《正弦定理》教案

2024-07-08

《正弦定理》教案(精选8篇)

篇1:《正弦定理》教案

正弦定理教案

教学目标:

1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

2.能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

教学重点:正弦定理的探索和证明及其基本应用。

教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

教学过程:

一、复习引入

创设情境:

【师】:世界闻名的巴黎埃菲尔铁塔,比其他的建筑高出很多。如果只提供测角仪和皮尺,你能测出埃菲尔铁塔的高度吗?

【生】:可以先在离铁塔一段距离的地方测出观看铁塔的仰角,再测出与铁塔的水平距离,就可以利用三角函数测出高度。

【创设情境总结】:解决上述问题的过程中我们将距离的问题转化为角,进而转化为三角函数的问题进行计算。这个实际问题说明了三角形的边与角有紧密的联系,边和角甚至可以互相转化,这节课我们就要从正弦这个侧面来研究三角形边角的关系即正弦定理。

二、新课讲解

【师】:请同学们回忆一下,在直角三角形中各个角的正弦是怎么样表示的?

【生】:在直角三角形ABC中,sinAab,sinB,sinC1 cc

abc,c,c,也就是说在Rt△ABCsinAsinBsinC【师】:有没有一个量可以把三个式子联系起来? 【生】:边c可以把他们联系起来,即c

中abc sinAsinBsinC

【师】:对,很美、很对称的一个式子,用文字来描述就是:“在一个直角三角形中,各边与

它所对角的正弦比相等”,那么在斜三角形中,该式是否也成立呢?让我们在几何画板中验证一下,对任意的三角形ABC是不是都有“各边与它所对角的正弦比相等”成立?

【师】:通过验证我们得到,在任意的三角形中都有各个边和他所对的角的正弦值相等。

在上面这个对称的式子中涉及到了三角形三个角的正弦,因此我们把它称为正弦定理,即我们今天的课题。

【师】:直观的印象并不能代替严格的数学证明,所以,只是直观的验证是不够的,那能不

能对这个定理给出一个证明呢?

【生】:可以用三角形的面积公式对正弦定理进行证明:S1111absinCacsinBbcsinA,然后三个式子同时处以abc就可以得222

2到正弦定理了。

【师】:这是一种很好的证明方法,能不能用之前学过的向量来证明呢?答案是肯定的。怎

么样利用向量只是来证明正弦定理呢?大家观察,这个式子涉及到的是边和角,即向量的模和夹角之间的关系。哪一种运算同时涉及到向量的夹角和模呢?

(板书:证法二,向量法)

【生】:向量的数量积ababcos

【师】:先在锐角三角形中讨论一下,如果把三角形的三边看做向量的话,则容易得到三角

形的三个边向量满足的关系:ABBCAC,那么,和哪个向量做数量积呢?还

有数量积公式中提到的是夹角的余弦,而我们要得是夹角的正弦,这个又怎么转化?(启发学生得出通过做点A的垂线根据诱导公式来得到)

【生】:做A点的垂线

【师】:那是那条线的垂线呢?

【生】:AC的垂线

【师】:如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式子的两边同时做数

cos(90A)cos(90C)cos90,化简000

即可得到csinAasinC,即acbc,同理可以得到。即在sinAsinCsinBsinC

锐角三角形ABC中有每条边和它所对的角的正弦值相等这个结论。

【师】:如果△ABC是钝角三角形呢?又怎么样得到正弦定理的证明呢?不妨假设∠A是钝

角,那么同样道理如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式

子ABBCAC的两边同时做数量积运算就可以得到

00jABcos(C90)jBCcos(90C)jACcos900,化简即可得到csinAasinC,即acbc,同理可以得到。即在钝角三角sinAsinCsinBsinC

形ABC中也有每条边和它所对的角的正弦值相等这个结论。

【师】:经过上面的证明,我们用两种方法得到了正弦定理的证明,并且得到了正弦定理对

于直角、锐角、钝角三角形都是成立的。

【师】:大家观察一下正弦定理的这个式子,它是一个比例式。对于一个比例式来说,如果

我们知道其中的三项,那么就可以根据比例的运算性质得到第四项。因此正弦定理的应用主要有哪些呢?

