锅炉烟气处理工艺流程

2024-08-04

锅炉烟气处理工艺流程(精选6篇)

篇1:锅炉烟气处理工艺流程

锅炉烟尘处理

一种锅炉烟尘处理器,它是由减压罩、雾状捕捉室和密封箱体组成的,减压罩设有烟尘入口和入孔;雾状捕捉室设有高压水管、分水管和喷水孔等装置,在密封箱体中设有许多小管子,通过水与烟尘的充分接触,达到除下粉尘和清除烟尘中的二氧化硫、氮氧化物的目的。本发明结构简单、制造容易、成本低,占地少,效率高,使用寿命长。

一种锅炉烟尘处理器,其特征在于它是由减压罩

2、雾状捕捉室4和密封箱体9组成:(1)减压罩2呈伞状,位于烟尘处理器的顶端,其顶部设烟尘入口1,下设入孔3;(2)雾状捕捉室4位于减压罩2之下,高压水管5设于雾状捕捉室4一侧,与其相对应的另一侧有清洗主管11,高压水管5的分管横贯雾状捕捉室4中,分管上有许多喷水孔;(3)密封箱体9与雾状捕捉室4连通,密封箱体9的顶部设多孔平板11,其每孔都与一小管6连接,小管6为垂直状,下口与密封箱底有一段距离;(4)密封箱体9的气体从排气口8排出,而底部的水则通过溢水管10排出。

摘要:介绍了一种新型喷淋泡沫脱硫除尘塔在锅炉烟气处理中应用。根据离心、喷雾、泡沫相结合的多级净化原理,经旋风喷雾、二级喷淋泡沫板洗涤,脱硫效率为91.4%,除尘效率为98.7%。喷淋泡沫塔具有除尘脱硫一体化、设备占地面积小、节省投资等特点,适用于大中型工业锅炉烟气脱硫除尘。关键词:喷淋泡沫塔 脱硫 除尘 1 前言

在我国的一次能源消耗结构中,燃煤占总能源消耗的70%以上,而由燃煤产生的SO2约占到全国SO2总排放量的90%。因此,对燃煤锅炉烟气进行脱硫、控制SO2的排放是我国经济和社会发展的迫切要求。北京某热力厂拟为1台35t/h燃煤锅炉的烟气进行治理,拆除现有φ2500mm文丘里麻石水膜除尘器,选用净化效率稳定、运行可靠、投资适合北京市市情的新型高效喷淋泡沫脱硫除尘塔。根据脱硫除尘系统需要,配置相应的高效脱水设备、水循环系统、加药系统、曝气系统和自动控制系统。2 治理方案 2.1 设计参数

根据该厂提供的测试报告和资料确定主要设计参数为:烟气量 ≤63000m3/h,空气预热器出口烟气温度≤180℃,空气预热器出口含尘浓度≤2500mg/m3,燃煤含硫量≤0.8%,除尘器前系统阻力≤1.0kPa,脱硫效率≥90%,除尘效率≥98.2%。2.2 治理工艺

本工艺包括烟气系统、水循环系统、加药系统、曝气系统和自动控制系统,工艺流程见图1 图1 烟气脱硫除尘工艺流程 2.2.1 烟气系统

本工艺将锅炉烟气引入空气换热器降温到180℃以下,再通过管道切向进入喷淋泡沫塔,烟气在塔内经洗涤液喷淋后由烟道进入高效脱水器,带气雾的烟气经脱水后进入引风机,由

烟道进入烟囱排放。引风机选用GDGYNo13–左 90°–132kW–60℃防腐引风机。流量为75000m3/h,全压为3.6kPa。2.2.2 水循环系统

由循环水泵将含有脱硫剂(MgO粉)的循环水从水池送往喷淋泡沫塔,同塔中的烟气反应后由溢流槽排出,经灰水沟排入水池(容积为2400m3)。本系统总循环水量为252t/h。选用2台(其中1台备用)150UHB–ZK–250–35(75kW)耐磨防腐水泵作为循环水泵。2.2.3 加药系统

进入水池中的循环水通过pH值自动测量仪检测pH值。当pH<6.5时,自动打开Mg(OH)2乳液管路上的电动调节阀,注入Mg(OH)2乳液;调整到出塔循环水pH=6.5时自动关闭电动调节阀,经过pH仪调节循环水清水池中水的pH值为9~11。MgO粉加到消化槽内,加水搅拌几分钟成乳状液后,靠重力自流到Mg(OH)2乳液贮槽。贮槽中的乳液通过重力自流到沉淀池,供脱硫使用。MgO粉的投加量为66.8kg/h。2.2.4 曝气系统

为使沉淀池中的MgSO3氧化成溶解于水的MgSO4,需在沉淀池中进行曝气,这样既可大大减少循环水中的悬浮物,也可防止循环水系统及脱硫塔内结垢堵塞,同时还可减少脱硫渣的生成量。曝气压缩空气气源由罗茨鼓风机直接提供,由曝气管路送到沉淀池。压缩空气从曝气管路中以小气泡通过循环水,从水面逸出。氧气的消耗量为4.6m3/min。2.2.5 自动控制系统

本系统中引风机采用变频控制,控制盘位于锅炉控制间。水泵亦采用变频控制。pH值自动控制仪根据采样的数据以4~20mA的信号控制加药电动阀门。2.3 工作原理

喷淋泡沫塔采用切向进风,使气流旋转上升。在烟气入口上方布置1层或2层螺旋喷嘴组合层,喷嘴层上方为多孔泡沫塔板层,塔板上设喷淋布水器。整个塔分成上、下2个塔体,或上、中、下3个塔体(当用2层塔板时),下塔体下部为循环水槽及液封排水槽。

锅炉排放的烟气,切向进入喷淋泡沫塔旋流段,较大粒径的烟尘受离心力的作用产生附壁效应与塔板布下的水幕汇合,流到塔底排出。烟气继续在塔体内上升,先经2层雾化喷嘴洗涤、吸收而脱除部分细颗粒烟尘和SO2,烟气上升再经2层泡沫塔板,布满吸收液的多孔板鼓泡形成有巨大液膜表面积的泡沫层,同时塔板上具有极大液膜表面积的气雾,烟尘在此阶段亦发生扩散作用,从而进一步去除细颗粒烟尘和脱掉SO2,最终达到高的除尘脱硫效率。

