水塔水位PLC控制系统的设计

2024-04-30

水塔水位PLC控制系统的设计(精选6篇)

篇1:水塔水位PLC控制系统的设计

水塔水位PLC控制系统的设计

摘要:通过设计采用计算机网络技术、信息处理技术、PLC控制技术等多种先进技术组成的水塔水位控制系统,实现信息的实时监控、信息的集成和应急辅助等功能,从而为学生的综合知识的学习提供更好的教学设备。

关键词:MCGS组态;PLC;触摸屏;水位传感器

中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2017)04-0004-01

水塔水位的控制在现实生活中占有着很重要的位置,随着高位生活用水的逐渐增多,?λ?塔水位的控制要求也越来越高。例如:要求对水位采集监控,并具有实时显示功能;由计算机进行实时数据的采集和保存;打印历史水位数据;水位过高、过低的报警设置等功能。为了满足这功能,我们可以利用MCGS开发界面环境,PLC开发控制环境,传感器采集水塔水位,从而实现水塔水位的自动控制。学生通过水塔水位的模拟控制,能对专业知识的综合应用达到一个新的高度[1]。系统所要达到的控制要求

(1)水箱里面有4个液位传感器,SQ1、SQ2、SQ3、SQ4,与之相对应有四个输出口,可以与PLC的输入信号相连接。(2)水塔下方有一个电机来控制水位,并有一个输出口与PLC的输出连接,还有2个报警指示灯分别用来高液位报警和低液位报警。(3)当水位上升时,浮标式传感器会根据水位的升高而升高,当浮标浮起,信号会接通,信号会传输到PLC,从而控制水泵的启停。(4)如果水位过高或者过低时,模拟站的报警指示灯会点亮。(5)当水位到达高液位时,水泵在设定时间内会保持工作状态,让水位充分到达高液位,计时结束后水泵会停止,水位慢慢下降,当水位下降到低液位时,水泵会自动启动,无限循环,直至按下停止按钮。(6)控制程序利用三菱FX3U系列的PLC编写;利用MCGS组态软件编辑触摸屏控制界面,要求实时监控水位,并能远程控制水泵的动作。水塔模型图1所示。控制系统的制作分为两部分

2.1 PLC控制系统的设计

整个设计过程包括:熟悉控制要求;梳理输入、输出分配;完成外围电路;进行程序设计。在实际教学过程中,可以让学生自行分析并设计控制程序。水塔上设有4个液位传感器,安装位置由低到高依次分别为SQ1(X030)、SQ2(X031)、SQ3(X032)、SQ4(X033)[2]。凡是液面高于传感器安装的位置,则传感器接通(ON)。凡是液面低于传感器安装位置时则传感器断开(OFF)。其中SQ2和SQ3则作为水位控制信号,而SQ1和SQ4作为水位的上下限信号,起到保护作用。按下SB1(X034)后,水泵(Y022)开始运行,直到收到SQ3信号并保持2秒以上,确认水位到达高液位时停止运行;当水塔水位下降到低水位即SQ2接通时则重新开启水泵。一旦传感器SQ3失灵,则水位会继续上升至SQ4位置,此时SQ4发出信号,点亮高液位报警指示灯(Y021),水泵停止工作;而若传感器SQ2一旦失灵,则在收到SQ1信号时,点亮低液位报警指示灯(Y020),水泵停止工作。按下启动按钮SB1时,将报警指示灯复位,可重新开始工作。按下停止按钮SB2(X035),可立即停止整个控制程序。

2.2 MCGS组态界面的设计

MCGS水塔水位控制需要读取PLC实时数据,在将数据通过屏幕显示出来,并且将信号输入到PLC,如启动、停止信号等。在开始组态工程之前,先对该工程进行剖析,以便从整体上把握工程的结构、流程、需实现的功能及如何实现这些功能。结合实际环境进行仿真界面的设计,变量的组态和连接,设备的组态等[3]。结语

经过对整个系统进行连接和运行调试发现,该系统能很好的完成一个短距离内的水位监控。但在实际应用过程中,其实是远程控制,这时我们采用现场总线的方式,来实现上下位机的联合运行即可。水塔水位的控制模型能更好的让学生对专业知识的综合应用有更清晰地认识,有着很好的实际应用价值。

参考文献

[1]王传艳.MCGS触摸屏组态控制技术[M].北京师范大学出版社,2015.[2]张伟林,郭艳萍.三菱PLC、变频器与触摸屏综合应用实训[M].电力出版社,2011.[3]文杰.三菱PLC电气设计与编程自学宝典[M].电力出版社,2015.

篇2:水塔水位PLC控制系统的设计

课程名称:专 业 综 合 实 训

专 业: 生产过程自动化

班 级:

学 号:

姓 名:

指导教师: 成 绩:

完成日期:

目 录

1、PLC简介.........................................................................................................1 1.1、可编程控制器的产生..................................................................................1 1.2、PLC的发展..................................................................................................3 1.3、PLC的未来展望..........................................................................................4 1.4、PLC的特点..................................................................................................4 1.5、PLC的组成..................................................................................................5 1.5.1、中央处理单元(CPU)................................................................................6 1.5.2、存储器.......................................................................................................6 1.5.3、输入/输出模块..........................................................................................8 1.5.4、扩展模块...................................................................................................9 1.5.5、编程器.......................................................................................................9 1.5.6、电源.........................................................................................................11 1.6、PLC的工作原理........................................................................................11 1.6.1、扫描技术.................................................................................................12 1.6.2、PLC的I/O响应时间.............................................................................13 1.7、梯形图程序设计........................................................................................13

2、方案的论证...................................................................................................15 2.1、工艺过程分析............................................................................................15 2.2、PLC型号的选择........................................................................................15 2.3、工作控制方式............................................................................................15

3、水塔水位系统PLC硬件设计.....................................................................17 3.1、水塔水位系统控制电路............................................................................17 3.2、输入/输出分配...........................................................................................18 3.3、水塔水位系统的接线图............................................................................18

4、水塔水位控制系统PLC软件设计.............................................................19 4.1、程序流程图................................................................................................19 4.2、梯形图........................................................................................................20 4.3、系统程序的具体分析................................................................................21

4.4、水塔水位控制系统梯形图的对应指令表................................................22

5、总结...............................................................................错误!未定义书签。致

谢.............................................................................................................24 参考文献.............................................................................................................25

摘要

在工农业生产过程中,经常需要对水位进行测量和控制。水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用MCGS组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。

关键词: 水位控制、欧姆龙PLC

1、PLC简介

1.1、可编程控制器的产生

可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC过程控制能力。因此,无论是单机还是多机控制、是流水线控制还是过程控制,都可以采用可编程控制器,推广和普及可编程控制器的使用技术,对提高我国工业自动化生产及生产效率都有十分重要的意义。

可编程控制器(Programmable Controller)也可称逻辑控制器(Programmable Logic Controller),是一微处理器为核心的工业自动控制通用装置,是计算机家族的一名成员,简称PC。为了与个人电脑(也简称PC)相混淆通常将可编程控制器称为PLC。

可编程控制器的产生和继电器—接触器控制系统有很大的关系。继电器—接触器控制已经有伤百年的历史,它是一种弱电信号控制强电信号的电磁开关,具有结构简单、电路直观、价格低廉、容易操作、易于维修的有优点。对于工作模式固定、要求比较简单的场合非常使用,至今仍有广泛的用途。但是当工作模式改变时,就必须改变系统的硬件接线,控制柜中的物件以及接线都要作相应的变动,改造工期长、费用高,用户宁愿扔掉旧控制柜,另做一个新控制柜使用,阻碍了产品更新换代。

