调度自动化实验报告

2024-06-24

调度自动化实验报告(精选7篇)

篇1:调度自动化实验报告

实时监控功能分析

一.实验名称

实时监控功能分析

二.实验目的

1.对实时监控功能的基本作用有一个感性认识:电力系统的安全、可靠运行是发电、供电和保障人民生产和生活用电的基本任务,发电厂和变电站当前运行状态信息必须及时准确地送到电力调度控制中心,以便调度人员进行调度。

2.掌握实时监控SCADA的基本功能、实现原理和操作方法。

3.了解表征发电厂和变电站当前运行状态的参数类型和特点、获取方式、表现形式。如母线电压、有功功率、无功功率、电流和开关状态等。4.了解改变发电厂和变电站当前运行方式的控制命令信息的类型和特点、下发方式。

5.了解非正常状态信息的表现形式。

三.实验要求

1.已对调度教材中有关调度自动化系统基本结构和功能以及状态信息的处理章节进行了学习,建立了基本概念。

2.实验前认真阅读实验指导书;实验中,根据实验内容,做好实验记录;实验后,写出实验报告。3.认真上机操作,建立感性认识。4.严格按照教师的指导进行操作。5.在实验过程中做好记录。

四.实验步骤及内容

1.实时画面显示

(1)分别调出系统接线图、发电厂和变电站主接线图;

(2)观察主接线图的画法和遥测遥信实时信息的显示;

 主接线图的显示称为静态画面显示;

 遥测遥信实时信息的显示称为动态画面显示;

(3)分析发电厂和变电站主接线图及其实时运行状态的显示方法。

 旁注法  列表法

(4)分析画面调用方式。

 菜单  列表  按钮  工具栏  ……(5)分析人机界面

 菜单  窗口  工具栏  按钮  对话框  ……

(6)在(3)、(4)、(5)项操作及分析基础上,对实时画面显示功能的实现提出自己的意见和想法。

2.统计图表显示

(7)分别调出母线电压曲线、负荷曲线、趋势曲线图;

(8)分析母线电压曲线(表现方式、怎样调用、物理意义);

(9)分析负荷曲线(表现方式、怎样调用、物理意义);(10)分析趋势曲线(表现方式、怎样调用、物理意义);

(11)在(2)、(3)、(4)项操作及分析基础上,对统计图表显示功能的实现提出自己的意见和想法。

、、、3.遥控

(12)在监控主机上下发遥控命令;

(13)观察一次模拟屏上开关的变化,以及监控主机上遥信状态的变化;(14)分析遥控操作的步骤。

(15)分析怎样保证遥控功能的安全性。

(16)在(1)、(2)项操作及分析基础上,对遥控功能的实现提出自己的意见和想法。

/// 4.非正常状态信息的显示

(17)在RTU上手动操作开合一次模拟屏上的一个开关;(18)观察监控主机上画面的显示;(19)调出SOE记录窗口,分析SOE记录;

(20)分析遥测越限、遥信变位的告警表示方法;

 声、光告警  颜色告警  告警状态条提示  SOE记录  ……

(21)在以上操作及分析基础上,对非正常状态信息的显示方式提出自己的意见和想法

五.特点及特性分析

实时监控控制台采用国际标准,多窗口多任务以及面向对象技术,使用菜单、工具栏、对话框和图标,提高人机界面的友好性和可操作性。

发电厂和变电站当前运行状态,如母线电压、有功功率、无功功率、电流和开关状态等信息应及时通过监控系统进行数据采集、变送、处理、传送、显示、分析供调度人员使用。

实时监控的主要性能指标为:  数据更新

 重要遥测量更新周期<2s  一般遥测量更新周期<5s  次要遥测量更新周期<10s  遥控命令传送时间<2s  画面调用实时响应时间<3s  画面实时数据刷新周期<5s 六.分析总结

1.实时监控在调度自动化系统中的地位和作用。

答:电力系统的安全、可靠运行是发电、供电和保障人民生产和生活用电的基本任务,发电厂和变电站当前运行状态信息必须及时准确地送到电力调度控制中心,以便调度人员进行调度。实时监控系统及时准确的反馈这些信息确保电网正常可靠的运行。

2.实时监控功能分析。

答:数据采集功能:采集有功/无功电量,A、B、C三相电压,A、B、C、N四线电流,功率因数,变压器温度。实时监控通过实时有效地采集数据,分析系统的运行情况。(2)事件记录功能:1)当发生停电或缺相时,进行事件记录,终端能自动记录下停电或缺相的起、止时间,能统计累计时间并上报。2)当发生一次(或二次)开路、短路时,能立即上报并进行事件记录。3)当发生电压、电流越限时,进行事件记录,能自动记录下越限电压或电流的起止时间、越限值,并上报。4)温度过高、油位过低记录并上报。(3)及时的反馈故障信息并发送应有的操作信号。

3.分析遥测遥信信息的在各种情况下的多种表现方式。

:遥测往往又分为重要遥测、次要遥测、一般遥测和总价遥测等。遥测功能常用于变压器的有答功和无功采集;母线电压和线路电流采集;温度、压力、流量(流速)等采集;周波频率采集;主变油温和其它模拟信号的采集遥信功能通常用于测量下列信号,开关的位置信号、变压器内部故障综合信号、保护装置的动作信号、通信设备运行状况信号、调压变压器抽头位置信号、自动调节装置的运行状态信号和其他可提供继电器方式输出的信号;事故总信号及装置主要电源停电信号等

4.分析遥控命令的下达方式,怎样进行遥控闭锁,保证系统运行的安全性。

遥控是由调度主站端发出命令,要求某厂站端合上或断开某断路器或刀闸,因此,遥控命令中包含了指定操作性质(“合闸”或“跳闸”)、厂站号和被操作的断路器或刀闸序号。遥控是一项十分重要的操作,首先由调度端向厂站发送由遥控操作性质和遥控对象等组成的遥控命令,为可靠起见,通常此遥控命令连发3遍。厂站端收到遥控命令后将此命令返送给调度端进行校核。经核对与原来所发的遥控命令完全一致才发遥控执行命令,厂站端只有在收到遥控执行命令后才将原收到的遥控命令付诸执行。