洗涤及吸收都是依赖气液两相液膜界面进行的,液膜面积越大,除尘脱硫效率越高。净化烟气中的气雾,在上塔体中缓慢上升,经塔体与脱水器之间的连接管,进入高效复档型脱水器,脱水后经烟道进入引风机至烟囱达标排放。碱性循环水在塔内吸收SO2后,pH值迅速降低,排入循环沉淀池与锅炉碱性排污水汇合,通过加药装置,将200目以上的MgO粉制成Mg(OH)2乳液,通过pH自动控制仪控制加药的电动阀门,调整水池内的pH值,使出塔洗涤液的pH值为6.5左右。进入水池内的循环水经鼓风曝气,使脱硫产物最终氧化成溶于水的MgSO4。其化学反应方程式为:

为防止水池内硫酸盐过饱和,需排出部分循环水,其水量约占总循环水量的2%

篇2:锅炉烟气处理工艺流程

刘宾 热能1003班

2010000874

工业锅炉主要是以煤为燃料。煤在锅炉内燃烧后,产生大量的烟尘及硫和氮的氧化物等有害气体,这些有害气体排放到大气中,严重地污染了周围大气环境。尤其工业锅炉大多集中在城市和市郊区,又属于低空排放,对生产、人民生活和人体健康都会造成极大伤害。因此,通过消烟除尘措施,将锅炉排放的烟尘污染降低到国家规定的允许范围内,对改善大气环境质量是至关重要的。目前布袋除尘效率最高,煤粉中的硫会在燃烧中生成硫氧化物,会腐蚀管道以及污染大气形成酸雨。

关键词:烟气

烟尘

硫氧化物

布袋除尘器

双碱除硫 1.、烟尘的危害

燃煤锅炉排烟中的烟尘由两部分组成。一部分是煤在燃烧过程中放出的硫及氮的氧化物气体,以及碳氢化合物在缺氧条件下分解和裂化出来的微小碳粒(炭黑),烟气中炭黑多时即形成黑烟。另一部分是由于烟气的扰动作用而被带走的灰粒和未燃尽的煤粒,也称飞灰。这些微粒具有很强的吸附能力。很多有害气体、液体或某些金属元素(如镍、铬、锌等)都能吸附在烟尘粒子上,随人的呼吸而被带入人体内,刺激呼吸道,造成气管炎、支气管炎、哮喘,以至进入人体肺泡,引起肺气肿和肺心病等,甚至引起肺癌等病症。烟尘降落到植物叶面上,会妨碍植物的光合作用,造成植物叶片褪绿,农作物产量降低,园林受害。烟尘使空气污染,降低了空气的可见度,会增加城市交通事故;由于烟尘的遮挡,减弱了太阳紫外线辐射,会引起儿童佝偻病;另外,大量废热排入空中,使空气中的灰尘起到形成水蒸气凝结核的作用,会使空气的温度、湿度及雨量发生变化。空气中烟尘浓度大,还将影响某些工业如纺织、食品及仪表等产品质量。

总之,锅炉排放的烟尘是一种空气的污染物,对人体、环境、生态及经济都有严重的危害,必须加以限制,不能任意排放。1.1.布袋除尘器

虽然布袋除尘器的使用已经有了一百多年的历史,但其在电力行业中锅炉上使用了还不到30年。自1973年,美国圣勃雷燃煤电厂(总装机容量为176MW)的四台锅炉将静电除尘改为布袋除尘器以来,布袋除尘器在大容量的电站锅炉上开始广泛地应用,特别是在美国、欧洲和澳大利亚。例如,在澳大利亚新南韦尔斯州的电站锅炉中80%已经采用布袋除尘器。现在布袋除尘器不但在新设计的电厂上广泛使用,有些国家更在对原有的静电除尘器进行改造。目前安装布袋除尘器的最大机组为850MW。

为什么布袋除尘器之所以能在电站锅炉上得到如此迅速地发展,这是因为它有其自身的优点:

1、除尘效率高,其效率一般在99.5%以上,高的能达到99.99%;

2、对亚微米级的粉尘的收集效果很好,除尘器出口的气体含尘浓度都能低于30mg/m3,好的能低于5mg/m3;

3、处理的气体量和含尘浓度的允许化范围大,且除尘效率稳定;

4、对粉尘的特性不敏感,(对煤尘来说,不受比电阻的影响);

5、设备简单,维修方便,不需要高技术的工种。1.2、布袋除尘器的原理

现在不对布袋除尘器的原理作深入的阐述,因为在一些教材中都已经对此作过详细的论述。不过,有必要在此把一些已经成为当今工业术语,并且对设计和评估布袋除尘器的性能非常有用的一些关键概念作一介绍。

大家都有戴口罩的经历,口罩就是一种简易的过滤除尘设备。布袋除尘器的除尘机理很简单,它与口罩的除尘机理一样,是通过滤材料对烟气中飞灰颗粒的机械拦截来实现的。但除此之外,先收到的飞灰颗粒在滤料表面还形成了一层稳定的稠密的灰层(一般称为滤饼或滤床),它又起到了很好的过滤作用,特别是用编制布做滤袋的除尘器,这层滤床起到了主要的过滤作用。过滤组件。过滤组件可以由棉毛纤维、玻璃纤维或各种化学纤维经过纺织(或针刺)成滤料,再缝制成垂直悬挂的滤袋,不同场合要选用不同的滤料。在滤袋上收集到的粉尘通过周期性的机械抖动、过滤后的烟气反吹或压缩空气的脉冲反吹等途径使布袋变形而将灰清除。

烟气能够通过滤袋和滤料表面所形成的滤饼(滤床)是依靠滤层两边的压差—这个压差通常称为管板压差d.p.(有时也称为滤床压差)。飞灰收集中,一个特殊的参数是过滤烟速——每分种每平方米的滤布所过滤的气量。滤床的压差d.p.是与烟速呈线性比例关系,因此也与烟气流量呈线性比例关系。这个固定的比例关系系数通常称为滤阻。按此定义,滤阻与烟气流量无关,有点类似于电阻的概念。我们把平均的过滤速度表示为,气布比——它是烟气量与整个过滤面积之比(单位用m3/m2/min表示)。这个参数在布袋除尘器的选择和设计中是一项非常重要的技术指标。

布袋除尘器其余的压力损失是由布袋除尘器进口法兰之间的烟道和挡板门所产生的。这个压降的大小与烟气的流速的平方成正比关系,因此整个布袋除尘器的压降Δp.与烟气量是二次方的关系。Δp total=K1Q1+K2Q2

