高中物理光的干涉教案

2024-08-05

高中物理光的干涉教案(通用7篇)

篇1:高中物理光的干涉教案

高中物理教案光的干涉

第十三章第2节光的干涉

课前预习学案

一、预习目标

预习“光的干涉”,初步了解产生光的明显干涉的条件以及出现明暗条纹的规律。

二、预习内容

1、请同学们回顾机械波的干涉现象 以及产生的条件 ;

2、对机械波而言,振动加强的点表明该点是两列波的 ,该点的位移随时间 (填变化或者不变化);振动减弱的点表明该点是两列波的 ;

3、不仅机械波能发生干涉,电磁波等一切波都能发生干涉,所以光若是一种波,则光也应该能发生干涉

4、相干光源是指:

5、光的干涉现象:

6、光的干涉条件是:

7、杨氏实验证明:

8、光屏上产生亮条纹的条件是

;光屏上产生暗条纹的条件是

9、光的干涉现象在日常生活中很少见的,这是为什么?

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

疑惑点 疑惑内容

课内探究学案

一、学习目标

1.说出什么叫光的`干涉

2.说出产生明显干涉的条件

3.准确记忆产生明暗条纹的规律

学习重难点:产生明暗条纹规律的理解

二、学习过程

(一)光的干涉

探究一:回顾机械波的干涉

1.干涉条件:

2.干涉现象:

3.规律总结

探究二:光的干涉条件及出现明暗条纹的规律

1.光产生明显干涉的条件是什么?

2.产生明暗条纹时有何规律:

(1)两列振动步调相同的光源:

(2)两列振动步调正好相反的光源:

(三)课堂小结

(四)当堂检测

1、在杨氏双缝实验中,如果 ( BD )

A、用白光做光源,屏上将呈现黑白相间的条纹

B、用红光做光源,屏上将呈现红黑相间的条纹.

C、用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹

D、用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹.

2、诺贝尔物理学家将授予对激光研究做处杰出贡献的三位科学家。如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S1、S2, 由S1和S2发出的两列波到达屏上时会产生干涉条纹。已知入射激光波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记做0号亮

条纹,由P向上数与0号亮纹相邻的是1号亮纹,与

1号亮纹相邻的亮纹为2号亮纹,设P1处的亮纹恰好

是10号亮纹,直线S1 P1的长度为r1, S2 P1的长度为

r2, 则r2-r1等于( B )

A、5λ B、10λ. C、20λ D、40λ

课后练习与提高

1. 在双缝干涉实验中,入射光的波长为λ,若双缝处两束光的振动情况恰好相同,在屏上距两缝波程差d1= 地方出现明条纹;在屏上距两缝波程差d2=

地方出现暗条纹;若双缝处两束光的振动情况恰好相反,在屏上距两缝波程差d3= 地方出现明条纹;在屏上距两缝波程差d4=

地方出现暗条纹 。

2.

用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则

(A) 干涉条纹的宽度将发生改变.

(B) 产生红光和蓝光的两套彩色干涉条纹.

(C) 干涉条纹的亮度将发生改变.

(D) 不产生干涉条纹 [ D 】

3. 双缝干涉中屏幕E上的P点处是明条纹.若将缝S2盖住,并在S1 S2连线的垂直平分面处放一高折射率介质反射面M,如图所示,则此时 [ A ]

(A) P点处仍为明条纹.

(B) P点处为暗条纹.

(C) 不能确定P点处是明条纹还是暗条纹.

(D) 无干涉条纹.

篇2:高中物理光的干涉教案

人教版普通高中课程标准实验教科书·物理选修3-4·第十三章第三节。

教学内容分析

(一)作用与地位

本节是在《机械波》的基础上展开的,上承几何光学,也是后面学习《光的衍射》等知识的基础,本节揭示了光的波动性,促使人类对光的本性有更进一步的认识。同时也与选修3-5《光电效应》共同构成光的波粒二象性,所以本节具有重要的研究意义。

(二)课程标准

1、观察光的干涉现象;2、知道产生干涉现象的条件。

(三)课程特点

课程标准是课程的宏观结构,教材是课程的微观结构。从教材特点看,本节通过提出猜想:如果光真的是一种波;随后进行杨氏双缝实验,通过得到干涉图样,进而证明光是一种波;最后讨论路程差与半波长的关系,得出明暗条纹出现的条件。

但教材中并没有突出“空间”干涉;双缝干涉实验的示意图并没有采用形象化的展示,从而影响了学生对光的干涉机理的理解;增加了学习的难度,所以我对教材做了以下的处理:

1.增加创新演示实验,利用丁达尔效应展示干涉通路,有助于学生对物理规律的深刻理解;

2. 通过演示光波直观图示,形象的展示光波的干涉机理,化抽象的光波为直观;

3.增强教学中的逻辑性,注重知识的构建过程;

学生情况分析

(一)思维特点

按皮亚杰的理论,高二学生正处在形式运算的思维阶段, 遵循从简单到复杂,从直观到抽象的认知规律,但是他们的抽象思维能力还不够强,常常会需要具体的表象或类比于相似的具体经验来支持思维过程。

(二)知识基础

学生已经学习了机械波的内容,对机械波的干涉和波的叠加原理有一定认识。

(三)认知困难

但学生知识的迁移能力相对薄弱,且光的干涉机理比较抽象,加之对光干涉无本质的认识。

教学目标分析

(一)知识与技能

(1)知道光产生干涉的条件,知道光是一种波;

(2)知道光的干涉现象和干涉条纹的分布特点;