七.心得体会

在做上机实验前,一定要将课本上的知识吃透,因为这是做上机实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间。上机后,还要复习、思考,这样你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净。除此之外,通过上机我学到了许多一些课本上没有的知识,拓宽了眼界,使我认识到这门课程在生活中的应用是那么的广泛。

通过本次实验,让我对实时监控系统有了一个更加深刻的认识,相信在以后的实践工作中,我也能够用好这个软件。

通过这次的上机实验,使我学到了不少实用的知识,更重要的是,上机实践的过程,思考问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅。

篇2:调度自动化实验报告

根据市调控中心文件要求,利辛公司调控中心远动专责对自动化专业管理进行了一次全面自查。

自查结果:各项规章制度基本齐全,工作流程清晰,调度自动化系统各项资料完整,自动化机房基本达标,调度主站有10kVA UPS电源,该电源有两路交流接入点,一路是35kV城郊变,一路是110kV利辛变,在交流输入异常时能满足2.5小时持续供电。目前调度自动化系统运行正常,通道状况良好,所有厂站均能实现“四遥”功能,都能满足无不值班基本要求。由于人员力量有限,在自动化规章制度、基础管理方面还存在很多不足,还有很多需要改进的地方,在平时的工作学习中慢慢完善。下面是调度自动化系统主要存在的问题

(1)我公司的调度数据通道均为租用的,且和其它数据合用,非专用通道,因此通道运行的可靠性不能满足要求,且缺乏通讯专业人员,造成通道故障不能得到及时解决,从而影响了调度自动化系统的可靠运行。

(2)无备用调度数据通道,造成主通道故障检修时,和各远动分站的通信中断,无法满足变电站无人值班对通道的要求。

(3)部分变电站远动分站性能不可靠,自动化装置存在误报现象,有些厂站与主站之间的通道不稳定,存在不正常投退的现象。造成的原因有可能是自动化设备问题,有可能是电信设备问题。

(4)目前,厂站有五种自动化设备:河北北恒、合肥继远、北京四方、南瑞继保、深圳南瑞,加上主站系统,每个厂家的设备维护方法都不一样,现在工作量大难度高。而远动就一个专责,系统学习比较少,只有通过平常维护,和厂家的联系沟通,积累经验。

篇3:调度自动化实验报告

关键词:电网调度,运行管理,调度自动化

近几年来, 人们的生活水平越来越好, 对各方面的要求也越来越高, 相应地, 在电力方面的需求量就在逐年的上升。为了能够保证电力的供应安全能切实稳定的进行, 这就要求电网在运行和管理方面能够跟上需求, 并且电网的发展也能跟上人们的需求, 很显然, 这些在电网调度自动化系统中发挥着应有的作用。所以, 我们要想使电网的调度自动化水平能够真正地适应电网发展的要求, 就要做好建设调度数据网、完善基础自动化以及安全防护体系等的基本工作。一般来说, 对于电网调度的主要任务包括电网的运行, 而电网的调度安全管理工作是和电网的运行有着直接的关系。

1 电网调度运行管理及调度自动化的现状分析

1.1 电网调度运行管理存在的问题

现阶段, 我国的电网网络结构呈现出越发复杂的状态, 这是由于电网的容量在逐年扩大, 投入的设备数量也在逐年增多。再加上对老旧设备的不断改造和极大程度的修整, 电网的设备都在定期进行维修, 对于一些没办法在使用的电网需要进行项目新建, 在这个过程中需要停送电, 对发电机解列、并网等操作改变系统的运行方式。

1.2 电网调度自动化存在的问题

现阶段, 我国的调动自动化已经逐步取代了常规的监视仪表, 在电网中得到了普遍地运用。尽管如此, 我国的变电站在调度自动化方面仍然存在着一定的问题, 主要表现在以下几个方面:

(1) 数据库一般具有1500信息点, 而在现有的通讯规约中是很难找到能够传递这样大的数据的。出现这中现象不仅会影响到调度人员的分析准确性, 还会影响其判断速度, 给调度人员对事故的处理带来很大的影响。

(2) 因为变电站的监控是依靠调度端的, 这就使得在调度端故障、通道故障以及节日保电等情况下, 站内事故音响报警无法实现。可以看到, 要想能够及时有效地反映变电站的运行状况, 就必须不断地提高变电站的调度自动化水平, 优化调度自动化系统中变电站的信号。

(3) 在主变档位调压装置的过程中, 它主要是以开关量的形式进行输入的, 一般占遥信路的14-19之多, 但是由于调压装置遥信容量只有23个, 这就使得2台主变的分接头不能全部接入, 造成了很大的资源浪费, 使得本来可对2台主变进行调压变成只能对1台, 而分接头的单个遥信传递也在调度端占用了遥信资源。

2 电网调度运行管理及调度自动化的建议

2.1 电网调度运行管理方面

在整个电力系统中, 电网的安全稳定运行的重要保证是电网调度, 它将处理整个电网的任务以及事故处理。因此, 要取得较好的经济效益, 就必须对电网实施控制和运行管理, 保证电能的正常稳定, 实现电网的自身安全稳定, 保证输出质量合格的电能。而要加强电网的调度运行管理, 改进电网的调度工作, 提高电网的管理水平, 在此过程中我们可以从以下几点做起, 具体包括:

(1) 加强电网操作的运行管理。在操作的过程中, 操作管理一定要严格执行网区内电力调度管理规程及相关规定, 贯彻电网调度管理条例、电业安全工作规程, 并且还要加强操作管理, 提高电网的运行质量以及调度人员的安全意识, 减少设备遗漏隐患。如, 运行人员可以应模拟盘上进行模拟操作, 按照操作票一项一项执行, 实行监护复诵制度, 做到万无一失。

(2) 加大检修管理力度。要严格把好审核手续的关卡, 实行计划检修一条龙的管理, 做到不具备条件的一律不给批, 突出可靠性。还要根据可靠性指标进行停电管理, 但是要注意不能重复停电。