K1=Kdrag/A(Kdrag=滤阻,A=过滤的表面积)K2=烟气道和挡板门的压损系数 Q=烟气量

注:在设计最大的过滤压降是选择锅炉吸风机容量的约束条件 1.3、布袋除尘器的分类

布袋除尘器的分类从除尘本质上讲是没有实际意义的,它只是便于人们对布袋除尘器的掌握和记忆,因此,按照不同的定义就有不同的分类。—按气布比来划分:(仅针对电站锅炉而言)

1、高气布比的布袋除尘器,通常气布比:大于1.0m3/m2/min。

2、低气布比的布袋除尘器,通常气布比:小于0.8m3/m2/min。

布袋除尘器气布比的选定是根据布袋除尘器的使用场合、布袋的滤料、清灰的方式、需除尘介质的含尘浓度或成分、场地的大小以及布袋除尘器的布置等方面的因素来考虑的。

—按布袋除尘器的清灰方式划分主要有:

1、烟气反吹式布袋除尘器:它是利用过滤后清洁烟气低速反向吹布袋,使得布袋变形来达到清灰的目的。布袋在袋的封口端垂直悬挂着,灰在袋内收集。该形式的除尘器在清灰时作用在布袋上的机械张力较小,适用于玻璃纤维滤袋的除尘器。

2、机械抖动式(振动式)布袋除尘器:与烟气反吹布袋除尘器一样,灰也是在袋内收集。它对滤袋的机械强度要求较高,所以对玻璃纤维滤袋不适用。

3、脉冲清灰式布袋除尘器:与前两种型式的袋除尘器不同,灰是在滤袋外被收集,滤袋靠袋内部的金属笼支撑。它的清灰是靠清洁的压缩空气周期性地喷入滤袋内,使滤袋变形,把存积在滤袋外面的灰除去。压缩空气的压力、脉冲的强度和持续时间随不同的使用场合调节,根据这些参数可以把脉冲反吹式布袋除尘器又分为:

——高压脉冲式:压缩空气压力为:0.60-0.80Mpa ——中压脉冲式:压缩空气压力为:0.20-0.40Mpa ——低压脉冲式:压缩空气压力为:0.06-0.10Mpa 选择什么形式的布袋除尘器,一般是根据布袋除尘器的使用场合、布袋的滤料、场地的大小、制造厂的设计特点和运行维护的管理等因素来考虑。1.4、布袋除尘器的结构和清灰控制

在前面布袋除尘器的分类一节中已经介绍了根据不同的清灰方式所分的三种形式的布袋除尘器,事实上,还有其它一些清灰的方式,比如磁振动式,声波助振荡式等等。不管采用哪种形式的清灰装置,清灰的目的和需要遵循的原则是一样的。即当滤袋上的积灰不断增加,滤袋的前后压差增加到某一个值时,就要对滤袋进行清灰,使滤袋恢复到比较理想的清洁状态。有两点需注意的是:

1、清灰不能太频繁太剧烈,滤袋表面必须保存一层滤层(不能把滤料上面已经收集到的一层滤层清掉),这就要在清灰强度(包括清灰频率)设计时加以考虑。

2、需要清灰的滤袋压差设定点要根据滤袋的使用情况合理设定。压差设定点不能定得太高,否则,运行时间不长细灰颗粒就会嵌入滤袋太深,影响滤袋使用寿命。在滤袋使用寿命的后期,因细灰颗粒嵌入滤袋已较多,清灰的频率要增加。随着科技的不断发展,清灰的控制现在都采用PLC程控。理论上最理想的清灰程序是每一个滤袋前后压差达到设定值时开始清灰,到压差降到某一个设定值时停止清灰。但事实上测定每个滤袋的压差是不可能的。因此,一般清灰程序都是按每个过滤单元前后的压差和压差变化的时间长短这两个参数来设计的。在正常情况下,清灰系统会根据所测量到的参数按照预先编制好的各种清灰程序进行自动清灰(“定时清灰”或“定压清灰”)。在特殊情况下(比如测量组件故障,运行工况异常……等),可以切换到手动控制进行清灰。当然PLC程控装置具有自动报警功能,出现异常情况会随时报警,提醒运行人员注意或采取应急措施。

不同的清灰方式,有不同的清灰特点,自然其结构也明显不同,就是相同清灰方式的布袋除尘器,因不同的制造厂有各的技术专利,其结构也有不同,因此,在这里只可能把几种类型的布袋除尘器的清灰控制,结合其结构作简单介绍。——烟气反吹式布袋除尘器

这种形式的布袋除尘器在美国电站使用初期用得较多。含尘烟气从布袋除尘器的下部经过进口阀后,流过灰斗上面的缓冲板进入滤袋后,滤袋为圆形。一定数量的滤袋以方阵布置组成一个除尘单元。在前面已经介绍过,布袋是在袋的封口端垂直悬挂着,下部口袋用卡环固定在管板上,袋内没有笼骨(长的滤袋有支撑环),烟气进入袋内把袋鼓起,灰在袋内收集。为了防止滤袋未张紧在底部下垂,滤袋上部的固定有弹簧式和重锤式两种,过滤后的清洁烟气经过出口提板阀排出。

当滤袋两边压差达到设定值时进行清灰。清灰时,要被清灰的这一个除尘单元的出口提升阀关闭,打开反吹提升阀(反吹风由一个低压反吹风机提供),一股低压风进入清洁烟气室与清洁烟气一起反向吹向滤袋,使滤袋压瘪变形,灰抖落掉入灰斗达到清灰的目的。清灰结束,被清灰单元的出口提升阀打开,反吹风提升阀关闭,该单元投入运行。然后转到下一个除尘单元进行清灰。这种方式的清灰动作比较缓慢,作用在滤袋上的机械张力较小,对滤袋的损伤也较轻。但清灰效果相对而言要差一些,所以有时候需连续反吹几次再转到下一个单元清灰。这种清灰方式所配的反吹风机的参数一般为:压头:H=50(mmH2O),流量:Q=总风量/过滤单元(m3/h)。

另外,每个除尘单元的出口提升阀的严密性非常重要的,否则反吹风会泄露掉,影响清灰的效果。

——机械抖动式(振动式)布袋除尘器

机械抖动式(振动式)布袋除尘器:与烟气反吹式布袋除尘器相类似;滤袋也是在袋的封口端垂直悬挂着,袋内没有笼骨(长的滤袋有支撑环),烟气进入袋内把袋鼓起,灰在袋内收集,不同的是:它是依靠滤袋顶部的支承机构的机械抖动(振动)使滤袋摆动起到变形作用,使灰从滤袋上清理下来。抖动(振动)的方式因滤袋上端的悬挂方式不同而略有不同,一般是靠马达驱动滤袋顶部反承机构抖动。