(3)知道路程差与明暗条纹之间的关系。

(二)过程与方法

(1)通过光的干涉与机械波干涉的类比,培养学生比较分析的能力和知识迁移的能力。

(三)情感、态度、价值观

(1)通过观察实验,培养学生实事求是的科学态度。

(2)通过了解杨氏双缝干涉实验,培养学生的物理学史情怀,增加对物理学的热爱。

教学重难点

重点:光的干涉特点和产生条件

重点:明暗条纹产生的原因

教学策略分析

一、教学方法

主要采用实验法、讲授法、并辅以提问法等教法,把教学过程设计成以激发学生兴趣的吹肥皂泡实验为切入点,以观察实验和已有知识为基础,以“为什么肥皂泡表面的条纹始怎么形成的?”等问题为主线的师生对话活动,

实验法

通过探究杨氏双缝实验,观察光干涉的特点,得出光是一种波;通过创新演示实验,利用丁达尔效应显现干涉通路,展示光干涉的空间性,进一步理解光的波动性;通过演示直观图示模拟波在空间P点的三种叠加情况(峰峰、谷谷、峰谷),理解光的干涉机理。

(2)讲授法

通过已熟悉的机械波干涉,迁移到光干涉问题的新情境中来,加强学生知识的迁移能力。

二、学法指导

在学法指导上,注重引导学生合作实验探究,观察思考,多自主讨论,重视分析归纳,使学生自主发现问题,解决问题,在获取新知识的同时提高合作意识,独立思考,易迁移,领会物理学的思想。

教学准备

教具:肥皂水、激光笔、双缝、支架、水槽、清水、牛奶、自制教具等。

多媒体:PPT、图片、图示模型、动画、视频等

实验创新

本节课除去导入新课使用的趣味实验和双缝实验外,设计了两个实验。

实验1 传统的双缝干涉实验不能明显的展示干涉具有空间性,但通过往清水中加入牛奶,利用丁达尔效应显示干涉通路,进一步加深学生对光波动性的认识。

实验2 课本中光干涉的插图并没有让学生清晰的认识到干涉的机理,通过利用演示实验,制作两列波在空间某点P的三种叠加情况(波峰与波峰叠加、波谷与波谷叠加、波峰与波谷叠加),直观展示光波叠加的实际过程,让学生更好的理解明暗条纹产生的原因。

教学流程

教学过程设计

教学环节和教学内容 教师活动 学生活动 设计意图 一、创设情境,引入课题:

介绍器材:肥皂水、塑料圈

演示实验:吹泡泡

二、创新演示实验 展示空间干涉

1.学习物理学史,增强对物理学的热爱

介绍以牛顿为代表的物理学家认为光是粒子性的,以惠更斯为代表的物理家提出了波动性及托马斯杨实验。

2.进行实验探究,观察实验现象

实验器材:绿色激光、双缝片、光屏

介绍实验装置,进行双缝干涉实验。

观察实验,总结现象:中间是明条纹,并且出现明暗相间的条纹。

光干涉条件:频率、相位差、振动方向相同。

实验结论:光是一种波。

干涉图样特点:出现中央亮纹,亮度往两边变暗;明(暗)条纹的宽度相同。

3.演示创新实验,展示空间干涉

前后移动激光笔,引导学生观察干涉图样。

实验器材:单色激光、双缝、牛奶、水槽、水。

利用丁达尔现象演示光干涉通路。

更进一步地认识光的波动性。

得出结论:光在整个叠加空间区域内都发生干涉。

三、演示形象图示,理解干涉原理

通过演示直观的光波叠加图示:通过类比机械波的叠加图示,在空间某点P,恰好两列相干波波峰与波峰叠加,由于波峰的振幅最大,且振动方向相同,叠加时振幅更大,则相干加强,以此迁移到抽象的光波,在光屏该处则为明条纹,同理波谷与波谷在此处叠加也为明条纹,波峰与波谷则为暗条纹。

(同理谷谷叠加也为明条纹,没有展示叠加图示)

篇3:高中物理光的干涉教案

教学目标:

1.相干光源的获得及光波的干涉和衍射的条件,双缝干涉中为什么能形成明暗相间的条纹及明暗条纹的计算方法,从而确切地理解光的干涉和衍射现象的形成。

2.在新的情景下能够运用波的分析方法解决问题。

3.通过“扬氏双缝干涉”实验的学习,渗透科学家认识事物科学的物理思维方法.

难点、重点:

1.波的干涉条件,相干光源.

2.如何用波动说来说明明暗相间的干涉条纹,怎么会出现时间上是稳定的,空间上存在着加强区和减弱区并且互相间隔,如何理解“加强”和“减弱”.

教学过程:

(一)引入

光的本性学说的发展简史。

从原始的微粒说,到牛顿的微粒说,惠更斯的波动说,进而发展到光的电磁说。又从光电效应重新认识到光的粒子性,直至统一到光的波粒二象性。应结合每个阶段的典型现象和实验,对这一过程发展脉络有较清晰的了解。

(二)新课教学

一、光的干涉现象

(1)相干光源的获得。两列波叠加发生明显干涉现象的条件是二者频率相等,相差恒定。两个普通光源很难达到这一要求。通常是把一束光想办法分成两部分,让这两部分再叠加以达到干涉效果。杨氏双缝实验装置正是这样巧妙地获得了两列相干的波源。

(2)杨氏双缝干涉实验。一束光通过单缝照射到相距非常近的两个狭缝后,形成频率相同的两束光。这两束光的叠加,在光屏上就产生了干涉条纹。如果用单色光照射狭缝,在屏上得到的是与狭缝平行的明暗相间的等间距条纹。屏上某点到双缝的距离之差若是入射光波长的整数倍,则屏上这点出现的是亮条纹;屏上某点到双缝的距离之差若是入射光半波长的奇数倍,则屏上这点出现的是暗条纹。由公式

用心 爱心 专心

可知,条纹宽度与波长λ及

双缝到光屏的距离成正比而与双缝间距d成反比。在、d一定的情况下,红光产生的干涉条纹间距最大,紫光产生的干涉条纹间距最小。若用白光进行干涉实验则在屏上得到的是彩色的干涉条纹。

(3)薄膜干涉。一束光经薄膜前后两个表面反射后相干叠加而成的干涉现象叫薄膜干涉。应用分析光程差与波长关系的方法也可分析薄膜干涉图样的特点。生活和实验中有各种薄膜干涉现象,如肥皂膜、油膜、空气隙、牛顿环、增透膜等。

二、光的干涉的分析

让一束单色光(例如红光)投到一个有孔的屏上,如图所示,这个小孔就成了一个“点光源”.光从小孔出来后,就射到第二个屏的两个小孔上,这两个小孔离得很近,约为0.1mm,而且与前一个小孔的距离相等,这样在任何时刻从前一个小孔发出的光波都会同时传到这两个小孔,这两个小孔就成了两个振动情况总是相同的波源.