【生】:已知三角形的两边一其中一边的对角求另外一边的对角,或者两角一边求出另外一

边。

【师】:其实大家如果联系三角形的内角和公式的话,其实只要有上面的任意一个条件,我们都可以解出三角形中所有的未知边和角。下面我们来看正弦定理的一些应用。

三、例题解析

【例1】优化P101例

1分析:直接代入正弦定理中运算即可

absinAsinB

csinA10sin45

asinCsin30

bcsinBsinC

B180(AC)180(4530)105

csinB10sin105b205sinCsin30总结:本道例题给出了解三角形的第一类问题(已知两角和一边,求另外两边和一

角,因为两个角都是确定的的,所以只有一种情况)

【课堂练习1】教材P144练习1(可以让学生上台板演)

【随堂检测】见幻灯片

四、课堂小结

【师】:本节课的主要内容是正弦定理,即三角形ABC中有每条边和它所对的角的正弦值相等。写成数学式子就是abc。并且一起研究了他的证明方法,利用它解决sinAsinBsinC

了一些解三角形问题。对于正弦定理的证明主,要有面积法和向量法,其实对于正弦定理的证明,还有很多别的方法,有兴趣的同学下去之后可以自己去了解一下。

五、作业布置

世纪金榜P86自测自评、例

1、例

2板书设计:

六、教学反思

篇2:《正弦定理》教案

一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; 2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

二、过程与方法 1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系; 2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理; 3.进行定理基本应用的实践操作.

三、情感态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课 师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来? 师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt△ABC中,设BC =A,AC =B,AB =C,根据锐角三角函数中正弦函数的定义,有=sinA,=sinB,又sinC=1=,则.从而在直角三角形ABC中,.推进新课 [合作探究]师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况: 如右图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=AsinB=BsinA,则,同理,可得.从而.(当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.师是否可以用其他方法证明这一等式?生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明这一关系.师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法.在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sinC=sinB′=. ∴.同理,可得. ∴.这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式.点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. [知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢?生向量的数量积的定义式A·B=|A||B|Cosθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sinθ=Cos(90°-θ)进行转化.师这一转化产生了新角90°-θ,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得 而添加垂直于的单位向量j是关键,为了产生j与、、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并

注意总结在证明过程中所用到的向量知识点.点评:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用.向量法证明过程:(1)△ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90°-A,j与的夹角为90°-C.由向量的加法原则可得 ,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到 由分配律可得. ∴|j|Cos90°+|j|Cos(90°-C)=|j|Cos(90°-A). ∴AsinC=CsinA. ∴.另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-B) ∴.(2)△ABC为钝角三角形,不妨设A>90°,过点A作与垂直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C.由,得j·+j·=j·,即A·Cos(90°-C)=C·Cos(A-90°), ∴AsinC=CsinA. ∴ 另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与夹角为90°+B.同理,可得. ∴(形式1).综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立.师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. [教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使A=ksinA,B=ksinB,C=ksinC;(2)等价于(形式2).我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P4的例1就属于此类问题. ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.师接下来,我们通过例题评析来进一步体会与总结.[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9 cm,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B,若求边C,再利用正弦定理即可.解:根据三角形内角和定理, C=180°-(A+B)=180°-(32.0°+81.8°)=66.2°;根据正弦定理, b=≈80.1(cm); c=≈74.1(cm). [方法引导](1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在△ABC中,已知A=20cm,B=28cm,A=40°,解三角形(角度精确到1°,边长精确到1 cm).分析:此例题属于BsinA<a<b的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性.解:根据正弦定理, sinB =≈0.899 9.因为0°<B<180°,所以B≈64°或B≈116°.(1)当B≈64°时, C =180°-(A+B)=180°-(40°+64°)=76°, C =≈30(cm).(2)当B≈116°时, C=180°-(A+B)=180°-(40°+116°)=24°, C=≈13(cm). [方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在△ABC中,已知A=60,B=50,A=38°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A≥B这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B为钝角的情形.解:已知B