当滤袋前后压差达到设定值时进行清灰,要被清灰的这一个单元的进出口门关闭,除尘单元处于停用状态。马达启动抖动开始(一台马达带动一片组滤袋抖动),持续一段时间后停止,达到清灰的目的。清灰结束,被除尘单元的进出口门打开,该单元投入运行,然后转到下一个除尘单元进行清灰。

这种清灰方式的振打“强度”的设计是很重要的。振打“强度”太大对滤袋的损伤太大,因此振打“强度”不能超过极限(振打“强度”的增大并不能使滤袋清理得更干净)。相反振打“强度”太小又不能起到很好的清灰效果。

振打“强度”是由振幅、振动频率(该两项参数也就确定了振动加速度)和振动持续时间三个主要因素所组成的,它们之间又相互影响。因此,在清灰程序的编制和有关值确定的时候,当振幅或频率确定之后,振动持续时间的长短是很重要的。在调试期间还要根据经验资料和现场情况综合考虑。

这种清灰方式的布袋除尘器与其它方式的布袋除尘器比较,对滤袋的机械强度要求最高,而清灰效果不是最好。

上述两种清灰形式的布袋除尘器所选用气布比都必须是低气布比,因此,体积庞大,造价高。另外,含尘烟气从袋口进入滤袋,袋口处局部烟速大,并存在涡流区,虽然管口设有防磨短管,但滤袋还是比较容易损坏。随着科技的进步,现在已经不主张采用这两种形式的布袋除尘器。

——脉冲清灰布袋除尘器

与前两种形式的布袋除尘器明显的区别是灰在滤袋内部被收集,滤袋靠袋内部的金属笼骨支撑,上端用各种方式固定在花板上。它的清灰是靠清洁的压缩空气周期性地脉冲喷入滤袋,使滤袋变形,使积存在滤袋外面的灰去掉。前面已经讲到它们有高压脉冲、中压脉冲和低压脉冲三种形式,其结构、滤袋的固定方式、脉冲压缩空气的参数等都各不相同。2 烟气硫处理技术

在锅炉燃烧中,由于供应的空气是过量的,产生的烟气中除了烟尘外,还有SO2、SO3、NO和 NO2,以及碳氢化合物等。其中SO2、SO3浓度超标会诱发人体呼吸道疾病,会腐蚀工业设备及建筑物,更严重的会造成酸雨,破坏植被、森林、庄稼和生态平衡。而NO对人体的危害与煤气CO相同,被吸入人体后,使人会因缺氧而麻痹和痉挛。NO2本身毒性比NO和SO2都强,不仅对人体肺部有危害,而且对各种器官和造血组织都有损害。因此,对燃烧后排放的烟气进行脱硫与脱硝是刻不容缓的。

烟气脱硫通常有三种途径:

1.煤燃烧前脱硫。常用的方法是洗煤和煤气化后脱硫,这两种方法难于应用在工业锅炉中。

2.煤在燃烧过程中脱硫,即炉内脱硫:常用的方法有型煤固硫和向锅炉炉膛直接喷固硫剂。这在技术上都是可行的,但设备投资与运行管理费用大。

3.烟气脱硫。目前有回收法和抛弃法两大类。

回收法可回收硫,但流程长,设备多,投资大,效率低和成本高。抛弃法分为喷雾干燥烟气脱硫和石灰湿法脱硫。这两种方法对工业锅炉尤为适用。

喷雾干燥烟气脱硫,是把石灰粉加水搅拌成石灰乳液,经喷雾器雾化成细雾进入脱硫干燥塔,与烟气充分接触反应,吸收SO2并蒸发干燥,生成CaSO4颗粒,随烟气进入袋式除尘器、电除尘器或高效除尘器而排出系统,烟气则得到净化。这种方法,系统简单、投资小,只要雾化和脱硫塔设计、运行良好,可得到较高的脱硫效率。

石灰湿法脱硫,是以石灰水为吸收剂,在脱硫塔内,烟气与吸收液充分接触反应,最后生成硫酸钙与亚硫酸钙水溶液,经沉淀池处理达到可循环使用后的标准后,返回使用。但系统中设备及管道易结垢,需经常冲洗。

此外,采用流化床直接脱硫,也可以不设置投资很大的排烟脱硫装置而达到脱硫的目的。

煤在高温燃烧后产生的氮氧化物与硫化物不同,改变燃烧条件 2.1脱硫技术现状

为了控制大气中二氧化硫,早在19世纪人类就开始进行有关的研究,但大规模开展脱硫技术的研究和应用是从二十世纪50年代开始的。经过多年研究目前已开发出的200余种SO2控制技术。这些技术按脱硫工艺与燃烧的结合点可分为:①燃烧前脱硫(如洗煤,微生物脱硫);②燃烧中脱硫(工业型煤固硫、炉内喷钙);③燃烧后脱硫,即烟气脱硫(Flue Gas Desulfurization,简称FGD)。FGD是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的最主要技术手段。

烟气脱硫技术主要利用各种碱性的吸收剂或吸附剂捕集烟气中的二氧化硫,将之转化为较为稳定且易机械分离的硫化合物或单质硫,从而达到脱硫的目的。FGD的方法按脱硫剂和脱硫产物含水量的多少可分为两类:①湿法,即采用液体吸收剂如水或碱性溶液(或浆液)等洗涤以除去二氧化硫。②干法,用粉状或粒状吸收剂、吸附剂或催化剂以除去二氧化硫。按脱硫产物是否回用可分为回收法和抛弃法。按照吸收二氧化硫后吸收剂的处理方式可分为再生法和非再生法(抛弃法)。

2.2低阻高效喷雾脱硫工艺

喷淋塔也成为喷雾塔,是在吸收塔内上部布置几层喷嘴,脱硫剂通过喷嘴喷出形成液雾,通过液滴与烟气的充分接触,来完成传质过程。空塔喷淋吸收塔主体为矩形塔体,塔体内配置有多个高效喷嘴及高效除雾装置,浆液在吸收塔内通过高效雾化喷嘴雾化,雾化覆盖面积可达200%,形成良好的气液接触反应界面,烟气进入塔内之后,在塔内匀速上升,与雾状喷液进行全面高效混合接触,脱除SO2等酸性气体。根据燃煤含硫量、脱硫效率等,一般在脱硫塔内布置几层喷嘴。喷嘴形式和喷淋压力对液滴直径有明显的影响。减少液滴直径,可以增加传质表面积,延长液滴在塔内的停留时间,两者对脱硫效率均起到积极的作用。液滴在塔内的停留时间与液滴直径、喷嘴出口速度和烟气流动方向有关。带雾点的烟气上升至高效除雾装置时,通过除雾装置的作用,气液进行接触二次吸收并同时得到有效分离,从而避免烟气夹带雾沫,最大限度地减少烟气带水现象。2.3脱硫系统组成