那么,明暗相间的条纹又是怎样形成的呢?

对照机械波的情况,如果两列波在相叠加的区域传播的路程差为一个波长的整数倍时,该区域的振动就加强,如果两列波在叠加区域传播的路程差为半波长的奇数倍时,该区域的振动就减弱.

如图,甲图中P点在S1S2的中垂线上,所以,两列波的路程差△s=0.所以,振动被加强,为明条纹.

乙图中,在P点上方的P1点,屏上与狭缝S1、S2的路程差△s=λ又出现明条纹.

用心 爱心 专心 2

丙图中,在P1点的上方还可以找到△s=2λ的P2点,在该点上方还能找到路程差为3λ、4λ„的点,在这些地方振动均被加强.同样,在P点的下方也能找到路程差为λ、2λ、3λ„的点.

如图,在甲图中,在P与P1之间一定有一个Q1点,S1、S2点到该点的路程差为λ/2,该点为振动减弱的点,同理,我们无论在P点的上方还是在P点的下方均能找到路程差为半波长的奇数倍的点,这些点均为暗条纹,这样就形成了明暗相间的条纹.

白光的干涉条纹,为什么中间条纹为白色,而中央亮条纹的边缘出现了色彩?

这是因为白光是由不同颜色的单色光复合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距

用心 爱心 专心 3

与光波的波长成正比.各色光在双缝的中垂线上均为亮条纹,故各色光重合,为白色.各色光产生的条纹宽度不同,所以,中央亮条纹的边缘处出现了彩色条纹.

刚才你提到在狭缝间的距离和狭缝与屏的距离不变的条件下,如果我假设其它条件不变,将像屏稍微向双缝屏移动或远离双缝屏移动,像屏上的条纹是不是就模糊不清了呢?

我想像屏上仍有清晰的干涉条纹,因为仍可以在像屏上找到两列波的路程差为0、λ、2λ、3λ„nλ的点,也仍可找到两列波的路程差为λ/

2、3λ/2„(2n—1)λ/2的点.

下面对薄膜干涉再提几个问题,第一,薄膜干涉是由哪两列波叠加而产生的?

当光照射到薄膜上时,光从薄膜的前后(或上下)两个表面反射回来,形成两列波,由于它们是从同一光源发出的,这两列波的波长和振动情况相同,为两列相干光波.

将肥皂膜竖直放在点燃的洒有钠盐的酒精灯附近,这时你看到的干涉条纹是什么样的?为什么形成这样的条纹?

我们看到的干涉条纹基本上是水平的明暗相间的黄色条纹.呈现黄色是因为酒精灯火焰中放入了钠盐,呈基本水平的条纹是因为,肥皂膜竖直放置,由于重力的作用肥皂膜形成了上薄下厚的楔形,在薄膜的某些地方,前后表面反射光出来恰好是波峰与波峰叠加或波谷与波谷叠加,使光的振动加强,形成黄色的亮条纹;在另外一些地方,两列反射光恰好是波峰与波谷叠加,使光的振动相抵消,形成暗条纹.由于楔形表面的同一厚度基本在一水平线上,所以,我们看到的干涉条纹基本是水平的.

薄膜干涉在技术上有哪些应用?

(1)利用光的干涉可以检验光学玻璃表面是否平整。

(2)现代光学仪器的镜头往往镀一层透明的氟化镁表面。

为什么要在镜头上涂一层氟化镁薄膜呢?它怎么起到增加透射光的作用呢?

现代光学装置,如摄像机、电影放映机的镜头,都是由多个透镜或棱镜组成的,进入这

用心 爱心 专心 4

些装置的光,在每个镜面上都有10%~20%的光被反射,如果一个装置中有5个透镜或棱镜,那么将会有50%的光被反射,若在镜的表面涂上一层增透膜,就可大大减少了光的反射,增强光的透射强度,提高成像质量.

氟化镁薄膜应镀多厚?为什么?镀了膜的光学器件与未镀膜的光学器件在外表上有什么区别?为什么?

氟化镁薄膜的厚度应为光在氟化镁中波长的1/4,两个表面的反射光的路程差为半波长的奇数倍时,两列反射光相互抵消.所以,膜厚为光在氟化镁中波长的1/4,是最薄的膜.

镀了膜的光学器件与未镀膜的光学器件在外表上是有区别的.镀膜的光学器件呈淡紫色,因为在通常情况下,入射光为白光,增透膜只能使一定波长的光反射时相互抵消,不可能使白光中所有波长的光反射时抵消.在选增透膜时,一般是使对人眼灵敏的绿光在垂直入射时相互抵消,这时光谱边缘部分的红光和紫光并没有相互抵消,因此涂有增透膜的光学器件呈淡紫色.

三、光的衍射现象

光偏离直线传播方向而绕到障碍物阴影里去的现象叫光的衍射。要产生明显的衍射现象,障碍物或小孔的尺寸要足够小(一般应不大于波长的百倍)。

光照射到一个狭缝上产生的衍射叫单缝衍射。单色光(或白光)的衍射条纹是明暗相间(或彩色)的与狭缝平行的条纹。条纹特点是中央条纹宽且亮,两侧条纹暗且窄。注意它与双缝干涉条纹的区别。条纹宽度随缝宽变窄及波长变长而加大。

用小圆屏进行衍射实验,衍射图样是在圆盘的阴影中心出现泊松亮斑。而用小圆孔进行衍射实验,衍射图样是一系列同心圆环,圆环中央明暗不定。了解一些实际生活中光的衍射现象及其应用(如光栅等)。

用心 爱心 专心 5

四、双缝干涉条纹与单缝衍射条纹有什么区别?