(1)B=11,A=20,B=30°;(2)A=28,B=20,A=45°;(3)C =54,B=39,C=115°;(4)A=20,B=28,A=120°.解:(1)∵. ∴sinA =≈0.909 1. ∴A1≈65°,A2≈115°.当A1≈65°时,C1=180°-(B+A1)=180°-(30°+65°)=85°, ∴C1=≈22.当A2≈115°时,C2=180°-(B+A2)=180°-(30°+115°)=35°, ∴C2=≈13.(2)∵sinB=≈0.505 1, ∴B1≈30°,B2≈150°.由于A+B2=45°+150°>180°,故B2≈150°应舍去(或者由B<A知B<A,故B应为锐角). ∴C=180°-(45°+30°)=105°. ∴C=≈38.(3)∵, ∴sinB=≈0.654 6. ∴B1≈41°,B2≈139°.由于B<C,故B<C,∴B2≈139°应舍去. ∴当B=41°时,A=180°-(41°+115°)=24°, A=≈24.(4)sinB= =1.212>1. ∴本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍.课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形.布置作业

(一)课本第10页习题1.1 第1、2题.

篇3:谈正弦定理与余弦定理的运用

例1在△ABC中,a,b,c分别为内角A、B、C的对边,根据下列条件,判断△ABC的形状(1)acos A=bcos B;(2)(a2+b2)sin(A-B)=(a2-b2)sin(A+B).

分析:对于上述例1中(1)和(2)分析以后可以发现,给出的条件中都是既有边长也有角度,所以一般都应该对于给出的这类条件进行整理,最终化简为仅有角度或者边长的形式,而在这个过程中一般采用正弦定理和余弦定理的变式效果会更好.

解:对于(1)的求解,可以考虑两种方法,

解法1:因为a=2Rsin A,b=2Rsin B,所以2Rsin Acos A=2Rsin Bcos B,即sin2A=sin2B,所以2A=2B或者2A+2B=π.

可以得到A=B或者,所以该三角形为等腰或者直角三角形.

解法2:因为,所以,即a2(b2+c2-a2)=b2(a2+c2-b2)将该表达式进行因式分解可得(a2-b2)(a2+b2-c2)=0,也就是a=b或者a2+b2=c2,同样得到该三角形为等腰或者直角三角形.

相比(1)而言,(2)的形式相对复杂,一般在解题过程中发现A+B这样的条件往往化为π-C,但本题等式两侧的次数相对对称,对于左侧的A-B需要展开,因此右侧保留A+B,得到

a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)],即2a2cos Asin B=2b2cos Bsin A,此时可以将所有条件化角或者化边,可以得到sin Asin B(sin2A-sin2B)=0或者,也就是sin2A=sin2B或者(a2-b2)(a2+b2-c2)=0,同(1)类似,可以得到该三角形为等腰或者直角三角形.

二、观察结构,注重与定理的联系

例2在△ABC中,a,b,c分别为内角A、B、C的对边,

(2)若△ABC的面积为S,且2S=(a+b)2-c2,求tan C的值.

分析:上述两个问题给出的条件与问题之间存在较大距离,需要对给出的条件进行代数变形,而结构中都含有边长的平方关系,可以与正、余弦定理的公式联系在一起.

(2)由于条件右侧含有a2+b2-c2的形式且最终所求也与角C有关,容易想到左侧的面积,所以条件可以化为

三、利用图形,恰当选择变量和定理

正、余弦定理是三角形内边角关系的两个定理,因此还有一类问题需要在图形中解决长度和角度问题.

例3如图1,在边长为1的等边△ABC中,D、E分别为边AB、AC上的点,若A关于直线DE的对称点A1恰好在线段BC上,求AD长度的最小值.

分析:由于需要求解线段长度,则将线段放在三角形中进行计算.图中存在对称,不妨连结A1D,得A1D=AD,因此可以在△A1BD中进行求解,而对于图形问题的变量选择,可以选择边长也可以选择角度.

解法1:不妨设A1B=x,AD=y,则在△A1BD中,

例3给出一个图形,要解决某条线段长度的最值问题,需要将该线段放在三角形内利用正余弦定理进行计算,由于所选三角形的不一样以及求解所用定理的不同,选择了两种不同的变量设法,而这也是求解图形问题常见的解决方法.