整个工艺由五大部分组成:(1)脱硫剂制备系统

由成品石灰(粒径小于10mm(100%)的粉状石灰)运至厂里后手工加入石灰消化池进行消化,消化后的石灰浆液自流至再生池中进行脱硫液再生反应。

钠碱由运输车给料至钠碱池,在池中与工艺水进行混合直至达到所需的浓度,自流到再生池。(2)烟气系统

热烟气自锅炉出来后进入吸收塔,向上流动穿过喷淋层,在此烟气被冷却到饱和温度,烟气中的SO2等污染物被脱硫液吸收。经过喷淋洗涤后的饱和烟气,经除雾器除去水雾后,通过烟道经引风机进入烟囱排空。

从锅炉出口至脱硫塔进口段的连接烟道采用A3钢制作,并根据需要设置膨胀节。连接烟道上设有挡板系统,以便于烟气脱硫系统事故时旁路运行。挡板采用手动抽板阀门,包括1个入口挡板、1个旁路挡板和1个脱硫装置出口挡板。在正常运行时,入口挡板和出口挡板开启,旁路挡板关闭。在故障情况下,开启烟气旁路挡板,关闭入口挡板和出口挡板,烟气通过旁路烟道绕过烟气脱硫系统直接排到烟囱。

(3)SO2吸收系统

在吸收塔内,脱硫液中的氢氧化钠与从烟气中捕获的SO2、SO3、HF、HCl等发生化学反应,生成亚硫酸钠和亚硫酸氢钠等物质。脱硫后的净烟气通过除雾器除去气流中夹带的雾滴后排出吸收塔。

采用喷淋塔作为吸收塔,喷淋塔是目前中小型锅炉脱硫装置中应用较为广泛的脱硫塔,其具有气液流通量大、压降低、操作弹性宽、不易堵、效率稳定等优点。

吸收塔脱硫主要反应原理如下: a)吸收

在吸收塔中,烟气中的SO2和SO3按照以下反应式被溶液中的水吸收:

SO2 + H2O<==> H2SO3 SO3 + H2O<==> H2SO4 b)中和反应

H2SO3和H2SO4必须很快被中和以保证有效的SO2和SO3.吸收。H2SO3、H2SO4、HCl和HF与悬浮液中碱按以下反应式发生反应:

Na2CO3 + H2SO3 <==>Na2SO3+CO2  +H2O Na2CO3 + H2SO4 <==> Na2SO4 + CO2  + H2O Na2CO3 + HCl <==> NaCl +CO2 +H2O Na2CO3 + HF <==>NaF +CO2 +H2O c)副反应 烟气中所含的氧量将把脱硫反应中生成的亚硫酸钠(Na2SO3)氧化成硫酸钠(Na2SO4): Na2SO3+O2 <==>2 Na2SO4(4)脱硫液循环系统与脱硫渣处理系统

泵前池的脱硫液通过循环水泵泵送到脱硫塔内与烟气接触反应后,从脱硫装置底部排出,排出的含有CaSO4、CaSO3及少量粉尘渣(大部分烟尘在原除尘器中除去)的混合渣浆液体进入再生池、沉淀池,与从石灰浆液池过来的石灰浆液发生再生反应,并进行脱硫副产物的沉淀,上清液流经泵前池,经沉淀后的池底渣浆由人工清出,滤液返流回泵前池,由循环水泵抽送到脱硫装置进行脱硫循环利用。

(5)电气控制系统 ①供电方式

系统内的动力设备为分散式布置,均为三相电源供电,厂内民用动力和民用照明为单路三相电源供电分配使用,设计处理系统供电采用放射式供电方式,优点是安全可靠。

②接地系统

处理系统低压配电系统接地接零保护采用TN--C--S系统,所有电气设备金属外壳均需可靠接地和接零,民用动力、照明接地接零保护采用TT系统。

③低压配电位置的确定

设计要求低压配电位置尽可能靠近负荷中心,由于区内大功率用电设备主要为循环泵、渣浆泵等,其它动力及照明负荷较小,故在泵房内设一电控室,安装电源总柜、动力柜和仪表柜等。

④动力设备起动和控制方式

§所有动力设备均设有欠压、短路和过载保护,电源总柜设过流保护。§民用动力和民用照明设有短路、过载和漏电保护。

§动力电缆采用铠装电缆沿电缆沟暗敷设,无电缆沟地方软电缆和信号电缆均采用穿钢管埋地暗敷设,电缆沟支架均可靠接地,形成接地网。

脱硫系统内所有设备间电缆的设计、供货由供方负责。供货及岛外部分(分界点为脱硫岛外1米)的敷设由业主方负责。脱硫岛采用手动控制.本工程系统涉及的所有规范、标准或材料规格(包括一切有效的补充或附录)均为最新版本,即以合同生效之日作为采用最新版本的截止日期。

对脱硫系统及其辅助系统进行启/停控制、正常运行的监视和调整以及异常与事故工况的报警。工艺系统和仪表、控制设备的设计、供货能够满足上述要求。

本系统供电电源均采用380V,50HZ交流电源,配电柜和动力控制柜根据用电负荷由设计院负责设计。

参考文献:钠碱法脱硫工艺简介

袋除尘器的基本原理、结构和控制布置

脱硫工程设计方案

篇3:工业燃煤锅炉烟气汞的处理

我国的原煤汞含量在0.1-5.5mg/kg之间,平均为0.22mg/kg,高于世界平均水平约0.09mg/kg,煤的燃烧是大气汞污染的主要来源。2014年,国家新颁布的《锅炉大气污染物排放标准》(GB13271-2014)提出了汞及其化合物的浓度排放限值≤0.05mg/m3。可知,国家对燃煤锅炉烟气的金属汞排放的重视,本文通过对烟气汞的形态论述、脱汞工艺的论述及工程实际的检测来论述燃煤锅炉烟气汞的处理。

1 燃煤烟气汞污染的危害

1.1 燃煤锅炉汞的存在形态

燃煤烟气中的汞主要以单质汞(Hg0)、二价汞(Hg2+)、颗粒汞(Hg)形式存在,由于单质汞熔点低,平衡蒸汽压力高,不易水解,因此比二价汞更难去除。Kevin C.Galbreath等在研究过程中发现,锅炉烟气出口,温度970℃,单质汞占了86%。