随着工业生产的迅速发展,市场竞争的激烈,产品更新换代的周期日益缩短,工业生产从大批量、少品种,向小批量、多品种转换,继电器—接触器控制难以满足市场要求,此问题首先被美国通用汽车公司(GM公司)提了出来。通用汽车公司为适合汽车型号的不断翻新,满足用户对产

品多样性的需求,公开对外招标,要求制造一种新的工业控制装置,取代传统的继电器—接触器控制。其对新装置性能提出的要求就是著名的GM10条,编程方便,现场可修改程序; 维修方便,采用模块化结构;可靠性高于继电器控制装置;体积小于继电器控制装置; 数据可直接送入管理计算机;成本可与继电器控制装置竞争; 输入可以是交流115V; 输出为交流115V,2A以上,能直接驱动电磁阀,接触器等;在扩展时,原系统只要很小变更;用户程序存储器容量至少能扩展到4K。

这十项指标就是现代PLC的最基本功能,值得注意的是PLC并不等同于普通计算机,它与有关的外部设备,按照“易于与工业控制系统连成一体”和“便于扩充功能”的原则来设计。

用可编程控制器代替了继电器—接触器的控制,实现了逻辑控制功能,并且具有计算机功能灵活、通用性等有点,用程序代替硬接线,并且具有计算机功能灵活、通用性能强等优点,用程序代替硬接线,减少了重新设计,重新接线的工作,此种控制器借鉴计算机的高级语言,利用面向控制过程,面向问题的“自然语言”编程,其标志性语言是极易为IT电器人员掌握的梯形图语言,使得部熟悉计算机的人也能方便地使用。这样,工作人员不必在变成上发费大量地精力,只需集中精力区考虑如何操作并发挥改装置地功能即可,输入、输出电平与市电接口,市控制系统可方便地在需要地地方运行。所以,可编程控制器广泛地应用于各工业领域。

PLC问世时间不长,但是随着微处理器的发展,大规模、超大规模集成电路不断出现,数据通信技术不断进步,PLC迅速发展。PLC进入九十年代后,工业控制领域几乎全被PLC占领。国外专家预言,PLC技术将在工业自动化的三大支柱(PLC、机器人和CAC/CAM)种跃居首位。

我国在八十年代初才开始使用PLC,目前从国外应进的PLC使用较为普遍的由日本OMRON公司C系列、三菱公司F系列、美国GE公司GE系列和德国西门子公司S系列等。

1.2、PLC的发展

虽然PLC问世时间不长,但是随着微处理器的出现,大规模,超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC也迅速发展,其发展过程大致可分为三各阶段:

早期的PLC一般称为可编程逻辑控制器。这是的PLC多少由电继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制、定时等。它在硬件上 以计算机的形式出现,在I/O接口电路上作了改进以适应工业控制现场的要求。装置种的器件主要采用分离元件和中小规模集成电路,存储器采用磁芯存储器。另外还采取了一些措施,以提高其抗干扰的能力。在软件编程上采用广大电器工程技术人员所熟悉的继电器控制线路的方式—梯形图。因此,早期的PLC的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指示,能重复使用等。其中PLC特有的编程语言—梯形图一直沿用至今。

在七十年代,微处理器的出现使PLC发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC的中央处理单元(CPU)。

这样,使PLC的功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。再硬件方面,除了保持其原有的开关模块以外,还增加了模拟量快、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,是各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC的应用范围得以扩大。

进入八十年代中、后期,由于插大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC所采用的微处理器的档次普遍提高。而且,为了进一步提高PLC的处理速度,各制造厂商纷纷开发研制了专用逻辑处理芯片。这样使得PLC软、硬功能发生了巨大变化。

1.3、PLC的未来展望

21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。

1.4、PLC的特点 可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。配套齐全,功能完善,适用性强

PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。易学易用,深受工程技术人员欢迎

PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。系统的设计、建造工作量小,维护方便,容易改造

PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。体积小,重量轻,能耗低

以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

1.5、PLC的组成

PLC的硬件主要是由中央处理器(CPU)、存储器、输入单元、输出单元,通信接口、扩展接口电源等部分组成。其中,CPU是PLC的核心,输入单元与输出单元是连接现场输入/输出设备与CPU之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。典型PLC组成框图如图1.1所示。

图1.1 典型PLC组成框图

1.5.1、中央处理单元(CPU)中央处理单元(CPU)是PLC控制中枢。它PLC系统程序赋予功能接收并存储从编程器键入用户程序和数据;检查电源、存储器、I/O以及警戒定时器状态,并能诊断用户程序中语法错误。当PLC投入运行时,首先它以扫描方式接收现场各输入装置状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,命令解释后按指令规定执行逻辑或算数运算结果送入I/O映象区或数据寄存器内。等所有用户程序执行完毕之后,最后将I/O映象区各输出状态或输出寄存器内数据传送到相应输出装置,如此循环运行,直到停止运行。

进一步提高PLC可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU表决式系统。这样,某个CPU出现故障,整个系统仍能正常运行。

1.5.2、存储器

存放系统软件存储器称为系统程序存储器。存放应用软件存储器称为用户程序存储器。

1、PLC常用存储器类型

(1)RAM(Random Assess Memory)这是一种读/写存储器(随机存

储器),其存取速度最快,由锂电池支持。

(2)EPROM(Erasable Programmable Read Only Memory)这是一种可擦除只读存储器。断电情况下,存储器内所有内容保持不变。紫外线连续照射下可擦除存储器内容)。

(3)EEPROM(Electrical Erasable Programmable Read Only Memory)这是一种电可擦除只读存储器。使用编程器就能很容易对其所存储内容进行修改。

2、PLC存储空间分配

各种PLCCPU最大寻址空间各不相同,PLC工作原理,其存储空间一般包括以下三个区域:

(1)系统程序存储区

(2)系统RAM存储区(包括I/O映象区和系统软设备等)(3)用户程序存储区

系统程序存储区:系统程序存储区中存放着相当于计算机操作系统系统程序。包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化EPROM中,用户不能直接存取。它和硬件一起决定了该PLC性能。

系统RAM存储区:系统RAM存储区包括I/O映象区以及各类软设备,如:逻辑线圈;数据寄存器;计时器;计数器;变址寄存器;累加器等存储器。

(1)I/O映象区:PLC投入运行后,输入采样阶段才依次读入各输入状态和数据,输出刷新阶段才将输出状态和数据送至相应外设。它需要一定数量存储单元(RAM)以存放I/O状态和数据,这些单元称作I/O映象区。一个开关量I/O占用存储单元中一个位(bit),一个模拟量I/O占用存储单元中一个字(16个bit)。整个I/O映象区可看作两个部分组成:开关量I/O映象区;模拟量I/O映象区。

(2)系统软设备存储区 :I/O映象区区以外,系统RAM存储区还包括PLC内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)存储区。该存储区又分为具有失电保持存储区域和无失电保持存储区域,前者PLC断电时,由内部锂电池供电,数据不会遗失;后者当PLC

断电时,数据被清零。

用户程序存储区:主要用来存放用户的应用程序。所谓用户程序时指使用户根据工程现场的的产生过程和工艺要求编写的控制程序。次程序由使用者通过编程器输入到PLC机的RAM存贮器中,以便于用户随时修改。也可将用户程序存放在EEPROM中。