2.2 电网调度自动化管理方面

(1) 在进行电网调度自动化管理方面, 首先要加强高级应用实用化工作。

在进行电网调度自动化管理方面, 为了能够对电网的运行提供一定的科学指导和现实依据, 首先需要加强高级应用实用化工作。如, 在数据维护工作上, 就要改善人际结构界面, 确保功能使用人员的熟练程度以及高级应用, 另外要完善遥测和遥信技术, 并且要保证电网内电力设备参数的齐备, 最后, 要保证高级应用的使用频度, 就应该建立系统运行管理制度, 使其能够最大程度的保证其应用的实用化。

(2) 为了确保自动化系统能发挥其应有作用, 要完善其基础自动化。

一般来说, 对于监控系统、变送器、遥信转接屏和远动设备电源等这些涉及面比较广的厂站, 要使这些自动化系统真正能发挥其应有的作用, 使其能应对各种现场的因素影响, 确保电网运行生产的基础数据来源的准确性和有效性, 就要进一步对屏蔽电缆、远动通道和防雷接地等电气设备作进一步完善, 只有这样才能使整个电网的调度自动化达到最高水平。

(3) 加强电网调度的自动化, 要提高调度自动化技术队伍水平。

随着电网调度自动化各项技术的发展, 现阶段电网调度自动化设计到的领域越来越多, 除了包括电力系统的运行于控制科学之外, 还包括计算机技术以及信息技术和通信技术等, 因此, 加强电网调度的自动化, 对自动化技术人员的专业知识和新技术进行培训是十分必要的。当前, 培养一支具有高水平的调度自动化专业技术队伍是电网发展的战略任务, 只有这样才能满足新时期电网发展的要求, 推进电网调度的自动化。

3 结束语

综上所述, 电网调度的运行管理以及调度自动化是一项较为长期的、复杂的系统工程, 它对于电网的安全和提高经济效益有着十分重要的影响。因此, 一定要发挥自动化系统的重要作用, 使其适应将来电网发展形势的需要, 更好地为人们的日常生活服务, 促进社会经济的快速发展。

参考文献

[1]杜君旭.电力系统调度自动化的技术与优化[J].中国新技术新产品, 2010 (12) .

[2]赵建国, 韩学山, 程时杰.网络流和内点法结合的有功动态优化调度[J].电力系统自动化, 2003.

[3]李昊旸.电网调度运行管理与调度自动化刍议[J].电气工程与自动化, 2011 (1) .

篇4:基于实验报告自动批阅的系统分析

[关键字] 实验报告自动批阅,系统分析

一、引言

实验报告网上自动批阅的目标是能让计算机像人一样对实验报告进行批阅,对实验目的、设备、原理、步骤、结果以及心得体会进行对错的判断并打分。实现实验报告自动批阅可利用人工智能等相关技术,在运用这些技术前,需了解实验报告的特征,并在此基础上提出整个实验报告自动批阅的工作流程,即实现方案。

二、实验报告提交格式设定

通常实验报告内容包括:实验名称、实验目的、实验设备、实验原理、实验步骤、实验结果、心得体会等;同时,应有学生基本信息等相关内容。针对实验报告网上评阅的特征,设定报告格式,使批阅过程更简单,化整为零,最后汇总得分。设定报告格式如下:

1、学生填写:学生学号、姓名,实验课程,实验名称,实验目的,实验设备,实验原理,实验步骤,实验结果,心得体会。

2、对实验目的、实验设备、实验原理、实验步骤、实验结果、心得体会要求学生按照知识点来填写,每个知识点以“句号”结束。

3、学生填写完每一部分的内容,以文本方式提交保存。

三、自动批阅工作流程

实验报告格式统一后,只需从数据库中提取出学生的实验报告;再根据实验名称从标准答案模板中提取该实验的标准答案模板;然后分别从学生报告和答案模板中提取实验目的、实验设备、实验原理、实验步骤、实验结果、心得体会六个部分的内容,对它们进行相应的处理,得到每个部分的成绩,最后把所有的成绩相加。批阅流程如下:

1、每个实验都有既定的名称,假设每个实验名称不同。此时,利用实验名称作为关键字,用人工智能中信息检索、关键字匹配方法对所有实验报告进行检索,把所有该实验的实验报告提取并分类。该实验记为A,该实验A的所有学生实验报告组成一个集,记为A(S1,S2,S3,S4……)其中Si代表第i份学生实验报告。

2、对分类出的实验A报告集中的每份实验报告(Si)进行逐步批阅,即按照实验目的、实验设备、实验原理、实验步骤、实验结果、心得体会进行单独批阅。分别把学生实验报告中的六部分记为Si1、Si2、Si3、Si4、Si5、Si6,简记为Sij;把标准答案模板中的上述六部分记为Wa1、Wa2、Wa3、Wa4、Wa5、Wa6,简记为Waj。

3、怎样进行这六部的批阅:以“实验目的”为例。首先,从当前批阅的实验报告中提取出“实验目的”部分的内容,再对“实验目的”部分的全部内容按照“句号”进行文本块划分,把划分得到的文本块记为Si1t(其中t的大小为该“实验目的”部分的内容中句号的个数)。因为规定学生在填写这部分内容时是按照知识点来作答的,且每一知识点都用“句号”来表示结束,所以按照“句号”来进行文本块的划分,实际上就是按照知识点来划分整个部分的内容。

4、对标准答案模板的“实验目的”部分内容全部提取,系统中答案的存储分每一部分单独存储,而每一部分中又以知识点加权值的形式存储,且每一个知识点为一条记录。在这里应提取出“实验目的”部分的全部知识点,并把它记录下来以供后面的批阅使用,记为Wa1t。

5、把3中得到的所有报告“实验目的”文本块Si1t进行文本预处理、句法分析、语法分析、语义分析以及信息抽取,得到报告信息抽取模块。记为pi1t(其中i、t与si1t中的i、t分别相同)。

6、对于4中得到的答案模板“实验目的”部分的所有知识点Wa1t,只需要进行知识点与权值的切分,把切分出来的知识点部分记为qa1t,相应知识点的权值记为ka1t。

7、对于6中得到的“实验目的”部分的每个知识点信息抽取模块qa1t与5中得到的所有学生报告实验目的部分的信息抽取模块pi1t进行模块间相似度的计算,把得到的相似度值中最大的一个乘上该知识点的权值,便得到了该知识点的得分,最后把所有知识点的得分用同样的方法得出后相加,得到“实验目的”部分的总分。