光波发生干涉现象时产生干涉条纹,光波发生衍射现象时产生衍射条纹,那么,干涉和衍射本质上有什么相同和不同之处吗?双缝干涉条纹与单缝衍射条纹有什么区别呢?

干涉和衍射本质上都是光波的叠加,都证明了光的波动性,但两者有所不同.首先干涉是两列相干光源发出的两列光波的叠加;衍射是许多束光的叠加.稳定的干涉现象必须是两列相干波源,而衍射的发生无须此条件,只是,当障碍物或孔与光的波长差不多或还要小的时候,衍射才明显.干涉和衍射的图样也不同,以双缝干涉和单缝衍射的条纹为例,干涉图样由等间距排列的明暗相间的条纹(或彩色条纹)组成,衍射图样是由不等距的明暗相间(中央亮条纹最宽)的条纹或光环(中央为亮斑)组成. 例题解析

()

1、用单色光照射双缝,在屏上观察到明暗交替的条纹,若要使条纹间距变大,应

A.改用频率较大的单色光

B.改用波长较长的单色光

C.减小双缝至屏的距离

D.增大双缝之间的距离

分析与解答:双缝干涉的条纹间距可表示为L/d,也就是与双缝到屏的距离L成正比,与照射双缝的光波波长成正比,与双缝间距d成反比。据此不难得出正确选项为B。

说明:利用干涉现象中条纹间距与波长的关系可以通过测量条纹间距(用累计法测多组条纹的间距后求平均值)来求得波长。即

用心 爱心 专心

/L。

2、在平静的水面上有一层厚度均匀的透明油膜,能否观察到干涉条纹?

分析与解答:光照到厚度均匀的透明油膜时,从油膜上下两个表面反射回来的两列光波的光程差处处相等,要么都互相加强(亮),要么互相减弱(暗),不会出现明暗相间的干涉条纹。

说明:我们看到的明暗相间的干涉条纹(或花纹),是薄膜厚度变化造成的,有的地方满足加强的条件,有的地方满足减弱的条件。增透膜的厚度是均匀的,因此它可以使某种色光在膜的上下表面反射回来后,处处都互相减弱,而增加该色光的透射光能。

3、某同学以线状白炽灯为光源,利用游标卡尺两脚间形成的狭缝观察光的衍射现象后,总结出以下几点:

A.若狭缝与灯丝平行,则衍射条纹与狭缝平行

B.若狭缝与灯丝垂直,则衍射条纹与狭缝垂直

C.衍射条纹的疏密程度与狭缝的宽度有关

D.衍射条纹的间距与光的波长有关

以上几点中,你认为正确的是________。

分析与解答:单缝衍射的条纹特点是条纹与狭缝平行,条纹的间距随缝宽的减小而增大(缝宽也不能太小,否则光能太弱观察不到衍射现象),随波长的增大而增大。据此可得答案为A、C、D。

说明:衍射现象的理论分析比较复杂,学习时不必仔细推导,而应把重点放在各种衍射现象及其变化规律上。

用心 爱心 专心 7

1.托马斯·扬上第一次解决了相干光源问题,成功做出了光的干涉实验,使人们认识到光具有波动性.

2.两个相干光源发出的光在屏上某处叠加时如果同相,光就加强,如果反相光就减弱,于是产生明暗条纹,其特征是在中央明纹两侧对称地分布着明暗相间的各级干涉条纹,且相邻明纹和相邻暗条纹的间隔相等.复色光则出现彩色条纹.

篇4:高中物理光的干涉教案

【教学目标】

(一)知识与技能

1.通过实验观察认识光的干涉现象,知道从光的干涉现象说明光是一种波。2.掌握光的双缝干涉现象是如何产生的,何处出现亮条纹,何处出现暗条纹。

(二)过程与方法

1.通过杨氏双缝干涉实验,体会把一个点光源发出的一束光分成两束,得到相干光源的设计思想。

2.通过根据波动理论分析单色光双缝干涉,培养学生比较推理,探究知识的能力。

(三)情感、态度与价值观

通过对光的本性的初步认识,建立辩证唯物主义的世界观。【教学重点】双缝干涉图象的形成实验及分析。【教学难点】亮纹(或暗纹)位置的确定。【教学方法】复习提问,实验探究,计算机辅助教学

【教学用具】JGQ型氦氖激光器一台,双缝干涉仪,多媒体电脑及投影装置,多媒体课件(相关静态图片及Flash动画)【教学过程】

(一)引入新课 复习机械波的干涉 [复习提问,诱导猜想] [多媒体投影静态图片] 师:大家对这幅图还有印象吗? 生:有,波的干涉示意图。

师:[投影问题]请大家回忆思考下面的问题:

图中,S1、S2是两个振动情况总是相同的波源,实线表示波峰,虚线表示波谷,a、b、c、d、e中哪些点振动加强?哪些点振动减弱? 学生回答结果不出所料,大部分同学能答出a、c两点振动加强,d、e两点振动减弱,而对于b点则出现了争议。一种认为b点是振动加强点,另一种则认为b点是由加强到减弱的过渡状态。

师:b点振动加强和减弱由什么来决定呢?只有弄清这一点才能解决两派同学的争端。(有学生低语,“路程差”)

师:好!刚才这位同学说到了关键,那么就请你来分析一下b点与S1、S2两点的路程差。生:由图可以看出OO′是S1、S2连线的中垂线,所以b到S1、S2的路程差为零。师:那么b点应为振动——(学生一起回答):加强点。

(教师总结机械波干涉的规律,突出强调两列波的振动情况总是完全相同。)师:光的波动理论认为,光具有波动性。那么如果两列振动情况总是相同的光叠加,也应该出现振动加强和振动减弱的区域,并且出现振动加强和振动减弱的区域互相间隔的现象。那么这种干涉是一个什么图样呢?大家猜猜。

生:应是明暗相间的图样。

师:猜想合理。那么有同学看到过这一现象吗?(学生一片沉默,表示没有人看到过)师:看来大家没有见过。是什么原因呢?