篇4:正弦定理和余弦定理

正、余弦定理是高考的必考内容,主要涉及解三角形中的求角、求边的问题和判断三角形的形状.

(1)解三角形就是已知三角形中的三个独立元素(至少一边)求出其他元素的过程. 三角形中的基本元素(边和角)与非基本元素(如中线、高、角平分线、外接圆半径、内切圆半径)之间的联系要通过有关的概念与公式(周长、面积、射影定理、勾股定理、内角和定理、全等关系、正余弦定理等)的掌握来实现.

(2)解斜三角形分以下四种类型:

①已知三角形的两角和任一边,求三角形的其他边与角;

②已知三角形的两边和其中一边的对角,求三角形的其他边与角;

③已知三边,求三个角;

④已知两边和它们的夹角,求第三边和其他两个角;

(3)理解已知两边和其中一边的对角解斜三角形时,有一解、二解或无解三种情况,并会判断哪些条件使得三角形有一解、二解或无解.

(4)关于三角形的已学过的一些结论:如边角不等关系;全等关系;三角形的面积公式等等,在解三角形过程中可能要用到.

(5)要注意归纳总结学习过程中的一些共性和结论. 如常见的三角形边角关系恒等式、三角形面积的公式等.

(6)注意三角公式的灵活运用,主要是利用两角和与差的三角函数、二倍角的三角函数,诱导公式等进行三角函数变换.

篇5:高中数学正弦定理教案

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的`学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理。

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

篇6:《正弦定理》教案

§5.5 正弦定理、余弦定理的应用

基础自测

1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角为70°,则∠BAC=.答案 130°

2.从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为.答案 =

3.在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,则△ABC是 三角形.答案 等边

4.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 km.答案 107

5.线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以 50 km/h的速度由B向C行驶,则运动开始 h后,两车的距离最小.答案 70 43例题精讲

例1 要测量对岸A、B两点之间的距离,选取相距3 km的C、D两点,并测得∠ACB=75°,∠BCD= 45°,∠ADC=30°,∠ADB=45°,求A、B之间的距离.解 如图所示,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,∴AC=CD=3 km.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°.∴BC=2AB=(3)+(3sin7562=.△ABC中,由余弦定理,得

sin602262262)-2×3××cos75°=3+2+3-3=5,22∴AB=5(km).∴A、B之间的距离为5 km.159 例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 km,从B到C方位角是110°,距离是3 km,从C到D,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A到D的方位角和距离(结果保留根号).解 示意图如图所示,连接AC,在△ABC中,∠ABC=50°+(180°-110°)=120°,又AB=BC=3,∴∠BAC=∠BCA=30°.由余弦定理可得

1AC=AB2BC22ABBCcos120= 99233()

2=27=33(km),在△ACD中,∠ACD=360°-140°-(70°+30°)=120°, CD=33+9.1由余弦定理得AD=AC2CD22ACCDcos120= 27(339)2233(339)()

2=9(26)(km)2CDsinACD=AD(339)由正弦定理得sin∠CAD=

32=2.292962∴∠CAD=45°,于是AD的方位角为50°+30°+45°=125°, 所以,从A到D的方位角是125°,距离为

9(26)km.2例3 如图所示,已知半圆的直径AB=2,点C在AB 的延长线上,BC=1,点P为半圆上的一个动点,以 DC为边作等边△PCD,且点D与圆心O分别在PC 的两侧,求四边形OPDC面积的最大值.解 设∠POB=,四边形面积为y,则在△POC中,由余弦定理得

160 PC=OP+OC-2OP·OCcos=5-4cos.∴y=S△OPC+S△PCD=∴当-1353×1×2sin+(5-4cos)=2sin(-)+.3244222553=,即=时,ymax=2+.326453.4所以四边形OPDC面积的最大值为2+巩固练习