8、重复第3到第7,得出其余五部分的成绩,最后把这六部分的成绩相加就得到该份报告总成绩。

9、对同一实验的其他学生实验报告重复2到8进行批阅;对其他实验的实验报告的批改重复1到8就可完成批阅。

四、举例分析自动批阅工作流程

1、在学生上交的实验报告中,按当前批阅实验的实验名称进行搜索,把得到的实验报告进行单独管理。以“负反馈放大器实验”为例,把“负反馈放大器实验”记为A,并把搜索到的N份实验报告组成一个集,记为A(S1,S2,S3,S4……Sn)。同时把标准答案模板中“负反馈放大器实验”的标准答案模板记为Wa。

2、提取一份实验报告Si,对它的实验目的、实验设备等六部分分别进行批阅。以“实验目的”(记为Si1)为例来说明。首先提取“实验目的”的全部内容,按照“句号”进行文本块划分,把得到的文本块记为Si1t。例如学生报告中“实验目的”内容:

(1) 了解多级阻容耦合放大器组成的一般方法。

(2) 了解负反馈对放大器性能指标的改善。

划分文本块后得到的内容:

文本块一: (1) 了解多级阻容耦合放大器组成的一般方法

文本块二:(2) 了解负反馈对放大器性能指标的改善。

其中把“文本块一”记为Si11,把“文本块二”记为Si12。

3、提取负反馈放大器答案模板中实验目的(Wa1)部分的全部知识点,并把各个知识点记为Wa1t。得到如下结果:

知识点一:多级阻容偶合 放大器 组成 方法|2#

知识点二:负反馈 对 放大器 性能 改善 |3#

其中把“知识点一”记为Wa11,把“知识点二”记为Wa12。

4、对2中得到的所有实验目的部分的文本块Si1t进行文本预处理、句法分析、语法分析、语义分析以及信息抽取,生成报告信息抽取模块。记为pi1t(其中i、t与si1t中的i、t分别相同)。以2中得到的结果为例,说明如下:

文本块一:1、了解多级阻容耦合放大器组成的一般方法。

文本块二:2、了解负反馈对放大器性能指标的改善。

信息抽取模块:

信息抽取模块一:多级阻容偶合 放大器 组成 方法

信息抽取模块二:负反馈 对 放大器 性能 改善

其中把“信息抽取模块一”记为pi11,把“信息抽取模块二”记为pi12。

5、对于3中得到的答案模板中实验目的部分的所有知识点进行知识点与权值的切分,因为在计算机中存储的答案模板中的每一部分的内容都是知识点的信息抽取模块和该知识点的权值,所以切分出来的知识点就是信息抽取模块。把切分出来的知识点部分记为qa1t,相应知识点的权值记为ka1t。实验目的全部知识点:

知识点一:多级阻容偶合 放大器 组成 方法 2。

知识点二:负反馈 对 放大器 性能 改善 3。

进行知识点与权值的切分后的结果:

信息抽取模块: 权值:

知识点一信息抽取模块:多级阻容偶合 放大器 组成 方法 2

知识点二信息抽取模块:负反馈 对 放大器 性能 改善 3

其中把“知识点一信息抽取模块”记为qa11,把“知识点二信息抽取模块”记为qa12;对于权值“2、3”相应的记为ka11、ka12。

6、把5中得到的第一个答案信息抽取模块qa11与4中得到的两个报告信息抽取模块pi11、pi12分别进行模块间相似度的计算,并取最大的相似度值。由于qa11和pi11这两个模块是完全一样的,相似度值为1(设定相似度的最大值为1),所以此时相似度值为1;然后取与qa11相对应的权值(ka11)2,与得到的相似度值相乘,得到了报告对qa11这个知识点回答的成绩,即为2分。分别计算出答案信息抽取模块剩余的相似度值,并得到成绩,两个知识点的成绩相加得到学生实验报告中实验目的部分的成绩,本例得到实验目的部分的成绩为5分。

7、上面是对一份报告中实验目的部分的批阅,对于同一份报告中的其余部分以及不同报告、不同实验的报告都按照这样的方法进行批阅。最后把同一份报告中六个部分的成绩相加便得到了这份报告的总成绩。

参考文献:

[1] 刘其云、李中言,信息抽取的功能和实现方法,情报杂志,2005,5:67-68

篇5:自动化实验室实习参观报告

自动化2班朱晓彤

在开学后不久,学校便组织了我们大一新生进行实验室的参观,让大家进一步了解了学校设备装置以及各种实验仪器的相关属性。这次参观,虽然见到的只是些机械,但让我增长的见识却比一次旅游都要大的多。

大学自动化实验课是高等理工科院校学生进入大学后的第一门实践课程,是理工科学生系统学习基本实验知识、实验方法和实验技能的开端,是专业实验和毕业设计的基础。大学自动化实验课对提高学生素质具有举足轻重的作用。通过实验课的教学要达到提高学生的科学实验素质,培养具有创新精神和良好科学作风的目的。

自动化实验中心根据教育部精神,在教学改革中作了大量的探索和实践。为加强培养学生的自主性实验和研究性学习的能力,配合开放式自动化实验教学,中心树立了以学生为根本,以创新为目标,确立了以“人才培养为中心任务,教学工作为中心地位”的指导思想和以“以培养学生为本、以实践教学为主、以科研促进教学”的改革思路。将实验教学的定位与人才培养目标、培养模式、培养计划等相结合,保持相互间的协调一致。

按照学校和学院的总体部署,经过多方面的努力和改革,完成原定建设目标,构建了逐步提高学生创新能力的实践教学体系。

(1)已构建了由专业基础型实验、设计综合型实验和创新型实验三个层次分明、比例结构科学合理的与理论教学有机结合的实验教学体

系。合理调整实验项目,安排验证性实验、综合性实验和设计性实验的比例。通过独立设置实验课程,使实验课程系统化和规范化。增加开放实验内容,鼓励和引导学生自行设计实验、参与教师科研课题。鼓励学生利用实验室积极参与科研或学科竞赛活动,培养学生的创新能力。

(2)中心在充分利用第一课堂的基础上,合理利用第二课堂,拓展实验教学空间和途径,延长实践教学时间,解决实验教学时间不足的矛盾,提高学生实验动手能力和科学创新能力。注重引入新的实验技术和手段,采用启发式、探究式、开放式实验教学模式,拓展学生的知识领域,鼓励学生个性发展,培养学生创新能力,锻炼学生意志作风。