1.5.3、输入/输出模块

输入/输出模块是可编程控制器与工业生产设备或工业生产过程连接的借口。现场的输入信号,如按钮开关,行程开关、限位开关以及传感输出的开关量或模拟量(压力、流量、温度、电压、电流)等,都要通过输入模块送到PLC。由于这些信号电平各式各样,而可编程控制器CPU所处理的信息只能是标准电平,所以输入模块还需将这些信号转换成PLC能够接受和处理的数字信号。输入模块的作用是接收中央处理器处理过的数字信号,并把它转换成现场执行部件所能接收的控制信号,以驱动如电磁阀、灯光显示、电机等执行机构。可编程控制器有多种输入/输出模块其类型有数字量输入/输出模块和模拟量输入/输出模块。这些模块分直流和交流、电压和电流类型,每种类型又有不同的参数等级,主要有数字量输入/输出模块和模拟量输入输出/模块,部件上都设有接线端子排,为了滤除信号的噪声和便于PLC内部对信号的处理,这些模块上都带有滤波、电平转换、信号锁存电路。数字量输入模块带有广电耦合电路,其目的是把PLC与外部电路隔离起来,以提高PLC的抗干扰能力。数字两输出有继电器输出、晶体管输出和可控硅输出三种方式。模拟量输入/输出模块主要用来实现模拟量与数字量之间的转换,即A/D或D/A转换。由于工业控制系统中有传感器或执行机构有一些信号是连续变化的模拟量,因此这些模拟量必须通过模拟量输入/输出模块与PLC的中央处理器连接。模拟量输入模块A/D转换后的二进制数字量,经光电耦合器和输出锁存器宇PLC的1/0总线挂接。现在标准量程的模拟电压主要是0—5伏和0—10伏两种。模拟量输入模块接收标准量程的模拟电压或电流猴,把它转换成8未、10未或12位的二进制数字信号,送给中央处理器进行处理。模拟量输出模块将中央处理器的二进制数字信号转换成标准量程的电压或电流输出信号,提供给

执行机构。

1.5.4、扩展模块

当一个PLC中心单元的I/O点数不够用时,就要对系统进行扩展,扩展接口就是用于连接中心基本单元与扩展单元的。模块随着可编程控制器在工业控制中的广泛应用和发展,使可编程控制器的功能更加强大和完善。只能I/O接口模块种类很多,例如高速计数模块、PLCA控制模块、数字位基于PLC的变频恒压供水系统的设计置译码模块、阀门控制模块、智能存贮弄快以及智能I/O模块等。

1.5.5、编程器

它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在磁带上,磁带上的信息可以重新装入PLC。

目前编程器主要有以下三种类型:

1.便携式编程器(也叫简易编程器);2.图形编程器;3.用于IBM—PC及其兼容机的编程器。

便于携带的特点,一般只能用指令形式编程,通过按键输入指令,通过数码管或液晶显示器加以显示、这种编程器适合小型可编程控制器的编程要求。

图形编程器以液晶显示器(LCD)或阴极射线管(CRT)作屏幕,用来显示编程内容和提供如输入、输出、辅助继电器的占有情况、程序容量等各种信息,还可在调试程序、检查程序执行时显示各种信号状态、出错提示等。

使用图形编程器可以月多种编程语言编程,梯形图显示在屏幕上十分直观。图形编程器还可与打印机、录音机、绘画仪等设备连接,有较强的监控功能。但它的价格高,适用于中、大型可编程控制器的编程要求。

用于IBM—PC及其兼容机的编程器是个人计算机加上适当的硬件接口和软件包作为编程器,也可直接编制成梯形图,其监控功能也很强。编程器工作方式主要有编程和监控两种,编程工作方式是在PLC机处于停机状态

时可以进行编程,它的功能主要是输入新的程序,或者对已有的程序予以编辑和修改。

监控工作方式可以对运行中的控制器工作状态进行监视和跟踪,一般可以对某一线圈或触点的工作状态进行监视,也可以对成组器件的工作状态进行监视,还可以跟踪某一器件在不同时间的工作状态,除搜索、监视、跟踪外,还可以对一些器件进行操作。因此编程器的监控方式对控制器中新输入程序的调试与试运行是非常有用和方便的。编程器的结构一般包括显示部分与键盘部分。显示一般用液晶显示器,主要的显示内容包括地址、数据、工作方式、指令执行情况及系统工作状态等。键盘有单功能键和双功能键,在使用双功能键的时候键盘中都备有一个选择键,以选择其中一种方式工作。

现在产品越来越模块化,可编程控制器也不例外,它的结构紧密、坚固,外形小巧,CPU本身只提供了一定数量的数字输入和输出点数。不同厂家、不同型号的PLC的输入/输出点数也不同,有的大型机输入/输出点数可达16K,而很多小型机仅有10来点,而且CPU本身不带模拟输入与输出,但CPU一般都带有扩展接口。因此,用户选型后,所需的输入或输出点数不够时,就需对系统做出必要的扩展,各个厂家也生产了专用于扩展用的各模板供用户选用。扩展模板的外形一般也小巧、坚固,有易于接线的端子排,带有扩展总线或通过总线连接器与CPU相连。主要有数字输入/输出模板,模拟输入/输出模板,热电阻、热电偶扩展模板,还有智能模板等许多具有专用功能的特殊模板。

用扩展模板来扩展系统具有以下的优点:

用户可根据自己时间控制系统的要求,选用各种合适的扩展模块对PLC作硬件组态,以求达到各种功能或控制精度,同时节省开支,减少不必要的投资。

当已运行的系统需要改造或扩充时,PLC可以随时进行升级或改版,所作的工作仅仅是替换或增加扩展模板和修改相应的控制软件。特殊模板及智能模板的开发将进一步扩展可编程控制的功能,专用模板的开发不仅扩大了可编程控制系统的控制功能,而且将进一步提高控制质量与可靠性。

1.5.6、电源

PLC中的电源一般有三类:

1、+5V、±15V直流电源:供PLC中TTL芯片和集成运放使用;

2、供输出接口使用的高压大电流的功率电源;

3、锂电池及其充电电源。

考虑到系统的可靠性以及光电隔离器的使用,不同类型的电源其地线也不同。

目前PLC的发展非常迅速,型号众多,各种特殊功能模板不断涌现。通常根据其I/O点的数量将 PLC分为三大类:

小型机:256点以下(无模拟量);

中型机:256 ~ 2048点(64 ~ 128路模拟量);

大型机:2048点以上(128 ~ 512路模拟量)。

具体实现时,通常采用模板式结构,以便用户根据实际应用需求进行配置。但一些小型机常制作成一体机,其配置固定,主要供定型成套设备使用;而一些大型机一般在电源、或者CPU,甚至两者都作了热备份。

1.6、PLC的工作原理

最初研制生产的PLC主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:

继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。而PLC的CPU则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。

为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各类触点的动作时间一般在100ms以上,而PLC扫描用户程序的时间一般均小于100ms,因此,PLC采用了一种不同于一般微型计算机的运行方式---扫描技术。这样在对于I/O响应要求不高的场合,PLC

与继电器控制装置的处理结果上就没有什么区别了。

1.6.1、扫描技术

当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。如图2.2所示:

图1.2 PLC 扫描周期

1、输入采样阶段:在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

2、用户程序执行阶段 :在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

3、输出刷新阶段:当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。

1.6.2、PLC的I/O响应时间

为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。

1.7、梯形图程序设计

梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC用户都首选使用梯形图编程。

指令是用英文名称的缩写字母来表达PLC的各种功能的助记符号,类似于计算机汇编语言。由指令构成的能够完成控制任务的指令组合就是指令表,每一条指令一般由指令助记符和作用器件编号组成,比较抽象,通常都先用其它方式表达,然后改写成相应的语句表,编程设备简单价廉。

通常微、小型PLC主要采用继电器梯形图编程,其编程的一般规则有:

1、梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形

呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC的有效范围内。

2、梯形图是PLC形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流:层次的改变也只能自上而下。

3、梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“l态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“o态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

4、梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

5、继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

6、PLC在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。

当PLC运行时,用户程序中有众多的操作需要去执行,但CPU是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。这种分时操作的过程称为CPU对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