1.某观测站C在A城的南偏西20°的方向.由A城出发的一条公路,走向是南偏东40°,在C处测得公路上B处有一人距C为31千米正沿公路向A城走去,走了20千米后到达D处,此时CD间的距离为21千米,问这人还要走多少千米才能到达A城? 解 设∠ACD=,∠CDB=.在△BCD中,由余弦定理得 cos=

143BD2CD2CB2202212312==-,则sin=,72BDCD220217而sin=sin(-60°)=sincos60°-cossin60° =1153433×+×=, 27142721AD21sin=,∴AD==sin60sinsin6021在△ACD中,由正弦定理得

5314=15(千米).32答 这个人再走15千米就可到达A城.2.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得 ∠BCD=,∠BDC=,CD=s,并在点C测得塔顶A的仰角为,求塔高AB.解 在△BCD中,∠CBD=--,由正弦定理得所以BC=CDsinBDCssin=

sinCBDsin()BCCD=,sinBDCsinCBD在Rt△ABC中,AB=BCtan∠ACB=

stansin.sin()3.为了竖一块广告牌,要制造三角形支架.三角形支架如图

161 所示,要求∠ACB=60°,BC的长度大于1米,且AC比 AB长0.5米.为了使广告牌稳固,要求AC的长度越短越 好,求AC最短为多少米?且当AC最短时,BC长度为多 少米?

解 设BC=a(a>1),AB=c,AC=b,b-c=

12221122

2.c=a+b-2abcos60°,将c=b-代入得(b-)=a+b-ab, 222化简得b(a-1)=a-21.由a>1,知a-1>0.b=4a231(a1)22a234=(a-1)+4= 4(a1)a1a1+23+2, 当且仅当a-1=33时,取“=”号,即a=1+时,b有最小值2+3.4(a1)2答 AC最短为(2+3)米,此时,BC长为(1+

3)米.2回顾总结 知识 方法 思想

课后作业

一、填空题

1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成 75°视角,则B、C的距离是 海里.答案 56

2.为测量某塔AB的高度,在一幢与塔AB相距20 m的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是 m.答案 20(1+3)33.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km, 162 灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为 km.答案 3a

4.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为 海里/小时.答案 176 25.如图所示,在河岸AC测量河的宽度BC,图中所标的数据a,b,c,,是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜 的是(填序号).①c和②c和b③c和④b和 答案 ④

6.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相 距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在 货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2)7.在△ABC中,若∠C=60°,则答案 1 8.(2008·苏州模拟)在△ABC中,边a,b,c所对角分别为A,B,C,且答案

nisaAab+=.bcca=

cosBcosC

=,则∠A=.cb

2二、解答题

9.在△ABC中,a,b,c分别为角A、B、C的对边,设f(x)=ax-(a-b)x-4c.(1)f(1)=0且B-C=

2,求角C的大小;(2)若f(2)=0,求角C的取值范围.3222

2解(1)∵f(1)=0,∴a-(a-b)-4c=0,∴b=4c,∴b=2c,∴sinB=2sinC,163 又B-C=.∴sin(C+)=2sinC,∴sinC·cos+cosC·sin=2sinC,3333∴353sinC-cosC=0,∴sin(C-)=0,又∵-<C-<,∴C=.6666622222

2(2)若f(2)=0,则4a-2(a-b)-4c=0,∴a+b=2c,∴cosC=又2c=a+b≥2ab,∴ab≤c,∴cosC≥2222

a2b2c2c2=,2ab2ab1,又∵C∈(0,),∴0<C≤.323.410.(2008·泰安模拟)在△ABC中,a,b,c分别为角A,B,C的对边.已知a=1,b=2,cosC=(1)求边c的值;(2)求sin(C-A)的值.解(1)c=a+b-2abcosC=1+2-2×1×2×22222