[生1]可能是日常生活中找不到两个振动情况总相同的光源。[生2]可能是我们看见了但不知道是光的干涉现象。

师:两位同学分析得非常好,也许是没有干涉的条件,也许是相逢未必曾相识。大家看他们俩谁分析得对呢?

生:我觉得生1说的不成立,这样的光源很多,像我们教室里的日光灯,我觉得它们完全相同。

师:好。我们可以现场来试试。

(先打开一盏日光灯,再打开另一盏对称位置的日光灯)

师:请大家认真找一找,墙上、地上、天花板上,有没有出现明暗相间的干涉现象?(大家积极寻找,没有发现,思维活跃,议论纷纷)师:看来两个看似相同的日光灯或白炽灯光源并不是“振动情况总相同的光源”。[投影图]

师:1801年,英国物理学家托马斯·杨想出了一个巧妙的办法,把一个点光源分成两束,从而找到了“两个振动情况总是相同的光源”,成功地观察到了干涉条纹,为光的波动说提供了有力的证据,推动了人们对光的本性的认识。下面我们就来重做这一著名的双缝干涉实验。

(二)进行新课 1.杨氏干涉实验 [动手实验,观察描述] 介绍杨氏实验装置(如图)

师:用氦氖激光器演示双缝干涉实验。

用激光器发出的红色光(平行光)垂直照射双缝,将干涉图样投影到教室的墙上,引导学生注意观察现象。

现象:可以看到,墙壁上出现明暗相间的干涉条纹。

师:(介绍)狭缝S1和S2相距很近,双缝的作用是将同一束光波分成两束“振动情况总是相同的光束”。这样就得到了频率相同的两列光波,它们在屏上叠加,就会出现明暗相间的条纹”。

结论:杨氏实验证明,光的确是一种波。2.亮(暗)条纹的位置 [比较推理,探究分析]

师:通过实验,我们现在知道,光具有波动性。现在我们是不是可以根据机械波的干涉理论来认真探究一下实验中的明暗条纹是如何形成的呢?

[投影图]

图中,P0点距S1、S2距离相等,路程差Δ=S1 P0-S2 P0=0应出现亮纹,(中央明纹)

[演示动画]图20—3中S1、S2发出的正弦波形在P点相遇叠加,P点振动加强(如图)

鉴于上述动画的表述角度和效果,教师在此基础上再播放动画,如下图所示振动情况示意图,使学生进一步明确.不管波处于哪种初态,P0点的振动总是波峰与波峰相遇或波谷与波谷相遇,振幅A总为A1、A2之和,即P点总是振动加强点,应出现亮纹。

师:那么其他点情况如何呢? [投影图]

P1点应出现什么样的条纹? 生:亮纹。师:为什么?

生:因为路程差为λ,是半波长的2倍。师:我们可以从图上动画看一下,[演示下图]

在这里大家看到,屏上P1点的上方还可以找到Δ2=|S1P2-S2P2|=2λ的P2点,Δ3=|S1P3-S2P3|=3λ的P3点,Δn=|S1Pn-S2Pn|=nλ的Pn点,它们对应产生第2、3、4„条明条纹,还有明条纹的地方吗?

生:在P点下方,与P1、P2等关于P0对称的点也应是明条纹。师:好。我们可以总结为:Δ=2n·

,n=0、1、2„时,出现明纹。2[投影下图]那么S1、S2发出的光在Q1点叠加又该如何呢?

[演示动画]我们先来看一下,动画显示,在Q1点振动减弱。

师:在Q1点是波峰与波峰相遇还是波峰与波谷相遇?两振动步调如何? 生:是波峰与波谷相遇,振动步调刚好相反。

(教师启发学生进一步分析这点合振幅情况,以及Q1点与P0、P1的相对位置。)师:哪位同学能总结一下Q1点的特征?

生:Q1点位置在P0、P1间,它与两波源路程差|S1Q1-S2Q1|=师:非常好!大家看像Q1这样的点还有吗? 生:有。

(全体学生此时已能一起总结出Q2、Q3„等的位置)[教师总结]Δ=|S1Q2-S2Q2|=暗纹Q2、第3条暗纹Q3„

师:哪位同学能用上面的方法写个通式,归纳一下? 生:当Δ=(2n+1)[投影下图]

。该点出现暗纹。235λ,λ„处,在P1P2、P2P3、„等明纹之间有第2条22,n=0、1、2„时,出现暗纹。2

师:综合前面分析,我们可以画出上面图示的双缝干涉结果。

同时介绍一下相干光源,强调干涉条件。引导学生阅读教材57页上方的内容,进一步体会,杨氏实验中的双缝的作用就是得到一对相干光源。

(三)课堂总结、点评

今天我们学习了光的干涉,知道光的确是一种波。我们还确定了双缝干涉实验中,明暗条纹出现的位置:当屏上某点到两个狭缝的路程差Δ=2n·当Δ=(2n+1)

,n=0、1、2„时,出现明纹;2,n=0、1、2„时,出现暗纹。2两列波要产生干涉,它们的频率必须相同,且相位差恒定。能够产生干涉的光源叫做相干光源。杨氏实验中,双缝的作用就是得到一对相干光源。

(四)课余作业

完成P57“问题与练习”的题目。附:课后训练

1.用波长为0.4μm的光做双缝干涉实验,A点到狭缝S1、S2的路程差为1.8×10-6 m,则A点是出现明条纹还是暗条纹?