2方案的论证

2.1、工艺过程分析

水塔水位控制系统过程分析:设水塔、水池初始状态都为空着的,此时S4,S3,S2,S1均为ON。当系统启动时,扫描到水池为液位低于水池下限位时,电磁阀Y打开(10.02通电),开始往水池里进水,如果进水超过4S,而水池液位没有超过水池下限位(传感器S4仍为ON),说明系统出现故障,系统故障指示灯闪烁(10.03闪烁)。若4S后只有水池液位按预定的超过水池下限位(传感器S4变为OFF),说明系统在正常的工作。此时只有水池下限位有水,系统检测到此信号时,由于水塔液位低于水塔水位下限(S2为ON),故水泵M(10.04通电)开始工作,向水塔供水,当水池的液位超过水池上限液位时(传感器S3变为OFF),电磁阀Y就关闭(10.02失电)。但是水塔现在还没有装满,水泵M继续工作,在水池抽水向水塔供水,水塔装满时(传感器S1变为OFF),水泵M停止供水(10.04失电),此次给水塔供水完成。

2.2、PLC型号的选择

输入:系统启动按钮一个,系统停止按钮一个,液位传感器四个分别表示为S4,S3,S2和S1。输入一共有6个,考虑到留有15%~20%的余量即6×(1+15%)=6.9取整数7,所以共需7个输入点。

输出:Y阀,故障指示灯 ,水泵M。输出共有3个,3×(1+15%)=3.45取整数4,所以共需4个输出点。可以选OMRON公司的CPM1A/CPM2A型PLC就能满足此例的要求。

2.3、工作控制方式

采用工控机作为上位机、PLC系统作为下位机的两级控制模式。PLC控制系统是该程控系统的核心,工控机作为监控机械手的运行状态使用。

1、上位机:计算机作为上位机,用于完成状态显示、打印输出、向PLC发送分类控制信号等功能,从而实现对控制系统的实时监控。同时,计算机还是图象处理的核心。

2、下位机:PLC作为下位机,用来完成状态判别、输出控制等工作。它直接控制电磁阀、继电器,从而实现对各执行元件的控制。本系统采用价格适中、可靠性高、维护方便且抗干扰能力强的可编程控制器欧姆龙CPM2A型PLC来实现水塔水位控制系统工艺的控制要求的。欧姆龙PLC是由电源、中央处理器和I/O元件组成的严密高速的程序控制器,配有丰富的指令系统,易于用户编程,具有丰富的特殊模块和通信能力,可以满足生产自动化的多级要求。本系统采用CPM2A是一种功能完善的紧凑型PLC,大程序容量和存储单位。另外CPU单元带RS-232C接口,具有PPI、MPI等通信协议可实现程序传送,数据通信等功能。

欧姆龙公司C系列的小型机CPM2A型PLC 20点输入/输出,配有CX-Programmer软件用于控制部分编程时使用。

3、通信方式:CPM2A CPU支持多样的通信协议:点到点(Point-to-Point)接口(PPI)、多点接口(Multi-Point)(MPI)。这些都基于系统内通信结构模型,都是异步、基于字符的协议。其中PPI方式是非常简单方便的通信协议,只需要一根RS-232C线进行数据信号的传递,不需要额外再配置模块或软件。因此,本系统选择PPI方式,简单且能满足通信要求。CPM2A型PLC上配有RS-232C的通信接口,因此在不增加任何硬件的情况下,可以很方便地将PLC和计算机互联。

上位机与下位机之间通过RS-232连接构成HOST LINK协议进行通信。RS-232又称为EIA-232C或RS-232C,是最通用的一种串行通讯标准。它是一种点到点的通信方式,只能连接两个通信设备。19200波特率时,最大距离为75米;9600波特率时,最大距离为900米。计算机的串口即为标准的RS-232接口。使用RS-232转换器可以免掉一个RS-422串行接口板。

3、水塔水位系统PLC硬件设计

水塔水位控制系统结构图如图3.1所示

图3.1 水塔水位自动控制示意图

3.1、水塔水位系统控制电路

图3.2 水塔水位控制系统电路图

3.2、输入/输出分配

水塔水位控制系统I/O分配表见表3.1。

表3.1 水塔水位自动控制系统I/O分配表

输入

操作功能 启动按钮 停止按钮 液位传感器s4 液位传感器s3 液位传感器s2 液位传感器s1

地址 0.00 0.01 0.02 0.03 0.04 0.05

Y阀

输出

操作功能 故障指示灯 水泵M

地址 10.02 10.03 10.04 3.3、水塔水位系统的接线图

水塔水位控制系统的I/O接线图如3.3 所示:

图3.3 水塔水位控制系统接线图

4、水塔水位控制系统PLC软件设计

4.1、程序流程图

水塔水位控制系统的流程图,根据设计要求控制流程图如图5.1:

图4.1 水塔液位自动控制系统流程图

4.2、梯形图

PLC控制程序用CX-Programmer编程软件开发。CX-Programmer是OMRON公司PLC的软件编程﹑调试的工具程序,其运行在Windows操作系统下,具有丰富、简捷的操作环境和强大的编程、调试功能。可实现梯形图的编程、监视和控制等功能,尤其擅长于大型程序的编写,弥补了手编程器编程效率低的不足[1]。CX-Programmer编程软件支持模块化设计,在程序编写时可以直接将编写好的程序通过RS-232C传送到PLC来控制现场设备。根据程序流程图设计的梯形图如5.2所示:

图4.2 水塔水位控制系统梯形图

4.3、系统程序的具体分析

PLC采用循环扫描的的工作方式,这种工作方式是在系统软件控制下,顺次扫描各输入点的状态,按用户程序进行运算处理,然后顺序向各输出点发出相应的控制信号,任一时刻它只能执行一条指令,这就是说PLC是以“串行”方式工作的,它能有效地避免继电接触器控制系统中易出现的触点竞争和时序失配的问题。

PLC执行用户程序是从梯形图左母线开始由上至下,由左向右逐个扫描每个梯级的每个元素,进行运算,此时CPU只是与映象区进行数据交换,读取输入数据,送出输出信号。当CPU执行到END指令时,表示程序段结束,则此次扫描用户程序结束。PLC控制程序分析

实现功能:当按下00000系统启动按钮,中间继电器20001得电并自锁,系统处于等待状态并一直保持。按下00001停止按钮系统的运行停止。

实现功能:当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON),当S3为ON后,阀Y关闭(Y为OFF)。

实现功能:当Y打开进水(Y为ON)定时器开始定时,4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障。

实现功能:当S4为OFF时(表示水池水位高于水池低水位界),且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。

4.4、水塔水位控制系统梯形图的对应指令表

水塔水位控制系统指令表如图4.3所示:

图4.3 水塔水位控制系统的指令表

总结

五个星期的PLC实训很快结束了,在这短暂的实训时间里,经过老师、同学的指导,我获益匪浅,学习了不少关于自己专业方面的知识。

在完成项目期间,我们组的分工明确,有负责编程的,有负责报告找资料,有负责画电路图的……虽说分工明确,但在完成项目过程中遇到些麻烦的话组员之间还是相互配合相互帮助尽量让每个学员学到更多的专业知识,使每个组员更上一个层次。实训期间,我主要负责编程、报告及找资料,但这并不是说我在其他组员做他们任务时置之不理,与我无关。我在旁边和组员一起,参与其中的讨论分析,并会不时帮助他们完成任务。而同样我在做我的任务时,他们也会经常帮我解决一些我无法解决的问题。这样,我们组在完成这两个项目还是比较顺利的。

我做的这个题目是有关与PLC系统理论与实践相结合的设计。在此时对以前学习的知识的挑战与突破。在对这个设计的材料搜索进行独立搜索时,对于办公软件的应用有了进一步的提高。同时在对搜集的材料进行整核,结合所学理论知识,以及实际应用操作的情况下,提高了实际操作和独立解决问题的能力。

