持一定数量的服务原语来实现所需的功能。ZigBee 标准的分层架构是在OSI 七层模型的基础上根据市场和应用的实际需要定义的。其中 IEEE 802.15.4—2003 标准定义了底层协议:物理层(physical layer,PHY)和媒体访问控制层(medium access control sub—layer,MAC)。ZigBee 联盟在此基础上定义了网络层(network layer,NWK),应用层(application layer,APL)架构。在应用层内提供了应用支持子层(application support sub—layer,APS)和 ZigBee 设备对象(ZigBee device object,ZDO)。应用框架中则加入了用户自定义的应用对象。ZigBee 协议的体系结构如图3所示。

图3 ZigBee 协议体系结构

ZigBee 的网络层采用基于 Ad Hoc 的路由协议,除了具有通用的网络层功能外,还应该与底层的 IEEE 802.15.4标准一样功耗小,同时要实现网络的自组织和自维护,以最大限度方便消费者使用,降低网络的维护成本。应用支持子层把不同的应用映射到 ZigBee网络上,主要包括安全属性设置、业务发现、设备发现和多个业务数据流的汇聚等功能。1.网络层(NWK)规范

网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的 MAC 层正常工作,并且为应用层提供合适的服务接口。2.应用层(APL)规范

在ZigBee协议中应用层是由应用支持子层、ZigBee 设备配置层和用户应用程序来组成的。应用层提供高级协议栈管理功能,用户应用程序由各制造商自己来规定,它使用应用层来管理协议栈。3.应用支持子层(APS)APS 子层通过 ZigBee 设备对象(ZD0)和制造商定义的应用对象所用到的一系列服务来为网络层和应用层提供接口。APS 子层所提供的服务由数据服务实体(APSDE)和管理服务实体(APSME)来实现。APSDE通过数据服务实体访问点(APSDE—SAP)来提供数据传输服务。APSME 通过管理服务实体访问点(APSME—SAP)来提供管理服务,它还负责对 APS 信息数据库(AIB)的维护工作。

基于ZigBee的无线组网技术

ZigBee网络体系

ZigBee网络中存在两种功能类型的设备,三种节点类型,三种拓扑结构及两种工作模式。

● 功能类型

ZigBee网络含全功能设备FFD(Full Function Device)和精简功能设备RFD(Reduced Function Device)两种功能类型的设备。全功能器件拥有完整的协议功能,在网络中可以作为协调器(Coordinator)、路由器(Router)和普通节点(Device)而存在。而精简功能器件旨在实现最简单的协议功能而设计,只能作为普通节点存在于网络中。全功能器件可以与精简功能器件或其他的全功能器件通信,而精简功能器件只能与全功能器件通信,精简功能器件之间不能直接通信。ZigBee网络要求至少有一个全功能设备作为网络协调器。

● 节点类型

ZigBee网络包含三种类型的节点,即协调器ZC(ZigBee Coordinator)、路由器ZR(ZigBee Router)和终端设备ZE(ZigBee EndDevice),其中协调器和路由器均为全功能设备(FFD),而终端设备选用精简功能设备(RFD)。

协调器:一个ZigBee网络PAN(Personal Area Network)有且仅有一个协调器,该设备负责启动网络,配置网络成员地址,维护网络,维护节点的绑定关系表等,需要最多的存储空间和计算能力。

路由器:主要实现扩展网络及路由消息的功能。扩展网络,即作为网络中的潜在父节点,允许更多的设备接入网络。路由节点只有在树状网络和网状网络中存在。

终端设备:不具备成为父节点或路由器的能力,一般作为网络的边缘设备,负责与实际的监控对象相连,这种设备只与自己的父节点主动通讯,具体的信息路由则全部交由其父节点及网络中具有路由功能的协调器和路由器完成。