1.2 汞污染的危害

锅炉燃煤过程中,燃料煤含有的汞燃烧过程中56.3~69.7%随烟气排放,成为大气中汞的重要来源;23.1~26.9%进入飞灰,仅有2%进入灰渣,可见煤燃烧过程汞污染关键是烟气中汞的排放。全世界每年从燃煤中逸出的汞总量达到3000 t以上,进入生态环境的汞会产生长期的危害,大量的汞通过干沉降或湿沉降污染水体,生物反应后形成剧毒的甲基汞,在鱼类和其他生物体内富集后循环进入人体,对人类健康造成极大危害。

2 燃煤烟气脱汞技术现状

目前燃煤烟气中汞的控制技术一般分为燃烧前脱汞、燃烧中脱汞和燃烧后脱汞。燃烧前脱汞主要是利用洗煤技术及热处理技术去除煤中的部分汞,但其工艺简单对汞的去除量不大;燃烧中脱汞主要是利用改进燃烧方式,在降低NOx的同时抑制一部分汞的排放,其中流化床燃烧器对控制汞的排放有一定的作用,但国内外关于燃烧中脱汞的研究较少;燃烧后烟气脱汞是烟气汞控制技术的主要方式,其不但脱汞效率高,而其易于吸收剂和吸附剂的回收再利用,是目前研究最多的烟气汞处理方法,主要有吸附剂法,催化氧化法和利用现有烟气处理设备。[1,2,3]

3 利用现有烟气处理设备协同脱汞

3.1 工艺流程(见图1)

3.2 脱汞机理

3.2.1 飞灰吸附

烟气中的颗粒态汞主要吸附在飞灰当中,这部分的固相汞可被静电除尘或布袋除尘器在除尘清灰过程中去除。

3.2.2 Hgo的氧化

湿法臭氧脱硝过程中,O3对NO进行氧化的同时,还可有效地促进了Hgo的氧化,烟气中Hgo被转化成Hg2+,Hg2+易溶于水。

3.2.3 钙基吸收

烟气的Hg2+一般以Hg Cl2的形态存在,Hg Cl2易溶于水。在湿式脱硫塔中,采用钙基类物质进行脱硫,美国EPA通过采用钙基类物质对单质汞的脱硫效率进行研究,发现Ca(OH)2、Ca O对Hg2+具有很好的吸附效果。

3.3 工程实施

江门市某企业的15t/h的链条炉烟气量为20000m3/h,采用“干式静电除尘+湿法同步脱硫脱硝+湿式静电除尘”技术路线对锅炉烟气的污染物进行治理。2016年1月14日委托华测检测(CTZ)对利用现有烟气处理设备脱汞效果进行检测,检测报告编号为,冷原子吸收分光光度法检测烟气中汞含量的检测报告(表1-表5)。

4 处理效果及结论

干式静电除尘采样口排放速率为7.8×10-5kg/h;脱硫处理后采样口排放速率为7.1×10-5kg/h;湿法静电除尘采样口排放速率为3.4×10-5kg/h。由于处理前与处理后烟气流量不同,处理效率是用前后变化的排放速率计算得到的。脱硫工艺处理效率为9%,湿法静电工艺处理效率为52.1%。

通过利用现有的烟气处理技术进行协同脱汞,整个工艺流程对汞的脱除有一定的效果。其中,脱硫工艺对汞的处理效率为9%,湿法静电工艺对汞的处理效率为52.1%,脱硫工艺对汞的处理效率不高,而湿法静电除尘工艺对汞的脱除比较好。湿法静电除尘装置的采样口汞的浓度为0.0042mg/m3,符合国家燃煤锅炉大气污染物排放标准,因此使用原有的烟气净化装置,通过技术的组合,便可将汞有效地控制在排放标准之内。

5 存在问题与展望

(1)利用现有的锅炉烟气处理技术“干式静电除尘+湿法同步脱硫脱硝+湿式静电除尘”对汞进行协同处理,处理后的烟气的汞及其化合物浓度远远低于国家燃煤锅炉大气污染物排放标准。

(2)处理后废水中含汞及其化合物,此部分的废水需进行处理,需有待研究。

参考文献

[1]毛吉献,王凡等.燃煤烟气脱汞技术研究进展[J].能源环境保护,2010(24):1-5.

[2]赵毅,马宵颖.现有烟气污染控制设备脱汞技术[J].中国电力,2009(42):77-79.

篇4:燃煤锅炉烟气脱硫工艺与自控研究

[关键词]燃煤锅炉;烟气脱硫;工艺技术;自动控制

当前整个社会正面临着非常严重的环境污染问题,由环境污染所帶来的一系列危害受到了各方人员的关注与重视,并已经对经济持续发展产生了不利影响。其中,酸雨作为危及人体健康,产生严重社会影响的环境问题之一,与人类工业化生产中所使用的煤、石油等燃料有密切关系,这些燃料经过充分燃烧所产生的硫氧化物以及氮氧化物成分在大气中经过复杂的化学反应,并被雨、雪吸收,降落至地面即形成酸雨。由此可见,为了最大限度的减少酸及其所带来的危害,针对燃煤锅炉而言,需要通过实施烟气脱硫工艺的方式,最大限度的减少硫氧化物的排放。本文即就燃煤锅炉烟气脱硫工艺与自动控制方面的问题进行探讨。

1、燃煤锅炉烟气脱硫工艺分析

燃气脱硫是当前在工业领域中脱除硫氧化物作为有效的一项工艺技术,应用范围非常广泛,且脱除效率理想,故得到了非常深入的应用。目前,国内外对烟气脱硫技术的发展趋势主要为更高的脱硫效率、更先进的技术水平、更小的投资力度,更少的占地面积,更低的运行费用,更高的自动化水平。具体而言,当前烟气脱硫工艺的应用主要有以下几种类型:

第一是湿式钙基脱硫工艺,此项工艺是以钙基作为脱硫剂的烟气脱硫技术,在实际应用中,本工艺具有技术经验成熟,可行性高,资源丰富(以石灰石为主),成本低廉,脱硫效率高,对煤种以及负荷变化适应性好的优势,但其结构比较复杂,占地面积较大,初始投资费用较高,且脱硫工艺实施中以脱硫石膏为主要副产品,容易对环境造成二次污染。