通过这次设计实践。让我更熟练的掌握了PLC软件的简单编程方法,对于PLC的工作原理和使用方法也有了更深刻的理解。在理论的运用中,也提高了我的工程素质。刚开始学习PLC软件时,由于我对一些细节的不加重视,当我把自己想出来的一些认为是对的程序运用到梯形图编辑时,问题出现了。转换成指令表后则显示不出很多正确的指令程序,这主要是因为我没有把理论和实践相结合,缺乏动手能力而造成的结果,最后通过老师的纠正和自己的实际操作,终于把正确的结果做了出来,同样也看清了自己的不足之处。

如今设计是做完了,可是我的学习之路还没有完,这次实训让不仅学习了不少与自己专业相关的知识,而且还懂得了团队的力量,并且让自己更相信一分努力一分收获,积极的学习态度在以后的学习、工作中是永远缺少不了的!并明白人这一辈子不能仅仅局限于那一点点满足感,要放眼望去,通过去参与各种实践,提升自己的动手能力,创造属于自己的未来。

本文是在指导老师悉心指导下完成的。从论文的选题到相关材料的收集,从论文框架的设计到具体内容遣词造句,每一章节都凝聚着指导老师的心血。在此,学生表示最诚挚的谢意。在老师严谨的治学态度、积极的人生观、学术上孜孜追求的精神以及对学生无微不至的关怀,都给我留下了终生难忘的印象,必然将对我以后的学习和生活产生重要影响。

在完成整个论文期间,对各位老师、同学、朋友、亲人辛勤劳动以及他们在治学和人品上给予我的深刻影响,我同样铭记在心,并表示由衷的感谢。

在此,我向所有在学业上、生活上帮助、理解、支持我的老师、同学、朋友和亲人致以最真诚的谢意。

最后,感谢各位专家、学者在百忙之中审阅我的拙作。

参考文献

篇3:水塔水位PLC控制系统的设计

1. 控制系统设计要求

如图1所示, 当水位到达水位界时, 对应的水位开关闭合;当水位低于水位界时, 对应的水位开关断开。

(1) 水塔水位控制

当水塔水位低于低水位界时 (S3为OFF) , 电机M开始工作抽水。直到水位达到高水位界处 (S1为ON) , 电机停止工作;当水池里的水位低于低水位时 (S4为OFF) , 电机不工作。

(2) 水池水位控制

当水池水位低于低水位界时 (S4为OFF) , 此时进水阀门Y线圈通电, 开始进水, 直到水池水位达到高水位处 (S2为ON时) , 关闭阀门停止进水。

2. 主控制电路

水塔水位控制系统的主控制电路如图2所示。抽水控制电路可采用小型抽水泵, 3V直流电源供电, 通过继电器的常开触点KA1与电机连接。进水控制电路部分采用交流220V, 通过继电器的常开触点KA2与进水阀门连接。

3. PLC外部连接电路

(1) PLC的I/O口分配

需要用到2个输入端来连接水塔水位开关, 2个输入端连接水池水位开关, 2个输出端来连接水泵和进水阀门。

X000:水塔高水位S1

X001:水池高水位S2

X002:水塔低水位S3

X003:水池低水位S4

Y000:抽水

Y001:进水

(2) PLC的I/O连接

本控制是小系统没有特殊的控制要求, 输入、输出触电数共有6个, 只需选用一般中小型PLC即可。本设计采用三菱PLC的FX1S-20MR, PLC外部连接图如下图3所示。

二、软件设计

1. 梯形图设计

用GX Developer软件设计PLC控制梯形图程序如图4所示。

当水塔水位低于下水位界 (X002为OFF, X000为OFF) , 若同时水池的水位高于下水位界 (X003为ON) 时, X002的常闭触点闭合, X000的常闭触点闭合, X003的常开触点闭合, 则Y000线圈通电驱动外部抽水电机工作。由梯形图程序可知, 若水池的水位低于下水位界 (X003为OFF) , 即使水塔水位低, 电机也不会进行抽水工作。

当水池水位低于下水位界 (X003为OFF, X001为OFF) , X003的常闭触点闭合, X001的常闭触点闭合, 则Y001线圈通电驱动外部进水阀门通电工作。

2. 指令表

水塔水位控制系统梯形图对应的指令表如表1所示。

三、安装调试

1. 仿真调试

(1) 软件调试

写完程序后可对软元件进行批量测试, 使用GX Developer和GX Simulator软件进行模拟调试, 这两种软件可用于三菱FX系列、A系列和Q系列PLC的编程、调试和模拟进行。

(2) 实验箱调试

本制作利用了“THPLC-1可编程逻辑控制器实验箱”进行模拟仿真, PLC型号为FX1S-20MR。将程序写入PLC, 利用两个发光二极管代替PLC输出端口Y控制的两个继电器, 用多个开关代替PLC输入端口X控制的电源启动开关、水位开关, 通过观察各发光二极管的发光情况, 验证程序设计是否正确。

2. 器件选用及安装

控制系统采用的元器件如表2所示。

(1) 5脚中间继电器

继电器1脚和4脚是常开触头;1脚和5脚是常闭触头;2脚和3脚是线圈;线圈工作电压DC3V;当线圈正常通电后, 常闭触头断开, 常开触头闭合。

(2) 水位开关

可采用液位浮球开关如图5所示, 它具有体积轻巧, 工作原理简单, 可靠性高, 价格便宜的特点。它主要由磁簧开关和浮子组成, 浮子内有磁性材料, 浮子随被测液位上下移动时, 触动磁簧开关而检出液位位置。

水位开关有如图6所示的几种安装方法, 本制作采用底部安装方法, 为防止漏水, 可用玻璃胶将安装口封住。安装调试时, 先在无水的状态下进行调试, 即手动将水位开关的浮子往上拨, 用万用表的欧姆档测试水位开关是否闭合。

(3) 进水阀门

可采用全自动洗衣机的进水阀门, 如图7所示。此种阀门为交流电磁式, 当接通交流电220V后, 其内部衔铁在电磁线圈磁力的作用下, 克服弹簧的弹力, 推动隔膜, 打开进水阀出水口。在断电情况下, 由于内部有层隔膜, 能压紧进水阀的出水口, 使水流不出来, 处于关闭状态。所以安装时, 进水口要有一定的水压, 可直接连接水龙头。若只是进行系统模拟, 可在进水阀的进水口处垂直连接1米以上的硬水管, 在水管的另外一头安装个水槽, 使水从高处流入进水阀门进水口。注意进水阀接电源的插头部分要进行防漏电绝缘处理。

(4) 抽水泵

小型抽水泵其主要用于桶装水的抽水, 将其改装即可使用。安装时, 将进水管与“模拟水池”水槽垂直放置并固定, 注意进水口不能碰到“模拟水池”水槽底部, 根据模拟水塔和模拟水池之间的高度, 适当切割水泵进水管的长度;该抽水泵内设有小电机, 须从里面引线连接3V直流电源。

(5) 水槽

可用废弃的水桶做成水槽, 其中作为“模拟水塔”的水槽置于高处, 作“模拟水池”的水槽置于低处, 如图8所示。

篇4:水塔水位控制器

关键词:降压整流电路 控制电路 继电器 保护电路 控制

1 设计思路

根据设计要求,电路由降压整流电路、555触发电路(NE555)、继电器控制电路等组成。其中降压整流电路为整个控制电路提供直流电压,触发电路NE555根据其触发特性对水塔水位进行控制。

2.1.1 控制电路

由NE555,继电器构成主要控制电路。NE555为8脚时基集成电路,各脚主要功能:

1地GND?摇2触发?摇3輸出?摇4复位?摇5控制电压?摇6门限(阈值)7放电?摇8电源电压Vcc

2.2.2 继电器

继电器是一种线圈的小电流控制触电的大电流的装置。

2.3 保护电路选用

该部分电路选用热继电器,接触器。

2.3.1 热继电器

热继电器是由流入热元件的电流产生热量,使有不同膨胀系数的双金属片发生形变,当形变达到一定距离时,就推动连杆动作,使控制电路断开,从而使接触器失电,主电路断开,实现电路的过载保护。

2.3.2 交流接触器

当接触器电磁线圈不通电时,弹簧的反作用力和衔铁芯的自重使主触点保持断开位置。当电磁线圈通过控制回路接通控制电压(一般为额定电压)时,电磁力克服弹簧的反作用力将衔铁吸向静铁心,带动主触点闭合,接通电路,辅助接点随之动作。

3.1 设计原理图

说明:D1-D6:IN4002?摇 R1-R3:470Ω?摇

U1:1000uF?摇U2:0.01uF?摇RW1-RW3:100KΩ

J是热继电器 ?摇J1是JRX-13F-1小功率小型继电器

3.2 工作原理

3.2.1 电源部分

电源电路为水位控制器电路的基础部分。接通电源后,经变压整流,在负载R上得到直流电压V。

3.2.2 控制部分

控制电路为水塔水位控制器电路的主体部分,降压整流电路为此部分电路提供稳定直流电压后,NE555开始工作。当水塔内的水位探极A、B、C低于水位线时,为高电位。调节RW1-RW3,使A点和B点的电位最大接近于2/3Vcc与1/3Vcc。当B、C高于塔内的水位线时,即已低于反向阈值电压V-,NE555②脚为“地”电位,使NE555发生置位,③脚输出的高电平使发光二极管工作并且使继电器J1吸合,触点J1闭合,接触器C吸合,触点C1闭合,抽水电机从而因得电而运转,进行抽水;当水位上升至探极B点,而又未到A点时,它们的分压值在1/3Vcc与2/3Vcc之间,状态不变。当水位继续上升至A点时,A点电位接近电源电压Vcc,超过了正向阈值电压V+,相应NE555复位,输出的低电平使J1释放,触点J1断开,接触器C释放,触点C1断开,抽水机断电停转,从而对水位实现自动控制。

3.2.3 保护部分

保护电路为水塔水位控制器电路不可缺少的一部分,当继电器J1吸合后,热继电器J通电,电流使线圈发热,金属片发生形变吸合。交流接触器亦随之通电,产生电磁力,电磁力克服弹簧的反作用力将衔铁吸向静铁心,带动主触点闭合,此时电路接通,驱动抽水机转动,一旦功率大于额定功率,继电器J线圈发热,使金属片形变到一定的程度时,金属片自动弹开,电路断开。随之接触器C电磁力消失,触电断开。起保护抽水机作用。

3.3 电路特点

篇5:水塔水位PLC控制系统的设计

专业:电子信息工程 学号:7020907013 姓名:刘以鹏 指导老师:方安安

摘要:水塔水位自动控制器,具有适应各种液体液位的检测和控制的功能,设计中分析了利弊,考虑了其实用性,提出了我的设计思路:运用AT89C52单片机,设计了一种自动控制电路,该电路可以自动进行液位检测,使水塔自动补水或排水,真正做到最简单化,并且该电路易于扩展,可实现更多点的液位检测。本文阐述了自动化装置在水塔水位控制系统中的应用,通过分析几种水塔水位自动控制系统的弊端,提出改进的设计思路,并经过硬件设计、调试,完成了水塔水位控制器的设计。关键词:单片机,自动控制系统,水塔水位,液位检测

Abstract:The water-level automatic controller system is able to adapt to monitor and control any liquid level.Analyzing its advantages and disadvantages and considering its practical, I have put forward my design ideas: Using AT89S52 single chip computer, design a kind of automatic control circuit, what is automatically level detection, making water tower automatic filling water or drainage, that accomplish truly most simplistic.The circuit is easy to expand, and can realize more multi-point level detection.The thesis simply discusses the application research on water tower water level auto control system.It analyzes the limitation on the pre-designation of water tower water level auto control system, and devises the advanced plan.To be proved in the practice, the water tower water level auto control system is compatible for all kinds of liquids, and can throw into the effective production.Keyword: SCM, Auto Control System, Water Level Water Tower, The liquid location to measure 引言

水塔水位智能控制是一个常谈常新的话题,早年采用模电技术和继电控制方法直到现在的PLC控制。前者虽然成本低,但电路复杂、可靠性差,后者能保证可靠性但成本非常昂贵。要学生用单片机的控制方法来实现上述方法的全部优点,跨学科,弱电强电相结合来克服他们的缺点,培养学生的综合创新思维能力,要学生精益求精的去完善和扩展所需功能,这样才能说学好了所学课程。系统硬件方案设计

1.1 设计分析

塔水位控制系统的控制对象为水泵,由水泵的正反转来实现对水塔的加水和放水,如此可以让水位控制在正常范围内。为了能够控制好水位就必须要有水位检测电路,水位检测电路是由传感器组成,转化成电信号输入于控制台中,再由控制台逻辑判断去控制电机的正反转动。

在水塔内的不同高度处,设置A、B、C三点反映水位的情况,如下图1所示。其中,C为上限水位,B在上、下限水位之间,A为下限水位(底端靠近水池底部,不能过低,要保证有足够大的流水量)。水塔由电机带动水泵供水,随着供水,水位不断上升,当水位上升到上限水位时,此时使电机反转和水泵放水;当水位处于上、下限之间时,电机保持。当水位下降到下限时,此时应启动电机正转,带动水泵给水塔注水。

基于单片机的水塔位控制器,如图2为电路构架图。

图1:水位采样原理图

图2:基于单片机的水塔位控制器

上图2为水塔水位控制系统组成电路框图,它由电源电路、液位检测电路、电机电路、报警电路、时钟电路、LCD显示电路和最小系统组成。各部分电路的组成及其用途如下:

液位检测电路:利用传感器检测水位变化,实现由位移转化成电信号的功能并利用三极管构成放大电路并由发光二极管将水位状态显示出来。

电机驱动电路:完成控制电机电路以带动水泵放水与进水。报警电路:实现水位在水少和水满时发出报警。时钟电路:当前时间和日期存储与提取。

LCD显示电路:LCD显示当前水位情况、时间日期和控制模式。最小系统(CPU):利用单片机作为整个水塔水位控制系统的控制电路。按键电路:外部高低电位变化来实现对CPU系统的逻辑控制。电源电路:为所有电路提供直流电源。1.2 电路原理图

图3:水塔位控制器之控制台原理图

图4:水塔位控制器之电机驱动电路原理图 系统软件方案设计

单片机实际是个小的微型机,除了硬件电路搭接外,还由软件支持,使电路功能更加强大。软件部分由主程序、液位检测子程序、时钟读取子程序、电机驱动子程序、PWM子程序、显示子程序、按键扫描子程序以及延时子程序组成。

软件流程图: 结束语

经调试,该系统能正常工作,满足设计的所有要求。该设计思路清晰,方法创新,容易实现,性能稳定可靠,成本实惠等特点。能实现以下功能:

①水塔水位实时取样;

②水位情况在LCD中显示和当前控制模式; ③显示时间:年月日周时分秒;

④时间日期调整、控制模式切换、设计版本查询; ⑤电机PWM控制实现进水和放水; ⑥水位异常情况报警。

参考文献(References)

[1] 赵全利、肖兴达.单片机原理及应用教程.机械工业出版社,2008

篇6:水塔水位PLC控制系统的设计

doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。

河北科技师范学院

课 程 设 计 说 明 书

目:

水塔水位监测装置 机电系 09 电气专 0426090126 张海龙 马继伟

学院(: 学院(系)年级专业: 年级专业: 学 号:

学生姓名: 学生姓名: 指导教师: 指导教师:

一、引言

随着科学技术的发展,单片机作为嵌入式微控制器在工业测控系统,智能仪器和家用电器中得到广泛应用。在实时检测和自动控制的单片机应 用系统中,单片机往往是作为一个核心部件来使用。水塔水位控制系统的基本要求是能够在无人监控的情况下自动进行 工作,在水塔中的水位到达水位下限时自动启动电机,给水塔供水;在水 塔水位达到水位上限的时候自动关闭电机,停止供水。并能在供水系统出 现异常的时候能够发出警报,以及时排除故障,随时保证水塔的对外的正 常供水作用。水塔是在日常生活和工业应用中经常见到的蓄水装置,通过 对其水位的控制对外供水以满足需要,其水位控制具有普遍性。不论社会经济如何飞速,水在人们正常生活和生产中起着重要的作 用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的 生产事故及损失,从而对供水系统提出了更高的要求,满足及时、准确、安全充足的供水。如果仍然使用人工方式,劳动强度大,工作效率低,安 全性难以保障,由此必须进行自动化控制系统的改造。从而实现提供足够 的水量、平稳的水压、水塔水位的自动控制有设计低成本、高实用价值的 控制器。该设计采用分立的电路实现超高、低警戒水位处理,实现自动控 制,而达到节能的目的,提高了供水系统的质量。

二、摘要

水位控制在日常生活及工业领域中应用相当广泛,比如水塔、地下水、水电站等情况下的水位控制。自动检测水位的检测系统能根据水位变化的 情况自动调节。本次课题采用单片机进行主控制,利用水的导电性测量水 位的变化,把测量到的水位变化转换成相应的电信号,用单片机对接收到 的信号进行数据处理,完成水位的检测、控制及故障报警等功能。

三、关键词:水位 单片机 A/D 转换 2

四、硬件设计 4.1 总体设计方案

分析课题可知应分两个电路来实现系统的功能,一是水位控制电路,二是水质检测电路,并且对于整个系统我们采用顺序控制。首先进行水位控制,水位电路根据输入不同的模拟量,转换为不同的 数字量,经过和设定的值进行比较,通过 P1.2 口对电机进行控制。水位 控制电路完成其预定功能后,便自动转到延时子程序,系统经过一定的预 定延时(本设计设定值为 10S)之后,转去执行水质检测电路。检测电路 根据不同的模拟量的输入,转换为不同的数字量,经过和设定的值进行比 较后,由单片机产生不同的驱动信号,从而使对应的二极管发光,以显示 不同的水质状态。水质检测结束,系统自动返回到主程序的入口处,继续 进行水位的检测和控制。如此往复循环达到对水塔水位的自动控制和对水 塔水质的检测和显示,从而满足水位和水质的要求。硬件设计方框图如图 1 所示。开始

水位控制

延时

水质检测 图1 3 4.2 系统组成

水位检测电路可以通过两个 51 单片机的管脚来感知水位的变化,产 生不同的逻辑组合来控制是否进水或是停止进水。输出端可由一个端口来 控制电机的运行状态,进而控制水泵的工作。水质检测的电路主要由 A/D 转换器组成。通过 A/D 转换为数字量作 用于单片机,从而控制水质状况的显示。本次设计采用 ADC0808 芯片。用 LED 灯来显示水位的高低。ADC0808 有 8 路模拟量的输入端口,本次设 计只要用其中一个,8 路模拟开关无需进行切换选通。设计通过 A/D 转换 为数字量作用于单片机,进而控制电机的运转。本次设计采用可调电阻器 来控制模拟电信号的输入。通过对电阻器的调节来模拟输入量的变化。通 过对比数字量来进行进行判断水位的高低,不同颜色的信号指示灯显示不 同的水质。进而通过输出口对电机进行开关控制。4.3 ADC0808 的简要介绍

ADC0808 有 8 路模拟量的输入端口,本次设计只要用其中一个,8 路 模拟开关无需进行切换选通。ADC0808 的 8 路模拟输入 8 路数字输出的逐 次逼近法 A/D 器件。其主要技术指标和特性为: 1.分辨率为 8 位。2.转换时间取决于芯片时钟频率。本次单元电路仿真采用 640KHZ 的 时钟方波信号。3.单一电源+5V。模拟输入电压范围单极性 0-5V,双极性 ± 5V 或 ± 10V。本次课程设计由于只有一个模拟输入量,且电压变化都为正值,故采用单 极性电源接法。4.启动转换控制方式为脉冲式(正脉冲),上升沿使内部所有寄存器 清“0”,下降沿使 A/D 转换开始。主要管脚说明: 4 CLK:为时钟信号输入端,决定 A/D 转换的速度,转换一次为 64 各时 钟周期。ALE:地址锁存允许信号,高电平有效。当此信号有效时,A、B、C 三 位地址信号被锁存,译码选通对应模拟通道。START:为启动转换信号,正脉冲有效。此信号通常与系统信号相连,控制 AD 转换器的启动。EOC:转换结束信号,高电平有效,表示一次 AD 转换已完成。可作为 中断触发信号,也可用程序查询的方法检测转换是否结束。OE:输出允许信号,高电平有效,可与系统读选通信号 RD 相连。当计 算机发出此信号时,ADC0808 的三态门被打开,此时可通过数据线读到正 确的转换结果。DC0808 的逻辑结构及引脚功能如图 2 所示 START CLK EOC IN7~IN0 8 路 模拟 开关

控制与时序

比较器 SAR 三 存 态 输 缓 出 冲 器 锁 D7~D0 ADDA ADDB ADDC ALE 地址 锁存 与 译码

树状开关

电阻网络 Vcc GND REF(+)REF(-)OE 5 图2 4.4 水位检测电路

模拟量由模拟通道 IN1 输入,通过对可调电阻的调节,模拟输入不同 的电压量。数字量的输出端与单片机的 P0 口相连接。单片机可通过对 P0 口数据的采集和处理,发出相应的控制信号。P3.0 口和 P3.6 口通过逻辑 或非门后,输出端接 START 与 ALE 端口。P3.0 口和 P3.7 口也通过逻辑或 非门后,输出端接 OE 端。通过对 PO 的信号和设定的数值比较,得出水 位的高低而通过 P1.2 口对电机进行控制。同时 P0 口的信号转入 P2 口,通过 LED 灯的显示来显示水位的高低,灯光的不同来表示水塔的水位状 态。电路连接图如图 3 所示。

图3 4.5 水质检测电路

水质检测电路主要由 ADC0808 实现,通过 A/D 转换对比来判断水质 的 6 好坏。模拟量由模拟通道 IN0 输入,通过对可调电阻的调节,模拟输入不同 的电压量。数字量的输出端与单片机的 P0 口相连接。单片机可通过对 P0 口数据的采集和处理,发出相应的控制信号。P3.0 口和 P3.6 口通过逻辑 或非门后,输出端接 START 与 ALE 端口。P3.0 口和 P3.7 口也通过逻辑或 非门后,输出端接 OE 端。由于只需采用一个模拟输入通道(IN0),故可 将模拟通道地址选择端都就地,这样,转换出的数字量便全部为 IN0 口的 模拟量的对应值。输出端为 P1.5、P1.6、P1.7,分别接一发光二极管,用 以显示不同的水质的状态。电路连接图如图 4 所示。