答案:暗条纹

2.关于杨氏实验,下列论述中正确的是

()A.实验证明,光的确是一种波。

B.双缝的作用是获得两个振动情况总是相同的相干光源

C.在光屏上距离两个小孔的路程差等于半波长的整数倍处出现暗条纹 D.在光屏上距离两个小孔的路程差等于波长的整数倍处出现亮条纹 答案:AB 3.对于光波和声波,正确的说法是 A.它们都能在真空中传播

C.它们都能产生干涉

答案:BC 4.两个独立的点光源S1和S2都发出同频率的红色光,照亮一个原是白色的光屏,则光屏上呈现的情况是

()

A.明暗相间的干涉条纹 C.仍是呈白色的

B.一片红光 D.黑色

B.它们都能产生反射和折射 D.声波能产生干涉而光波不能

解析:两个点光源发出的光虽然同频率,但“振动情况”并不总是完全相同,故不能产生干涉,屏上没有干涉条纹,只有红光。

答案:B 5.在真空中,黄光波长为6×10-7 m,紫光波长为4×10-7 m。现有一束频率为5×1014 Hz的单色光,它在n=1.5的玻璃中的波长是多少?它在玻璃中是什么颜色?

解析:先根据0=c/f0计算出单色光在真空中的波长0,再根据光进入另一介质时频率不变,由n=cD=,求出光在玻璃中的波长.v3108510140=c/f0= m=6×10-7 m,可见该单色光是黄光。

6107又由n=0/得=0/n= m=4×107 m。由于光的颜色是由光的频率决定的,1.5而在玻璃中光的频率未变化,故光的颜色依然是黄光。

篇5:大学物理,光的干涉思考题

19.1、用白色线光源做双缝干涉实验时,若在缝S1后面放一红色滤光片,S2后面放一绿色滤光片,问能否观察到干涉条纹?为什么? 参考解答:

若在两个缝上分别放置红色和绿色滤光片,则叠加的两束光不满足频率相同的相干条件,所以不能看到干涉条纹。

19.2、用图19.17所示装置做双缝干涉实验,是否都能观察到干涉条纹?为什么? 参考解答:

用图19.17(a)所示装置做双缝干涉实验肯定不能观察到干涉条纹,因为采用普通光源钠光源要取得相干光,必须是同一原子的同一次发光。用面光源直接照到双缝上,在缝后必是两个不同原子发光在P点相遇,是非相干叠加。正确的装置是在钠光源后放置一个与双缝平行的单缝,然后再在适当位置放置双缝,这样即满足了取得相干光的原则,才可观察到干涉条纹。

用图19.17(b)所示装置做双缝干涉实验,有可能观察到干涉条纹。从激光器中获得相干光取决于激光器的横模模式。如果激光器的发光模式是基横模,则发出的光全是相干光;如果是其它模式,则必须是相干面积上的点源才是想光光源(即在同一面积上的全相干)。

19.3、在水波干涉图样(图19.5)中,平静水面形成的曲线是双曲线,为什么? 参考解答:

因双点源干涉亮纹满足的光程差是:r2r1k暗纹满足的光程差是:r2r1(2k1)k0,1,2,3,

2k0,1,2,3,

相同的光程差

r2r1C 在同一干涉级上。由解析几何知识知,满足上述关系的点在空间的轨迹是一组双曲面,在水平面上的截线是一组双曲线。

4、把一对顶角很小的玻璃棱镜底边粘贴在一起(图19。18)做成“双棱镜”,就可以利用一个普通缝光源S来做双缝干涉实验(菲涅耳双棱镜实验)。试在图中画出两相干光源的位置和它们发出的波的叠加干涉区域。参考解答:(略)

5、如果两束光是相干的,在两束光重叠处总光强如何计算?如果两束光是不相干的,又怎样计算?(分别以I1和I2表示两束光的光强)参考解答:

如果两束光是相干的,则在两束光重叠处为相干叠加,总光强为

II1I22I1I2cos

(21)2(n2r2n1r1)

式中,21——两相干光的初相差;n2r2n1r1——两相干光的光程差;为真空波长。

如果两束光是非相干的,则干涉项为零,在两束光重叠处为非相干叠加,总光强为

II1I2

6、在双缝干涉实验中,(1)当缝间距d不断增大时,干涉条纹如何变化?为什么?

(2)当缝光源S在平行于双缝屏面向下或向上移动时,干涉条纹如何变化?(3)把缝光源S逐渐加宽时,干涉条纹将如何变化? 参考解答:

干涉条纹的变化决定于两束相干光光程差的变化,在缝光源S对双缝完全对称的条件下,该光程差决定于两束光到达观察屏上P点的光程r1,r2的不同。由

r2r1dsindtandDdD相邻条纹的间距为

x

d知,亮纹所在位置的坐标 xkxD

k0,1,2,

从中可知:

(1)在保持λ和D不变的情况下,将缝间距d不断增大,干涉条纹将向中间密集。又由条纹间距式知,缝间距d不断增大,条纹间距将变小,屏上条纹变的密集。综合可知,随着缝间距d不断增大,屏上的干涉条纹将向坐标原点处密集。

(2)当缝光源S在平行于双缝屏面向下或向上移动时,点源相对于双缝不再对称,使两束光在双缝前就已有了光程差,那么零级亮纹(即两光等光程处)将离开原点向上或向下移动,所以条纹整体也将随之向上或向下移动。

(3)这是光的空间相干性的问题。缝光源S逐渐加宽时,将缝光源看成许许多多平行于缝的线光源组成,每一线光源都将在屏上产生一组干涉条纹,由于各线源相对于双缝的位置不同,因而各自形成的条纹将会错开。当两边缘线光源的干涉条纹错开一级时,整个观察屏上将是均匀的光强分布,再也看不到干涉条纹了。

考虑空间相干性问题,理论给出光源线度的极限宽度是b0D,若光源实际线度dbb0,就观察不到干涉条纹了。为观察到清晰的干涉条纹,实验上通常取bb0/4。

7、用两块平玻璃构成的劈尖(图19。19)观察干涉条纹时,若把尖劈上表面向上缓慢地平移(图(a)),干涉条纹有什么变化?若把劈尖角逐渐增大(图(b)),干涉条纹又有什么变化?