(3)实现了资源优化整合,加强统筹管理,面向全校11个相关专业以及校外兄弟院校,对校内外科学研究提供服务,发挥了实验中心的最大效益,促进了实验中心的建设和高水平师资的培养。

近两年来,中心先后投入750多万元新增建设机器人实验室、数控装备实验室,虚拟现实实验室,信息系统实验室、中央控制实验室、动力模型实验室、创新实验室等。包括原有的自控原理与计算机控制实验室、电力电子与电机拖动实验室、网络化运动实验室、网络化过程控制实验室、现代测试技术实验室、继电保护与数字调速实验室实验室、电力系统分析软件实验室、电力系统综合自动化实验室等共计15个实验室组成。

下面简单介绍一下我觉得与我们自动化相关性较强的实验室

电力电子及电机拖动实验

电力电子及电机拖动实验室作为电子系专业实验室,目的使学生掌握各种电力电子器件和各种电压转换的基本原理、对各种电机及其控制和调速方式有个感性的认识,对电力电子和电机控制电路的构成有一定的感性认识、熟悉其应用范围、数据处理等方法,并利用已有的电路进行相关的创新。在了解电力电子及电机拖动基本电路原理基础上,结合交、直流调速系统做相关的设计,增加学生的知识面,培养学生在电力电子和电机拖动系统等方向的基本理论研究和实际动手能力。

电力电子系统集成是当今电力电子技术研究的重要课题,引领电力电子技术朝集成化、标准化和模块化方向发展。电力电子数字控制平台正是在系统集成研究的大背景下展开的,进一步补充和完善系统集成理论研究内容,其研究的主要目标就是改变当前电力电子数字控制系统设计状况,缩短电力电子控制系统的开发周期,使它更符合电力电子系统集成发展的需要。目前,其研究内容主要为中、大功率电力电子应用系统或复杂电力电子装置提供集成化数控平台,如大功率有源滤波器、电力传动系统和再生能源发电系统等。自控原理与计算机控制实验室

自动控制原理实验室主要任务是为我院的自动控制原理课程和计算机控制技术课程的实验课程提供教学场所,同时承担综合课程设计教学和本科生的毕业设计任务。自动控制原理实验室的实验教学可使学生巩固自动控制基础理论知识和计算机控制理论知识,培养学生的实践动手能力、分析问题和解决问题的能力,启发学生的创新思维。实验设备用于学生的实验、实训,使学生掌握相关的知识结构,设计实验和观察实验过程。同时,为自动化专业乃至我系教师的实验开发、教学理论研究以及科研项目研究提供了一个良好的平台。

自动原理实验室是为电子信息类的自动化、电气工程自动化专业学习自动控制原理和计算机控制系统课程设置的专业基础实验室,开设与自动控制原理和计算机控制系统课程相关的实验、课程设计。实验室设备分为实验设备、开发研究性设备。网络化过程控制实验室

在电气工程及其自动化专业所涉课程中,过程控制是一门重要的专业课程,它基于“电路”、“模拟电子技术”、“数字电子技术”、“微机原理”、“自动控制理论”、“计算机控制系统”、“传感器与检测技术”等诸多专业基础课,它把过程控制理论和设备结合得相当紧密,应用范围非常广泛。因此,大学过程控制课程实验室是该课程异常重要的一环。我们在网络化过程控制实验室六年的教学实践中,通过不断改进教学方法,使实验教学更贴近生产实际,加强了学生工程实际应用操作技能的锻炼。

随着计算机技术、通信技术和控制技术的发展,工业控制系统从简单、分散的控制系统发展到了复杂、大规模、全自动化的网络控制系统。以现场总线和工业以太网为基础的网络控制系统正在被越来越多的制造商所接受。然而,高等院校相关专业的学生却很少有机会进入工业现场实际体验网络控制系统的优越性及其对工业生产带来的便利。为了向学生展示工业控制系统发展的新成果和网络控制系统的灵活性和多样性,借助罗克韦尔自动化实验室的软硬件设备和过程控制实验室的实验装置,设计了基于NetLinx架构的网络化过程控制实验平台,并在此基础上实现了校园网内的远程。

实验室中也有一些控制设备例如单片机、PLC、倒立摆等。单片机

单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。其具有以下特性:

1、主流单片机包括CPU、4KB容量的RAM、128 KB容量的ROM、2个16位定时/计数器、4个8位并行口、全双工串口行口、ADC/DAC、SPI、I2C、ISP、IAP。

2、系统结构简单,使用方便,实现模块化;

3、单片机可靠性高,可工作到10^6 ~10^7小时无故障;

4、处理功能强,速度快。

5、低电压,低功耗,便于生产便携式产品

6、控制功能强

7、环境适应能力强。PLC

可编程逻辑控制器,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

可编程逻辑控制器实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,基本构成为:

一、电源

可编程逻辑控制器的电源在整个系统中起着十分重要的作用。如果没有一个良好的、可靠的电源系统是无法正常工作的,因此,可编程逻辑控制器的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去

二、中央处理单元(CPU)中央处理单元(CPU)是可编程逻辑控制器的控制中枢。它按照可编程逻辑控制器系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当可编程逻辑控制器投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输

出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高可编程逻辑控制器的可靠性,对大型可编程逻辑控制器还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。

三、存储器

存放系统软件的存储器称为系统程序存储器。存放应用软件的存储器称为用户程序存储器。

四、输入输出接口电路

1.现场输入接口电路由光耦合电路和微机的输入接口电路,作用是可编程逻辑控制器与现场控制的接口界面的输入通道。

2.现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用可编程逻辑控制器通过现场输出接口电路向现场的执行部件输出相应的控制信号。

五、功能模块

如计数、定位等功能模块。

六、通信模块 倒立摆

倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检

验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

篇6:调度自动化实验报告

电力系统及其自动化实验报告3

一、实验目的

1.介质损耗角正切的测量。通过本试验了解现场设备预试的基本过程,并巩固所学知识。具体内容如下:学习使用预防性试验规程;掌握Q S-l电桥正、反接线测量方法;掌握用摇表测绝缘的方法;了解高压试验时基本的安全技术、注意事项;