图4 7

五、软件设计

一个应用系统,要完成各项功能,首先必须有较完善的硬件作保证。同时还必须得到相应设计合理的软件的支持,尤其是微机应用高速发展的 今天,许多由硬件完成的工作,都可通过软件编程而代替。甚至有些必须 采用很复杂的硬件电路才能完成的工作,用软件编程有时会变得很简单。以下为设计的具体程序 5.1 水位控制程序

通过对水位控制电路图的分析,做出以下水位控制程序流程图如图 5 所示。8 图 5 水位控制程序流程图 由以上流程图,可以得出水位控制程序清单如下: ORG 0000H AJMP ORG MAIN 0030H SJMP LOOP ORG 0050H MAIN: SETB P1.0 CLR P3.0 CLR P3.6 ACALL DELAY SETB P3.0 9 SETB P3.6 WAIT: JB P1.1,DONE1 SJMP WAIT DONE1 : CLR P3.0 CLR P3.7 MOV CLR C SUBB A,#0F4H JNC D1 MOV A,P0 SETB C SUBB A,#0003H JC D2 SJMP LOOP D1: CLR P1.2 SJMP BACK D2: SETB P1.2 SJMP BACK BACK: ACALL D10S SJMP LOOP A,P0;检测转换是否完成;等待转换完成

5.2 水质检测程序

通过对水质检测电路图的分析,做出以下水质检测程序流程图如图 6 所示。10 图 6 水质检测流程图 由以上流程图,可以得出水质检查系统程序清单如下: ORG 0000H SJMP MAIN ORG 0030 MAIN: CLR P3.0 CLR P3.6 ACALL DELAY SETB P3.0 11;调用延时子程序

SETB P3.6 WAIT: JB P2.7,DONE SJMP WAIT DONE: CLR P3.0 CLR P3.7 MOV A,P0 CLR C SUBB A,#0AAH JNC DONE1 MOV A,P0 SUBB A,#55H JNC DONE2 SETB P1.5 CLR P1.6 CLR P1.7 SJMP MAIN DONE1: SETB P1.7 CLR P1.6 CLR P1.5 SJMP MAIN DONE2: SETB P1.6 CLR P1.5 CLR P1.7 SJMP MAIN DELAY: MOV R5,#5 DL1: DL2: MOV R6,#10 MOV R7,#10 12;转换结束则转;未结束则等待;读取数据

;与设定值比较大小;大则转

;与设定值比较大小;大则转;控制红灯亮;控制绿灯亮;控制黄灯亮;延时子程序

DJNZ R7,$ DJNZ R6,DL2 DJNZ R5,DL1 RET END 5.3 使用说明与注意事项

该电路设计比较简单,功能稳定,适合于实际的水塔水位控制中使用。作为一个很实用的自动控制装置,为了工作人员的操作的方便,下面对其 使用方法与注意事项作如下简单描述: 使用水质和水位检测和调节功能是一个完全自动的过程,不过仿真电 路是需要人为改变输入量的变化,在水位的输入量就是通过浮标来改变输 入量电压的大小,通过 A/D 转换,利用浮力原理使浮标带动触头工作,进 而影响直流接触器动作,控制交流接触器工作,实现水塔无水时自动开启水 泵电动机,水满时自动关闭的自动控制目的,整个由单片机来实现对电机 的调节。本次设计中的电机调节电路简单的接了个 5V 的直流电机来实现 控制。水质检测系统的输入量是由一个能够接受发光二极管的感光器来完 成的。感光器对不同的水质会感应处不同的电压信号,这些不同的模拟电 信号经过 A/D 转换。由单片机驱动相应的水质指示灯,从而达到检测水质 的目的。绿灯表示水质为“良”,黄灯表示水质为“中”,当指示器为红色 时,水质等级为“差”,为保证人们的饮水安全,工作人员应立即停止供 水再进行检查确定感光器工作是否正常。若操作中水位控制和水质检测不是同时进行的,因为在软件上有一定 的时间差,不过在水塔水位和水质检测这种对时间的精确度要求不高的场 合,时间差可以忽略不计,一般它不会影响到系统的安全性能和时间特性。13

六、心得体会

随着科学技术的迅猛发展,单片机被广泛应用于人们生活的各个领 域,社会需要大量掌握单片机技术的人才,单片机的使用方法应该是我们 熟练掌握的内容,水塔水位的单片机控制系统水塔水位控制在铁路、油田、化工等部门有着广泛的应用。通过这次的课程设计,理论加上实践,我掌握了 80C—51 单片机的基 本工作原理和基本编程方法,熟悉了 A/D 转换器 ADC0808 的功能和使用 方法,还可以根据需要对单片机进行扩展。在此过程中我还熟悉了单片机 的软硬件开发环境,提高了综合演练单片机的编程能力,并且亲身体验了 单片机的开发成果。此次课程设计之后,我对单片机知识点了解了更多,脑海中能把一个 个分离的知识模块联系成整体,让后对其进行分析与比较。在单片机课程 中的部分知识学会了融会贯通,也让我深刻认识到 “学以致用” 的重要性。

七、参考文献 1.《单片机原理与应用》 王迎旭 主编 机械工业出版社 张洪润 易涛 编 2.《 单 片 机 应 用 技 术 教 程(第 三 版)》 清华大学出版社 3.《单片机初级教程》 张迎新 杜小平樊桂花 雷道振 编

北京航空航天大学出版社 4.《51 系列单片机应用与实践教程》 周向红 主编 北京航空航天大学出版社 5.《数字电子技术基础(第四版)阎石 主编 》 高等教育出版社 14

八、附录

8.1 源程序清单 ORG D5 D6 0000H EQU 33H;显示缓存区 33H-34H EQU 34H WEI1 EQU P1.3 WEI2 EQU P1.4;位选端口 P2.4P2.7 AJMP ORG MAIN 0030H SJMP LOOP ORG 0050H MAIN: SETB P1.0 CLR P3.0 CLR P3.6 ACALL DELAY SETB P3.0 SETB P3.6 WAIT: JB P1.1,DONE1 SJMP WAIT DONE1 : CLR P3.0 CLR P3.7 MOV CLR C SUBB A,#0F4H;与最高位比较 15;检测转换是否完成;等待转换完成 A,P0 JNC D1 MOVA,P0 SETB C SUBB A,#0003H JC D2 SJMP LOOP D1: CLR P1.2 SJMP BACK D2: SETB P1.2 SJMP BACK BACK: ACALL D10S SJMP LOOP D10S: MOV R3,#19H LOOP3: LOOP1: LOOP2: MOV R1,#85H MOV R2,#0FH DJNZ R2,LOOP2 DJNZ R1,LOOP1 DJNZ R3,LOOP3 RETI LOOP: MOV A,P0 MOV P2,A ACALL TRAN ACALL DISP CLR CLR CLR P1.0 P3.0 P3.6 16 ;与最低位比较

;电机停转

;电机转动

水位显示;水质检测

ACALL SETB SETB WAIT1: JB SJMP DONE: CLR CLR MOV CLR SUBB JNC MOV SUBB JNC SETB CLR CLR SJMP A1: SETB CLR CLR SJMP A2: SETB CLR CLR SJMP DELAY: DELAY P3.0 P3.6 P1.1,DONE WAIT1 P3.0 P3.7 A,P0 C A,#0AAH A1 A,P0 A,#55H A2 P1.5 P1.6 P1.7 MAIN P1.7 P1.6 P1.5 MAIN P1.6 P1.5 P1.7 MAIN;延时子程序 17;检测转换是否完成;等待转换完成;读取 P0 口数字量

;与设定值#0AAH 比较;若 A 值大,则绿灯亮

;与设定值 055H 比较;若 A 值大,则黄灯亮;其余情况,则红灯亮;绿灯亮子程序;黄灯亮子程序

上一篇:医疗质量和医疗安全工作目标下一篇:防除