3=2,∴c=2.4(2)∵cosC=3ac17,∴sinC=.在△ABC中,=,即=

sinAsinCsinA44274.∴sinA==

5214,∵a<b,∴A为锐角,cosA=.∴sin(C-A)=sinCcosA-cosCsinA

8852371414×-×=.48481611.如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧

AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.解 ∵CP∥OB,∴∠CPO=∠POB=60°-,∠OCP=120°.在△POC中,由正弦定理得又OPCP2CP4=,∴=,∴CP=sin.sinPCOsinsin120sin32OC4=,∴OC=sin(60°-).因此△POC的面积为

sin(60)sin1203S()==11443CP·OCsin120°=·sin(60°-)× sin·2223343sinsin(60°-)=43sin(1232

cos-sin)=2sin·cos-sin

223=sin2+

332333cos2-=sin(2+)-.∴=时,S()取得最大值为.6633333164 12.在海岸A处,发现北偏东45°方向,距离A(3-1)n mile的B处 有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的

缉私船奉命以103 n mile/h的速度追截走私船.此时,走私船正以 10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方 向能最快追上走私船?

解 如图所示,注意到最快追上走私船且两船所用时间相等,若在D处相遇,则可先在△ABC中求出BC,再在△BCD中求∠BCD.设缉私船用t h在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,222∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC=AB+AC-2AB·AC·cos∠BAC

篇7:正弦定理优秀教案设计

生:利用诱导公式。

师:式子变形为: 正弦定理教学设计 ,再

师:很好,那我们就用向量来证明正弦定理,同学们请试一试!

学生讨论合作,就可以解决这个问题

教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学下去再探索。

设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。

(三)利用定理,解决引例

师生活动:

教师:现在大家再用正弦定理解决引例中提出的问题。

学生:马上得出

篇8:正弦定理证明六法

正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即:

1 利用三角函数的定义证明

(I) 如图 (1) △ABC是锐角三角形

证:过点A作AD⊥BC于点D

由三角函数的定义, 得:

AD=AC·sin C,

(II) 如图 (2) 已知:△ABC是直角三角形

证:由三角函数的定义可得

(III) 如图 (3) 已知:△ABC是钝角三角形

由 (I) 得, AD=AC·sinC=ABsinB

再过点C作高, 便可得

2 利用投影定理证明

投影定理:任意ΔABC中, a=b cos C+c cos B;b=a cos C+c cos A;c=a cos B+b cos A

(I) 如图 (4) ΔABC为锐角三角形

证:∵点O为ΔABC的外接圆圆心

推得∠OBC=∠OCB

在ΔOBC中, 利用投影定理:

(II) 如图 (5) ΔABC为直角三角形

因此在ΔABC中,

而∠ABC、∠ACB为锐角仿 (I) 可利用投影定理得

(III) 如图 (6) ΔABC为钝角三角形

由 (I) 可得结论

3 利用余弦定理证明

(I) 如图 (4) ΔABC为锐角三角形, 由上一种方法 (1) 式可得

sin∠BAC=sin (90°-∠OBC) =cos∠OBC

在ΔOBC中, 利用余弦定理:

(II) ΔABC为直角三角形∵∠A=90°

(III) 如图 (6) ΔABC为钝角三角形, 由上一种方法 (2) 式可得

sin∠BAC=sin (90°+∠OBC) =cos∠OBC

在ΔOBC中, 利用余弦定理:

而∠ABC、∠AC为锐角, 仿 (Ⅰ) 可得bsinB=2R;

4 利用面积公式证明

由面积公式S△ABC

两边同除以即得:

5 利用向量证明

(I) 如图 (7) ΔABC为斜三角形

过A作单位向量j垂直于

同理, 若过C作j垂直于

(II) ΔABC为直角三角形时不再赘述了

6利用外接圆转化为直角三角形进行证明

(I) 如图 (8) 所示, ΔABC为锐角三角形

(II) 如图 (9) 所示, ΔABC为直角三角形易得

(III) 如图 (10) 所示, ΔABC为钝角三角形

通过对正弦定理的证明方法的探讨, 旨在揭示数学知识之间的联系, 展示数学证明方法的内在美。

参考文献

[1]应洪尧.从正弦定理的证明看新《课标》理念的变化.http://www.longzhong.com.cn/lgzx/lunwen/list.asp?unid=340.

[2]人民教育出版社中学数学室.全日制普通高级中学教科书数学第一册 (下) [M].北京:人民教育出版社, 2003.

上一篇:专题三研讨发言稿下一篇:暑假留校申请