2.工频高压演示实验。掌握工频高压的几种测量方法:用测量球隙进行测量、用高压静电电压表进行测量和用工频分压器(电容式分压器)配合低压仪表进行测量。

二、实验内容

1.介质损耗角正切的测量 1.1西林电桥基本原理

图1西林电桥原理接线图

西林电桥原理接线图如图1所示。图中Cx,Rx为被测试样的等效并联电容与电阻,R3、R4表示电阻比例臂,Cn为平衡试样电容Cx的标准,C4为平衡损耗角正切的可变电容。

根据电容平衡原理,当:ZxZ4ZnZ3

式中Zx、Zn、Z3、Z4分别是电桥的试样阻抗,标准电容器阻抗以及桥臂Z3和Z4的阻抗。

11111jCxZnjC4ZRZRjCZR3,4xn,34其中:x。解所得方程式,得:

电力系统及其自动化实验

R41 Cn2R31tanxCxtanxC4R4

电桥的平衡是通过R3和C4来改变桥臂电压的大小和相位来实现的。在实际操作中,由于R3和C4相互之间也有影响,故需反复调节R3和C4,才能达到电桥的平衡。

由于绝大多数电气设备的金属外壳是直接放在接地底座上的,换言之,被试品的一极往往是固定接地的。这时就不能用上述正接线来测量它们的tan,而应改用图2所示的反接线法进行测量。

图2西林电桥反接线原理图

1.2tan测量的影响因素 1)外界电磁场的干扰影响

在现场进行测量时,试品和桥体往往处在周围带电部分的电场作用范围之内,虽然电桥本体及连接线都如前所述采取了屏蔽,但对试品通常无法做到全部屏蔽。这时等值干扰电源电压就会通过对试品高压电极的杂散电容产生干扰电流,影响测量。

消除或减小由于电场干扰引起的误差,可以采取下列措施 :

①加设屏蔽,用金属屏蔽罩或网把试品与干扰源隔开。②采用移相电源

③倒相法

2)温度的影响

温度对tan值的影响很大,具体的影响程度随绝缘材料和结构的不同而

电力系统及其自动化实验

异。一般来说,tan随温度的增高而增大。现场试验时的绝缘温度是不一定的,所以为了便于比较,应将在各种温度下测得的tan值换算到20℃时的值。

3)试验电压的影响 4)试品电容量的影响

对于电容量较小的试品(例如套管、互感器等),测量tan能有效地发现局部集中性缺陷和整体分布性缺陷。但对电容量较大的试品(例如大中型发电机、变压器、电力电缆、电力电容器等)测量tan只能发现整体分布性缺陷。

5)试品表面泄漏的影响

试品表面泄漏电阻总是与试品等值电阻Rx并联,显然会影响所测得的tan值,这在试品的Cx较小时尤需注意。

2.工频高压演示试验

2.1实验装置及线路图

工频实验装置如图3所示。

T1调压器T2Vl测量绕组K~R1=V2Z1R2CxZ2V3G

图3 工频高压试验线路图

T1——调压器T2——高压试验变压器 Vl——交流电压表 V2——静电电压表

V3——交流电压表或示波器 R1——变压器保护电阻,10~20K R2——球隙保护电 Cx——试品

电力系统及其自动化实验

2.2实验说明

工频高电压试验装置通常由调压器、试验变压器、保护电阻、分压器和静电电压表以及球隙等组成。

试验变压器的工作原理与电力变压器相同,但由于工作条件和工作任务的不同,试验变压器具有工作电压高、变比大、漏抗大、绝缘裕度小、容量小、工作时间短等特点。其主要类型有单套管金属外壳型试验变压器、双套管金属外壳型试验变压器、绝缘外壳型试验变压器和串级试验变压器。

进行工频高电压试验时,要求试验电压从零开始,均匀升压,因此必须使用调压设备。调压设备主要有四种:自藕调压器、感应调压器、移卷调压器和电动发电机组。

保护电阻用固体电阻或水电阻。R1的阻值一般按每伏0.1选取,R2的阻值可按每伏0.1~0.5选取,并应校验R1、R2的外表面绝缘强度。在试验电压下,当试品发生击穿、闪络或球隙放电时,R1、R2不应发生沿面闪络,且具有相应的热容量,其长度可按每米150~200kV(有效值)选取。

静电电压表是测量工频高电压的常用电压表,它是一种测量静电力大小的表计。根据测量原理的不同,可分为绝对静电电压表和相对静电电压表,后者被广泛用于工程测量。由于静电电压表的输入阻抗及固有振荡频率都很高,所以常被用于直流电压及宽频带范围的交流电压的测量。

三、心得体会

通过这次参观学习实验和实际试验,我对高电压这门课程有了更深入的了认识,之前本科学习过高电压技术这门课程,但从没接触过高电压试验。这次的试验是对过去的巩固和复习,收获颇多。特别的,这次试验要求我们在安全意识方面要保持高度的重视,保证人身和设备的安全是进行高压试验特别强调的问题。

通过对高压电气设备的试验学习,对电气设备绝缘、电力变压器、高压开关等高压设备试验原理有了基础的理论知识,帮助我们对试验的具体操作方法和试验目的有了形象的认识,这对今后开展试验工作具有指导性的作用。

最后,我们还进行了工频高压试验的实际测量,但测量的结果与理论分

电力系统及其自动化实验

析有出入。估计是高压试验的对象放电还未完成,我们就急着试验的原因。

篇7:南邮自动控制原理实验报告

课程名称:

自动控制原理

仿真实验一:控制系统的时域分析 一、实验目的:. 观察控制系统的时域响应; 2 . 记录单位阶跃响应曲线; 3 . 掌握时间响应分析的一般方法; 4 . 初步了解控制系统的调节过程。

二、

实验步骤:. 开机进入 Matlab 运行界面。. Matlab 指令窗:“Command Window”,运行相关指令。依次完成实验内容。. 本次实验的相关 Matlab 函数(参考材 教材 P74:

控制系统模型描述):