第二是湿法钠基脱硫工艺,此项工艺所使用的脱硫剂为钠基成分,具有非常强的践行,因此在吸收燃煤锅炉速哦产生二氧化硫后反应产物的溶解度高,不会出现过饱和结晶成分,但其运行费用较高是导致该工艺现阶段难以广泛推行的主要局限。

2、烟气脱硫工艺自控设计分析

本系统实现烟气脱硫的主要过程为:废液罐(碱罐)中的碱液成分通过加碱泵的操作传输至调节罐中,经过搅拌机充分搅拌并与水形成混合反应,产生具有一定浓度的碱液。这部分碱液通过喷液泵的操作经过加压处理后传输至喷嘴内,在此基础之上通过压缩空气进行雾化处理,喷入捕集进化器筒内,使其与锅炉烟气充分混合,在接触与传质的处理后实现对二氧化硫成分的吸收。

在构建烟气脱硫工艺自动控制系统的过程当中,本工艺废液罐(碱罐)均设置有专门的液位显示计,液位显示计能够将所监测到的液位信号传输至液位仪内,使液位水平在操作终端得以直观的显示。同时,该信号能够被同步传输至继电器工作单元内,当废液罐(碱罐)内部液位达到极限水平后,继电器单元自动转入动作状态,使罐底电磁阀转入开启状态,进而送出碱液,直至液位达到最低水平后电磁阀可自动关闭。在这一过程当中,罐继电器单元可同时接收到相应的信号,若碱液液位不在低位状态,则打开罐底的电磁阀送出碱液,当废液罐中碱液到达高位时,自动关闭碱罐底部的电磁阀,同时打开废液罐电磁阀,恢复由废液罐供碱。所供应碱液通过加碱泵处理后传输至调节罐内并与水进行混合反应。调节罐内所设置的PH探头能够对内部碱液浓度进行检测,检测中所生成的信号传输至PH计中,通过信号转数字的方式加以直观显示。进一步可将检测信号调整为电流(电流大小在4.0mA~20.0mA范围内)形式传输至PID调节仪表当中,将其与给定信号进行比较,最后传输变频器中,实现对加碱泵以及加碱液速度的调节控制。

除此以外,整个烟气脱硫工艺系统中还可以应用浮球开关对自来水进水阀进行控制,进而实现对调节罐液位的自动控制。还需要注意的一点是:当调节罐液位<电子液位计最低限位时,相应的信号则被传输至PLC中,系统整体执行停机动作。

系统整体构成如下图所示(见图1)。

图1 系统整体构成示意图

1)软件界面设计:本工艺系统自动控制的实现应用PLC完成,所涉及到的主要控制对象包括以下几个方面,1)对加碱泵启停动作切换的控制;2)对喷液泵启动动作切换的控制;3)对两套泵互锁功能的控制;4)对喷液压力显示功能的控制;5)对电磁阀操作功能的控制。以上控制功能以及操作的实现均搭建在PLC人机界面的基础之上完成。

2)设备选型:本工艺系统自动化控制所使用环境相对比较恶劣,因此设备选型中应当尽可能的选择质量可靠且性能优良的品牌产品。具体选型如下:1)变频器选型为FVR-E93,生产厂家为日本FUJI;2)液位计选型为PXW7BEY2,生产厂家为日本FUJI;3)可编程控制器选型为DVP-20EX,生产厂家为台湾台达;4)可编程控制器人机操作界面选型为DVP-20XP,生产厂家为日本FUJI;5)PH计选型为P33AINN,生产厂家为德国BURKERT;6)电磁阀选型为1067,生产厂家为德国BURKERT。

3、结束语

在现代工业化进程的背景作用之下,人类生存环境受到了非常严峻的挑战,酸雨作为影响社会环境可持续发展的关键问题之一,解决此问题的首要途径是控硫氧化物的排放。因此,燃煤锅炉烟气脱硫工艺的应用有着非常深入的现实意义与价值。本研究中将烟气脱硫工艺应用于燃煤锅炉中,并针对烟气脱硫工艺的控制要点进行了分析与阐述,值得引起重视。

参考文献

[1]曹媛,王娟,钟秦等.微生物烟气脱硫工艺中硫化物生物氧化与回收单质硫的研究[J].中国电机工程学报,2011,31(29):48-54.

[2]张利琴,李凌昇,谢明等.火电厂石灰石-石膏湿法烟气脱硫工艺过程监控[J].山西化工,2015,35(2):82-84.

篇5:燃煤锅炉烟气脱硫工艺与自控研究

摘要:文章对燃煤锅炉烟气脱硫工艺的主要类型进行了分析,根据所使用脱硫剂类型的不同,介绍了相应工艺方案的优势与局限,并重点从自动控制的角度入手,分析燃煤锅炉烟气脱硫工艺自动控制系统的设计与实现方案,望引起关注。

关键词:燃煤锅炉;工艺技术;自动控制;烟气脱硫

当前整个社会正面临着非常严重的环境污染问题,由环境污染所带来的一系列危害受到了各方人员的关注与重视,并已经对经济持续发展产生了不利影响。其中,酸雨作为危及人体健康,产生严重社会影响的环境问题之一,与人类工业化生产中所使用的煤、石油等燃料有密切关系,这些燃料经过充分燃烧所产生的硫氧化物以及氮氧化物成分在大气中经过复杂的化学反应,并被雨、雪吸收,降落至地面即形成酸雨。由此可见,为了最大限度的减少酸及其所带来的危害,针对燃煤锅炉而言,需要通过实施烟气脱硫工艺的方式,最大限度的减少硫氧化物的排放。本文即就燃煤锅炉烟气脱硫工艺与自动控制方面的问题进行探讨。

1、燃煤锅炉烟气脱硫工艺分析

燃气脱硫是当前在工业领域中脱除硫氧化物作为有效的一项工艺技术,应用范围非常广泛,且脱除效率理想,故得到了非常深入的应用。目前,国内外对烟气脱硫技术的发展趋势主要为更高的脱硫效率、更先进的技术水平、更小的投资力度,更少的占地面积,更低的运行费用,更高的自动化水平。具体而言,当前烟气脱硫工艺的应用主要有以下几种类型:

第一是湿式钙基脱硫工艺,此项工艺是以钙基作为脱硫剂的烟气脱硫技术,在实际应用中,本工艺具有技术经验成熟,可行性高,资源丰富(以石灰石为主),成本低廉,脱硫效率高,对煤种以及负荷变化适应性好的优势,但其结构比较复杂,占地面积较大,初始投资费用较高,且脱硫工艺实施中以脱硫石膏为主要副产品,容易对环境造成二次污染。