● 拓扑结构

ZigBee网络支持星状网(Star Network),树状网(Cluster tree Network)和网状网(Mesh Network)三种网络拓扑结构如图2-1所示,依次是星状网络,树状网络和网状网络,在图4中的C表示PAN协调器,F表示全功能设备,R表示精简功能设备。

图4 星状网、树状网和网状网三种拓扑结构

星形网(Star)是由一个ZigBee协调器和一个或多个ZigBee终端节点组成的。ZigBee协调器必须是FFD,它位于网络的中心,负责发起建立和维护整个网络,其它的节点(终端节点)一般为RFD,也可以为FFD,它们分布在ZigBee协调器的覆盖范围内,直接与ZigBee协调器进行通信。星形网的控制和同步都比较简单,通常用于节点数量较少的场合。星型网络拓扑的最大优点是结构简单,无需其他路由信息,一切数据包均通过ZigBee协调器。其缺点是限制了无线网络的覆盖范围,很难实现高密度地扩展,最多支持两跳网络,适用于小型网络。目前为止,星形拓扑是最常见的网络配置结构,被大量应用在远程监测和控制终端设备的通信。

网络协调器要为网络选择一个唯一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。

树状网络(Cluster tree Network)由一个协调器和一个或多个星状结构连接而成,枝干末端的叶子节点一般为RFD,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成数据和控制信息的传输。ZigBee 协调器比网络中的其它路由器具有更强人的处理能力和存储空间。树状网络的一个显著优点就是它的网络覆盖范围较大,但随着覆盖范围的增加,信息的传输时延也会增大。

在建立树状网络时,ZigBee协调器建立网络后,先选择网络标识符,将自己的短地址设置为0,然后向它邻近的设备发送信标,接受其他设备的连接,形成树的第一级,此时ZigBee协调器与这些设备之间形成父子关系。与ZigBee协调器建立连接的设备都分配了一个16位的网络短地址。如果以终端设备的身份与网络连接,则ZigBee协调器分配一个唯一的16位网络地址;如果以路由器的身份与网络连接,则协调器会为它分配一个地址块(包含有若干16位短地址)。路由器根据它接收到的协调器信标的信息,配置并发送它自己的信标,允许其他的设备与自己建立连接,成为其子设备。由此可见,路由器转发消息时通过计算与目标设备的关系,从而决定向自己的父节点转发还是某个子节点转发。

网状网络(Mesh Network)一般是由若干个FFD连接在一起组成骨干网,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信,即允许网络中所有具有路由功能的节点直接互连。但它们中也有一个会被推荐为ZigBee协调器。网状网络是树状网络基础上实现的,与树状网络不同的是,它是由路由器中的路由表配合来实现数据的网状路由的。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择,但正是由于两个节点之间存在多条路径,它也是一种“高冗余”的网络。该拓扑的优点是减少了消息延时、增强了可靠性,缺点是需要更多的存储空间开销。

● 工作模式

ZigBee网络的工作模式可以分为信标模式和非信标模式两种。信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗,而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态。

在信标模式下,ZC负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各个时槽内发送。

非信标模式下,ZigBee标准采用父节点为ZE子节点缓存数据,ZE主动向其父节点提取数据的机制,实现ZE的周期性(周期可设置)休眠。网络中所有的父节点需要为自己的ZE子节点缓存数据帧,所有ZE子节点的大多数时间都处于休眠状态,周期性的醒来与父节点握手以确认自己仍处于网络中,并向父节点提取数据,其从休眠模式转入数据传输模式一般只需要15ms。

简单的概括为:两种设备,三种节点类型,三种拓扑结构及两种工作模式。1.全功能设备FFD,精简功能设备RFD 2.协调器,路由器,终端设备

3.星状网,树状网,网状网

4.信标模式 ,非信标模式(信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗;而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态)。

图5为基于ZigBee的无线传感器网络在物联网中的应用。

上一篇:2016年大班毕业典礼主持词下一篇:县民生工程工作考核实施办法