G=tf([num],[den])可输入一传递函数。

step(G,t)在时间范围 t 秒内,画出单位阶跃响应图。

impulse(G,t)在时间范围 t 秒内,画出单位脉冲响应图。

三、

实验结果 1.观察一阶系统1()1sTs 数 的时域响应:取不同的时间常数 T,分别观察该系统的脉冲响应、阶跃响应、斜坡响应以及单位加速度响应。

脉冲响应:

T=1s

T=3S

阶跃响应:

T=1s

T=7s

斜坡响应:

T=1s

T=3s

单位加速度 响应:

T=1s

T=7s

2、、二阶系统的时域性能分析:观测 二阶系统22 2()2nn nss   的单位 阶跃响应。

((1))

令 1n ,0, 0.5, 2  分别取,结合单位 阶跃 响应图,观察阻尼比对阶跃响应的影响。

阻尼比 =0 :

>> G=tf([1],[1,0,1])

Transfer function:

1

-------

s^2 + 1

>> step(G,18)

阻尼比 =0.5 :

>> G=tf([1],[1,1,1])

Transfer function:1

-----------

s^2 + s + 1

>> step(G,18)

阻尼比 =2 :

>> G=tf([1],[1,2,1])

Transfer function:1

-------------

s^2 + 2 s + 1

>> step(G,18)

结论:

当阻尼比取 0 0 时,其振荡频率为 1 1,即为无阻尼振荡;当阻尼比大于 0 0 小于 1 1 时,二阶系统

为欠阻尼二阶系统,其单位阶跃响应为衰减振荡;当阻尼于 比大于 1 1 时,二阶系统为过阻尼二阶系统,其单位阶跃响应为是非振荡的。

(2 2)

令 0.5  ,1, 2, 5n 分别取

,结合单位阶跃响应图,观察自然频率对阶跃响应的影响。

自然频率 =1 :

>> G=tf([1],[1,1,1])

Transfer function:1

-----------

s^2 + s + 1

>> step(G,18)

自然频率 =2 :

>> G=tf([4],[1,2,4])

Trans fer function:2

-------------

s^2 + 2 s + 2

>> step(G,18)

自然频率 =5 :

>> G=tf([25],[1,5,25])

Transfer function:5

-------------

s^2 + 5 s + 5

>> step(G,18)

结论:

自然频率越小,阻尼比越小,系统的阶跃响应幅值越大。

((3))

调节自然频率与阻尼比,要求:

Tr<0.56s Tp<1.29s Ts<5.46 超调不大于 于 5 %.记录下满足上述要求的自然频率与阻尼比。

G=tf([45],[1,10,45])G = 45

---------------

s^2 + 10 s + 45 Continuous-time transfer function.>> step(G,6)

自然频率=16.9538rad/sec 阻尼比=0.73578

实验二线性系统的根轨迹研究

2.1 实验目的((1))

考察闭环系统根轨迹的一般形成规律。

((2))

观察和理解引进零极点对闭环根轨迹的影响。

((3))

观察、理解根轨迹与系统时域响应之间的联系。

((4))

初步掌握利用产生根轨迹的基本指令和方法。

2.2 实验内容 根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。

已知单位负反馈系统的开环传递函数为2)^ 5 4()2()(2 s ss Ks G,实验要求:

((1))

用 试用 MATLAB 的 的 rlocus 指令,绘制闭环系统根轨迹。(要求写出指令,并绘出图形。)

指令:

:G=tf([1 2],[1 8 26 40 25])

rlocus(G)

((2))

用 利用 MATLAB 的 的 rlocfind 指令,确定根轨迹的分离点、根轨迹与虚轴的交点。(要求写出指令,并给出结果。)

指令:

:rlocfind(G)分离点:-2.0095 + 1.0186i

K=0.0017 与 虚轴的 交点:

:-0.0000 + 3.6025i

K=65.8411

((3))

用 利用 MATLAB 的 的 rlocfind 指令, 求出系统临界稳定增益, 并用指令验证系统的稳定性。

系统 临 界稳定增益:

:65.8411 由于系统 无右半平面的开环极点,且 奈奎斯特曲线不 包围((-1,j0)点。

系统稳定。

((4))

用 利用 SISOTOOL 交互界面,获取和记录根轨迹分离点、根轨迹与虚轴的交点处的关键参数,并与前面所得的结果进行校对验证。(要)

求写出记录值,并给出说明。)

指令:

:SISOTOOL(G)

原值:

:K=0.00017

校正值:

:K=0.000169

原值:K=65.8411

校正值:K=71.8((5))

在 在 SISOTOOL 界面上,打开闭环的阶跃响应界面,然后用鼠标使闭环极点(小红方块)从开环极点开始沿根轨迹不断移动,在观察三个闭环极点运动趋向的同时,注意观察系统阶跃响应的变化。根据观察,(A)写出响应中出现衰减振荡分量时的 的 K 的取值范围,(B)写出该响应曲线呈现“欠阻尼”振荡型时的 K。的取值范围。

(A A)

0< K<71.8

(B B)

0

实验三系统的频率响应和稳定性研究

3.1 实验目的(1)绘制并观察典型开环系统的 Nyquist 围线。

(2)绘制并观察典型开环系统的 Bode 图。

(3)运用 Nyquist 准则判断闭环系统的稳定性。

(4)初步掌握相关 MATLAB 指令的使用方法。

3.2 实验内容 一、(必做内容)使用 sisotool 交互界面研究典型开环系统的频率特性曲线,并进行闭环系统稳定性讨论。

以下各小题的要求:

(A)根据所给开环传递函数的结构形式,绘制相应的幅相频率曲线和对数幅相频率曲线。

(B)显示出曲线对应的开环传递函数具体表达式。

(C)假如 MATLAB 指令绘制的幅相频率曲线不封闭,或用文字说明所缺部分曲线的走向,或在图上加以添加所缺曲线;曲线与(-1,j0)点的几何关系应足够清晰,能支持判断结论的导出。

(D)对该开环函数构成的单位负反馈系统的稳定性作出判断,说明理由;假如闭环不稳定,则应指出不稳定极点的数目。

(1))1)(1(2 11 s T s TKG,其中 K , T 1, T 2

可取大于 0 的任意数。

取 K=1,T1=1,T2=2;

指令如下:

G=tf([1],[2 3 1])Transfer function: 2 s^2 + 3 s + 1

margin(G)nyquist(G)

P=0,R=0,Z=0 系统稳定

(2))1)(1)(1(3 2 12  s T s T s TKG,其中 K , T 1, T 2, T 3

可取大于 0 的任意 取 K=1,T1=1,T2=2,T3=3; 指令如下:

G=tf([1],[6 11 6 1])Transfer function:------------------------6 s^3 + 11 s^2 + 6 s + 1 margin(G)

nyquist(G)

P=0,R=0,Z=0 系统稳定

(3))1(14s T sKG,其中 K , T 1

可取大于 0 的任意数。

取 K=1,T1=1; 指令如下:

G=tf([1],[1 1 0])Transfer function:-------s^2 + s margin(G)

nyquist(G)

P=0,R=0,Z=0 系统稳定(4))1)(1()1(2 16 s T s T ss T KGa,其中。

K 可取大于 0 的任意数。

K=1,Ta=1,T1=1,T2=2; 指令如下:

G=tf([1 1],[2 3 1 0])Transfer function:

s + 1-----------------2 s^3 + 3 s^2 + s margin(G)nyquist(G)

P=0,R=0,Z=0 系统稳定(5))1(127s T sKG,其中 K , T 1

可取大于 0 的任意数。

K=1,T1=1; 临界稳定,指令如下:

G=tf([1],[1 1 0 0])Transfer function:

1---------s^3 + s^2 margin(G)

nyquist(G)

(6)1128,)1()1(T Ts T ss T KGaa,其中 K

可取大于 0 的任意数。

K=1,Ta=2,T1=1; 指令如下:

G=tf([2 1],[1 1 0 0])Transfer function:s + 1---------s^3 + s^2 margin(G)nyquist(G)

临界稳定(7)1129,)1()1(T Ts T ss T KGaa,其中 K

可取大于 0 的任意数。

K=1,Ta=1,T1=2; 临界稳定,指令如下:

G=tf([1 1],[2 1 0 0])Transfer function:

s + 1-----------2 s^3 + s^2 margin(G)nyquist(G)

(8)210)1)(1(ss T s T KGb a ,其中 K , T a,T b

可取大于 0 的任意数。

时间常数 T 与 K 给出具体数值仿真 取 K=1,Ta=1,Tb=2 指令如下:

G=tf([2,3,1],[1,0,0])G =s^2 + 3 s + 1

---------------

s^2

Continuous-time transfer function.>> margin(G)>> nyquist(G)

临界稳定

实验四 连续系统串联校正 一、实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。

2.对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。

二、实验仪器

1.EL-AT-III 型自动控制系统实验箱一台 2.计算机一台 三、实验内容

1.串联超前校正(1)系统模拟电路图如图 5-1,图中开关 S 断开对应未校情况,接通对应超前校正。

图 图 5 5--1 1

超前校正电路图

(2)系统结构图如图 5-2

图 图 5 5--2 2

超前校正系统结构图

图中

Gc1(s)=2

2(0.055s+1)

Gc2(s)=

0.005s+1

2.串联滞后校正(1)

模拟电路图如图 5-3,开关 s 断开对应未校状态,接通对应滞后校正。

图 图 5 5--3 滞后校正模拟电路图

(2)系统结构图示如图 5-4

图 图 5 5--4 滞后系统结构图

图中

Gc1(s)=10

10(s+1)

Gc2(s)=

11s+1

3.串联超前—滞后校正(1)

模拟电路图如图 5-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。

图 图 5 5--5 超前 — 滞后校正模拟电路图

(2)

系统结构图示如图 5-6。

图 图 5 5--6 6 超前 — 滞后校正系统结构图

图中

Gc1(s)=6

6(1.2s+1)(0.15s+1)

Gc2(s)=

(6s+1)(0.05s+1)

四、实验步骤

1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。

超前校正:

3.连接被测量典型环节的模拟电路(图 5-1)。电路的输入 U1 接 A/D、D/A 卡的 DA1 输出,电路的输出 U2 接 A/D、D/A 卡的 AD1 输入,将将纯积分电容两端连在模拟开关上。检查无误后接通电源。

4.开关 s 放在断开位置。-5.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。鼠标单击 按钮,弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量p 和调节时间 ts。

6.开关 s 接通,重复步骤 5,将两次所测的波形进行比较。并将测量结果记入下表中:

超前校正系统 指标 校正前 校正后 阶跃响应曲线 见图 1.1 见图 1.2 δ% 51.1 11,8 Tp(秒)

166 118 Ts(秒)

1152 154

滞后校正:

7.连接被测量典型环节的模拟电路(图 5-3)。电路的输入 U1 接 A/D、D/A 卡的 DA1 输出,电路的输出 U2 接 A/D、D/A 卡的 AD1 输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。

8.开关 s 放在断开位置。

9.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。鼠标单击 按钮,弹出实验课题参数设置对话框,在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量p 和调节时间 ts。

10.开关 s 接通,重复步骤 9,将两次所测的波形进行比较。并将测量结果记入下表中:

滞后校正系统 指标 校正前 校正后 阶跃响应曲线 见图 2.1 见图 2.2 δ% 67.2 11.53 Tp(秒)

213 439 Ts(秒)

2529 529

五、实验报告

1.计算串联校正装置的传递函数 Gc(s)和校正网络参数。

2.画出校正后系统的对数坐标图,并求出校正后系统的ω′c 及ν′。

3.比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。

阶跃响应曲线:

串联超前校正前:

串联超前校正后:

图 1.1

图 1.2

串联滞后校正前:

串联滞后校正后:

图 2.1

图 2.2

串联超前校正前:

G(s)=

Wc=16.7rad/s,V=17 度

串联超前校正后:

G(s)=

Wc=25rad/s,V=65 度

串联滞后校正前:

G(s)=

Wc=17.7rad/s V=-14 度

串联滞后校正后:

G(s)=

Wc=6.83rad/s V=31 度

由以上实验结果,得到校正装置作用:超前校正的是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目的。为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。由于 RC 组成的超前网络具有衰减特性,因此,应采用带放大器的无源网络电路,或采用运算放大器组成的有源网络。

上一篇:培训讲师述职报告下一篇:《树叶》教学设计 教案教学设计