参考解答:

观察薄膜表面条纹如何变化,一是盯住某一条纹,看其向哪个方向移动,二是观察整体条纹疏密的变化。

分析条纹动态变化的依据仍然是相干光的光程差。观察玻璃劈尖表面反射光的干涉,第k级亮纹满足2ek/2k,式中,ek是第k级亮纹对应的空气膜厚度。相邻亮纹的间距是l/2,其中,是劈尖的契角。

若把尖劈上表面向上缓慢地平移,则契角保持不变,即条纹疏密程度不变;同时,由光程差关系式知,随着厚度的增加,第k级亮纹对应的空气膜厚度ek应向劈尖的契角方向(棱边)移动。因此,该情况下将观察到条纹整体向劈尖的契角方向(棱边)移动。反之,2 若把尖劈上表面向下缓慢地平移,则将观察到条纹整体向上移动(背离棱边)。

若把劈尖角逐渐增大,相邻亮纹间距的关系式知,条纹间距将减小,条纹将随之变得密集,同时,在上表面逐渐仰起后,空气薄膜厚度增加,第k级亮纹对应的空气膜厚度ek应向劈尖的契角方向(棱边)移动。因此,该情况下将观察到条纹整体向劈尖的契角方向(棱边)密集。反之,若把劈尖角逐渐减小,则将观察到整体背离劈尖的契角方向(棱边)移动并变得稀疏。

8、用两块玻璃片叠在一形成空气尖劈观察干涉条纹时,如果发现条纹不是平行的直条,而是弯弯曲曲的线条,试说明两玻璃片相对的两面有什么特殊之处? 参考解答:

用两块玻璃片叠在一形成空气尖劈观察干涉条纹,是等厚干涉,即相等的厚度对应相同的光程差,有相等的干涉结果。如果发现条纹不是平行的直条,而是弯弯曲曲的线条,则说明两玻璃表面并不严格平行,或者说,两玻璃表面上的平整度不够。若肉眼可观察半个条纹间距的弯曲,则对应空气薄膜厚度的变化为/4,即可辨别出如此精度的表面不平整度。

9、隐形飞机所以很难为敌方雷达发现,可能是由于飞机表面涂敷了一层介电质(如塑料或橡胶)从而使入射的雷达波反射极微。试说明这层介电质可能是怎样减弱反射波的。参考解答:

隐形飞机的隐行原理有多种,在本题的范围里,可能是可以利用表面镀电介质层,利用电介质层上下表面反射的雷达波干涉相消了,因而反射波极弱。也可能是电介质层的吸收作用,吸收入射波的能量因而减小了反射波的强度。

10、在双缝干涉实验中,如果在上方的缝后面贴一片薄的透明云母片,干涉条纹的间距有无变化?中央条纹的位置有无变化? 参考解答:

如果在上方的缝后面贴一片厚度为t的薄透明云母片,则从两缝到达屏上P点的光程差为

r2(r1tnt)r2r1(n1)tdsin(n1)t

对第k级亮纹中心,应有

kdsink(n1)tk

可得

dsinkk(n1)t,第第k级亮纹中心的位置

D[k(n1)t] dD 两相邻亮条纹的间距为

xxk1xkd

xkDsink可知,在上方的缝后面贴一薄透明云母片后,中央亮纹的位置

篇6:高中物理光的衍射教案

《光的颜色 色散》是人教版高中物理选修3-4第13章第五节的教学内容,主要认识光的衍射以及衍射光栅的原理。

二、教学目标

1、知识目标

(1)通过实验观察,让学生认识光的衍射现象,知道发生明显的光的衍射现象的条件,从而对光的波动性有进一步的认识.

(2)通常学习知道“几何光学”中所说的光沿直线传播是一种近似规律.

2、能力目标

(1)通过讨论和对单缝衍射装置的观察,理解衍射条件的设计思想.

(2)在认真观察课堂演示实验和课外自己动手观察衍射现象的基础上,培养学生比较推理能力和抽象思维能力.

3、情感、态度和价值观目标:

通过“泊松亮斑”等科学小故事的学习,培养学生坚定的自信心、踏实勤奋的工作态度和科学研究品德.

三、教学重点难点

1、教学重点

单缝衍射实验和圆孔衍射实验的观察以及产生明显衍射现象的条件.

2、教学难点

衍射条纹成因的初步说明.

四、学情分析(根据个人情况写)

五、教学方法

1.通过机械波衍射现象类比推理,提出光的衍射实验观察设想.

2.通过观察分析实验,归纳出产生明显衍射现象的条件以及衍射是光的波动性的表现.

3.通过对比认识衍射条纹的特点及变化,加深对衍射图象的了解.

六、教学用具

JGQ型氦氖激光器25台,衍射单缝(可调缝宽度),光屏、光栅衍射小圆孔板,两支铅笔(学生自备),日光灯(教室内一般都有),直径5 mm的自行车轴承用小钢珠,被磁化的钢针(吸小钢珠用),投影仪(本节课在光学实验室进行).

七、课时安排:1课时

八、教学过程

(一)预习检查、总结疑惑

复习水波的衍射

[投影水波衍射图片(试验修订本第二册P14图10—26,10—27)]

[师]请大家看这几幅图片,回忆一下相关内容,回答下面两个问题:

1.什么是波的衍射?

2.图10—27中哪一幅衍射现象最明显?说明原因.