第二是湿法钠基脱硫工艺,此项工艺所使用的脱硫剂为钠基成分,具有非常强的践行,因此在吸收燃煤锅炉速哦产生二氧化硫后反应产物的溶解度高,不会出现过饱和结晶成分,但其运行费用较高是导致该工艺现阶段难以广泛推行的主要局限。

2、烟气脱硫工艺自控设计分析

本系统实现烟气脱硫的主要过程为:废液罐(碱罐)中的碱液成分通过加碱泵的操作传输至调节罐中,经过搅拌机充分搅拌并与水形成混合反应,产生具有一定浓度的碱液。这部分碱液通过喷液泵的操作经过加压处理后传输至喷嘴内,在此基础之上通过压缩空气进行雾化处理,喷入捕集进化器筒内,使其与锅炉烟气充分混合,在接触与传质的处理后实现对二氧化硫成分的吸收。

在构建烟气脱硫工艺自动控制系统的过程当中,本工艺废液罐(碱罐)均设置有专门的液位显示计,液位显示计能够将所监测到的液位信号传输至液位仪内,使液位水平在操作终端得以直观的显示。同时,该信号能够被同步传输至继电器工作单元内,当废液罐(碱罐)内部液位达到极限水平后,继电器单元自动转入动作状态,使罐底电磁阀转入开启状态,进而送出碱液,直至液位达到最低水平后电磁阀可自动关闭。在这一过程当中,罐继电器单元可同时接收到相应的信号,若碱液液位不在低位状态,则打开罐底的电磁阀送出碱液,当废液罐中碱液到达高位时,自动关闭碱罐底部的电磁阀,同时打开废液罐电磁阀,恢复由废液罐供碱。所供应碱液通过加碱泵处理后传输至调节罐内并与水进行混合反应。调节罐内所设置的PH探头能够对内部碱液浓度进行检测,检测中所生成的信号传输至PH计中,通过信号转数字的方式加以直观显示。进一步可将检测信号调整为电流(电流大小在4.0mA~20.0mA范围内)形式传输至PID调节仪表当中,将其与给定信号进行比较,最后传输变频器中,实现对加碱泵以及加碱液速度的.调节控制。

除此以外,整个烟气脱硫工艺系统中还可以应用浮球开关对自来水进水阀进行控制,进而实现对调节罐液位的自动控制。还需要注意的一点是:当调节罐液位<电子液位计最低限位时,相应的信号则被传输至PLC中,系统整体执行停机动作。

1)软件界面设计:本工艺系统自动控制的实现应用PLC完成,所涉及到的主要控制对象包括以下几个方面,1)对加碱泵启停动作切换的控制;2)对喷液泵启动动作切换的控制;3)对两套泵互锁功能的控制;4)对喷液压力显示功能的控制;5)对电磁阀操作功能的控制。以上控制功能以及操作的实现均搭建在PLC人机界面的基础之上完成。

2)设备选型:本工艺系统自动化控制所使用环境相对比较恶劣,因此设备选型中应当尽可能的选择质量可靠且性能优良的品牌产品。具体选型如下:1)变频器选型为FVR-E93,生产厂家为日本FUJI;2)液位计选型为PXW7BEY2,生产厂家为日本FUJI;3)可编程控制器选型为DVP-20EX,生产厂家为台湾台达;4)可编程控制器人机操作界面选型为DVP-20XP,生产厂家为日本FUJI;5)PH计选型为P33AINN,生产厂家为德国BURKERT;6)电磁阀选型为1067,生产厂家为德国BURKERT。

3、结束语

在现代工业化进程的背景作用之下,人类生存环境受到了非常严峻的挑战,酸雨作为影响社会环境可持续发展的关键问题之一,解决此问题的首要途径是控硫氧化物的排放。因此,燃煤锅炉烟气脱硫工艺的应用有着非常深入的现实意义与价值。本研究中将烟气脱硫工艺应用于燃煤锅炉中,并针对烟气脱硫工艺的控制要点进行了分析与阐述,值得引起重视。

参考文献:

[1]曹媛,王娟,钟秦等.微生物烟气脱硫工艺中硫化物生物氧化与回收单质硫的研究[J].中国电机工程学报,,31(29):48-54.

[2]张利琴,李凌昇,谢明等.火电厂石灰石-石膏湿法烟气脱硫工艺过程监控[J].山西化工,,35(2):82-84.

篇6:锅炉水处理设备工作流程

我们都知道软化水设备从最根本分为和自动两种,锅炉水处理设备是传统的软化水制备标准方式,主要有顺流、逆流两种形式,一般是两只软化水树脂罐体并联,根据工艺流程不同,每只罐体需要配用8-11只阀门)再生时用专用的盐泵将溶解好的盐液泵入软化水树脂罐。

锅炉水处理设备特点

1)流程简单易懂,易于操作,成本低,可以适用于流量很大的需要;

2)水质要求

软化水阀系统对来水水质要求比较低,水中含有杂质等不会对阀体造成影响。

3)操作及维修

软化水阀系统的操作十分简单,非专业人士也可进行操作。维修也比较简单,只需要将损坏的零件更换即可,不存在整体更换。

锅炉水处理设备运行

控制钠离子交换器,罐体为软化水树脂罐,外形美观大方,且在软化的基础上更新设计,融入新技术、新材料,使得操作简单明了,更具人性化,运行也更加稳定。四套控制钠离子交换器操作模式都一样,二台为一组,一用一备,可二十四小时不间断运行。当一台运行时,另一台处于备用状态,根据原水硬度、树脂填充量等参数计算出周期制水量,再结合每天的用水量和用水规律就可以确定再生时间,当处于运行状态的软水器需再生时,启用备用的另一台,交替运行,实现不间断供水。

设备运行注意事项

1、软水器必须安装在牢固的水平地面上,附近应设计有排水管道。

2、盐罐安放应靠近树脂罐。

3、装填树脂:将处理好的树脂按照核定的装填量放入树脂罐。

4、启动软水器时,应关闭旁通阀,然后开启出口控制阀,最后缓慢开启进口控制阀(注意:如进口控制阀开启过快,管道内的水和残留的空气会进入软水器造成树脂随水流跑出树脂罐现象)。

5、在最初使用阶段需加强水质检测,并根据水质变化调整再生过程(合理的再生时间),使之处于最佳工作状态。

6、盐罐内注意要有足够饱和的再生剂,以保证下一还原周期再生所用的盐量。

上一篇:新学期开学典礼优秀学生代表发言稿下一篇:2020幼儿园大班第二学期年段工作计划