[生1](议论后,一人发言)波能绕过障碍物的现象叫波的衍射.图10—27中丙图衍射最明显,因为这里的孔宽度最小.

[师]前一个问题回答得很好,后一个问题有没有同学还有其他看法?

[生2]我认为丙图中孔的尺寸虽然是最小,但不一定就是发生明显衍射现象的原因,我们应该用它跟波长比.

[师]很好,大家一起来说说发生明显衍射现象的条件是什么?

[生总结]障碍物或孔的尺寸比波长小或者跟波长相差不多.

(二)情景导入、展示目标

光的衍射实验

[师]通过上一节课光的干涉的学习,我们知道光是具有波动性的,光既然是一种波,那么在传播过程中也应该具有衍射的现象,大家有没有见过光的衍射现象呢?能举出例子吗?

(学生讨论后,一致认为,光波也应有衍射本领,但无法举出例子)

[师]根据我们刚才复习的明显衍射现象的条件,大家说说看,为什么平时我们不易观察到光的衍射?

[生]可能是因为光波波长很短,而平常我们遇到的障碍物或孔的尺寸比较大,所以不易观察到光的衍射现象.

[师]很有道理,大家来想想办法解决这一问题.

(三)合作探究、精讲点拨

(学生讨论,设计出多种实验观察方案,绝大部分着眼于发生明显衍射现象的条件,教师加以肯定鼓励)

[实验观察]

安排学生根据上面的设想,自制单缝和小孔.

1.用单缝观察日光灯光源.

2.用小孔观察单色点光源.

[师]请大家认真观察,然后告诉我你看到的现象.

(学生回答基本上有两类现象,一是观察到了单一的一条亮线或一个圆形亮点,二是观察到比较模糊的明暗相间的线状或环状条纹)

[师]大家做得很认真,有几位同学已成功地观察到了光的衍射现象,现在我们再用更好的装置来一起观察一下光的衍射现象.

[教师演示]

在不透明的屏上装有一个宽度可以调节的单缝,用氦氖激光器照射单缝,在缝后适当距离处放一光屏,如右图20—19所示.

EMBED MSPhotoEd.3

调节单缝宽度演示,得出下列结果.

篇7:高中物理光的偏振教案

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 浙江省富阳市二中 方霞

一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。 一、新课引入

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 实验演示:教师将一块偏振片在笔记本电脑前转动,请学生观察屏幕的变化情况。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。 电脑屏幕随着偏振片的转动,发生明显的明暗的变化。如图1所示。学生观察到这一奇妙的现象时,都不由地发出惊叹声,不禁问道:为什么会发生这种现象呢?学生的学习兴趣和积极性被充分调动起来。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。 图1

教师告诉学生手中的这片圆形薄片叫偏振片,这种现象称为偏振现象。为什么会出现这样的现象呢,这是本堂课要解决的重要内容之一,希望大家在观察接下来的实验现象和现象分析后都能知道其中的原因。

二、实验过程、现象解释

波有横波和纵波之分,光是横波还是纵波,是否所有的波都有偏振现象,日常生活中有哪些常见的偏振现象,对我们的生活有些什么样的影响,我们一起来学习和探讨。

为了更好的理解和解释光的偏振现象,我们从直观、具体的机械波的分析入手。

(一)机械波的偏振实验演示

实验1:取一软绳和中间有一“狭缝”的硬纸板,使软绳从“狭缝”中穿过,请两位同学分别控制绳的两端,其中一端固定不动,另一端的同学上下抖动,形成一列绳波。调节狭缝的方向,第一次与绳波的振动方向相同,第二次与绳波的振动方向垂直,观察绳波经过狭缝后的现象。

现象:绳波的振动方向与狭缝的方向平行时,传播情况正常;振动方向与狭缝方向垂直时,绳波经过狭缝后消失。现象如图2所示。

图2

实验2:用一弹簧经过“狭缝”,轻拨弹簧,形成一列弹簧波。旋转狭缝方向,观察弹簧波的情况。

现象:无论“狭缝”如何,弹簧波均正常传播,如图3所示。

图3

结论:横波的振动方向与狭缝方向垂直时,波的传递受到影响,这种现象就是偏振现象,偏振是横波特有的现象。

光波是横波还是纵波,也可用类似的方法检验。

实验3:利用偏振片检验自然光是横波还是纵波。

偏振片介绍:偏振片由特定的材料制成,每个偏振片都有一个特定的方向,只有沿着这个方向振动的光波才能通过偏振片,这个方向叫做“透振方向”。偏振片对光波的作用就象“狭缝”对机械波的作用一样。

偏振光介绍:只沿着某个特定方向振动的光。

自然光介绍:太阳、电灯等普通光源发出的光,包含着垂直于传播方向上沿一切方向振动的光,而且沿着各个方向振动的光波的强度都相同。如图4所示。

图4

重复实验1的演示实验,再次观察实验现象。

电脑屏幕本质上是一片偏振片,圆形薄片是另一片偏振片,当光束通过第一片偏振片P(起偏器)之后(如图5所示),旋转第二块偏振片Q(检偏器),可以看见光斑亮度周期性变化。当两个偏振片平行时,透光最强。当两个偏振片垂直时,透光最弱。如图5所示。

图5

通过分析,请学生尝试类比机械波的偏振来解释上面的实验现象。

当激光通过第一片偏振片P后,相当于被“狭缝”卡了一下,只有振动方向跟“狭缝”方向平行的光才能通过,激光通过偏振片P(起偏器)后虽然变成了偏振光,但由于沿各个方向的振动情况相同,无论偏振片透振方向如何,都会有相同强度的光透射过来,再通过第二块偏振片Q(检偏器)时就不同了。无论旋转哪块偏振片,当两块偏振片透振方向相同时,透射光最强,当两偏振片透振方向垂直时,透射光完全消失,最弱。

上一篇:小熊放风筝作文150字下一篇:噪音与健康教案