电工电子资料查询总结

2024-06-03

电工电子资料查询总结(精选6篇)

篇1:电工电子资料查询总结

电工电子实习资料查询总结报告

专业

学号:

姓名

提要:电工电子实习不仅是锻炼自己动手能力,而且是在资料收集的过程中也能体现出实习的严谨性,对资料的准确收集总结,在整个实习中也占据这很大分量。本文的资料来自于百度文库、中国知网、超星、同方、重庆维普学位论文全文数据库,搜索方法是关键字,全文,作者,篇名,主题,参考文献。总共查询相关论文的篇目数量8000篇,最后采纳18份,对自己有直接参考价值的论文有18篇。了解了收音机的发展和前景趋势,理论基础,技术特点等。最后在这些文献的指导下,完成了本总结报告。正文:

一、HX108-2 AM收音机

产品简介

该机为七管中波调幅袖珍式半导体收音机,采用全硅管标准二级中放电路,用二只二极管正向压降稳压电路,稳定从变频、中频到低放的工作电压,不会因为电池电压降低而影响接收灵敏度,使收音机仍能正常工作,本机体积小巧,外观精致,便于携带。收音机的组成及其工作原理

收音机电路原理图

调幅收音机原理图

我们安装的是七管超外差式收音机。它由输入回路高效混频级,一级中放,二级中放,前置低放兼检波级,低放级和功放级等部分组成,接收频率范围为535千赫~1605千赫的中波段。其工作原理是:收音机接收天线将广播电台播发的高频的调幅波接受下来,通过变频级把外来的各调幅信号变换成一个低频和高频之间固定频率——465KHZ(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。

根据超外差收音机的原理,我们可以将上图所示的电路分成以下几个模块:输入回路、变频回路(包括本振电路、混频电路和选频电路)、中频放大(中放)回路、检波及AGC回路、低放级回路、功放级回路。① 输入回路

从磁性天线感应的调幅信号送入C1a、C2和L1组成的输入回路进行调谐,选出所需接收的电台信号,通过互感耦合送入变频管T1的基极。②变频级回路

变频级电路的本振和混频,要求由一只三极管担任(自激式变频电路)。由于三极管的放大作用和非线形特性,所以可以获得频率变换作用。可选择“共基调发变压器耦合振荡器”。

③中频放大及检波回路

中放级可采用两极单调谐中频放大。变频级输出中频调幅波信号由T3次级送到VT2的基极,进行放大,放大后的中频信号再送到VT3的基极,由T5次级输出被放大的信号。三个中频变压器(T3、T4、T5)都应当准确地调谐在465KHz。若三个中频变压器的槽路频率参差不齐,不仅灵敏度低,而且选择性差,甚至无法收听。中频变压器采取降压变压器,其初级线圈L5要采用部分接入方式(道理同本振调谐电路)。这种接法以减少晶体管输出导纳对谐振回路的影响,初级选取适当的接入系数使晶体管的输出阻抗 与中频变压器阻抗近似匹配,以获得较大的功率增益;中频变压器初、次级变比以各自负载选取,减小负载对谐振回路的影响。④低放级回路

从检波级输出的音频信号,还需要进行放大再送到喇叭。为了获得较大的增益,前级低频放大通常选用两级。要求第二级能满足推动末级功率放大器的输入信号强度,要有一定的功率输出,该激励可选择变压器耦合的放大器。如图11所示。以上各级静态工作点VE值以电源电压而定,VT1、VT2、VT5的VE可取电源电压的1/5左右。⑤功率放大回路

它将前级的信号再加以放大,以达到规定的功率输出,去推动喇叭发声,可选择我们熟悉的OTL电路。

低频放大电路的设计,是根据要求的输出功率、选择的电源电压、喇叭的交流电阻,从后向前进行。确定输出功率后进行功放管的选择,应通过手册查出功放管主要极限参数。例:小功率晶体管3AX31B的极限参数:PCM≥125mW,ICM≥125mA,BVCEO≥12V。末级一对功放管的β、ICEO及正向基极—发射级电阻RBE等都要对称(保证误差在20%以内)。

激励级要求输出功率较小,一般甲类放大器能满足要求。可求出输出级的功率增益,根据所要求的输出功率指标及输入变压器的效率η求出激励级的输出功率,定出交流电压幅值Um及交流电流的幅值Icm,求出变比K及ICQ。功率放大至低放前级要加入合适的负反馈。

焊接前的准备工作

元件读数测量→去氧化层→元件弯制→元件插放→元件焊接。元器件焊接与安装

手工焊接一般分四步骤进行:1)准备焊接;2)加热焊接;3)清理焊接面;4)检查焊点。

手工焊接对焊点的要求:1)电连接性能良好;2)有一定的机械强度;3)光滑圆 润。

元件一般插放顺序:电阻→电容(先瓷片电容再极性电容)→三极管(注意:b、c、e不要装反)→中周(中频变压器初次极不能装反)→发光二极管(长正短负)→装输入变压器(输入输出不能装反)→开关电位器→耳机插座→双联→磁棒线圈→电源正负极簧片→喇叭 收音机故障的排除

变频部分:判断变频级是否起振。用MF47型万用表直流2.5V档接TV1发射级,负表棒接地,然后用手摸双联振荡联,万用表指针应向左摆动,说明电路工作正常,否则说明电路中有故障。

中频部分:中频变压器序号位置搞错,结果是灵敏度和选择性降低,有时有自激。

低频部分:输入输出位置搞错,虽然工作电流正常,但音量很低,TV5、TV6集电极和发射极搞错,工作电流调不上,音量极低。

整机无声

用万用表R×1档黑表棒接地,红表棒从后级往前级寻找,对照原理图,从喇叭开始,顺着信号传播方向逐级往前碰触,喇叭应发出“喀喀”声。当碰触到哪级无声时,则故障就在该级。可测量工作点是否正常,并检查有无接错、焊错、搭焊、虚焊等。若在整机上无法查出该元件的好坏,则可拆下检查。收音机安装的原则及注意事项

收音机安装的一般原则是

先轻后重,先小后大,先铆后装,先装后焊,先里后外,先下后上,先平后高,易碎易损后装,上道工序不得影响下道工序。

收音机安装的注意事项

1)元件的高度不能超过中周的高度。2)电阻位置窄的地方要采用立式插法安装。

3)注意天线的四只管脚a、b、c、d的位置不能接错。b、c用万用表欧姆档去测量后准确判断。

4)天线四只管脚尾部用砂纸砂掉少许,去掉保护层以便更好地接触。5)注意变压器的初次级位置。

6)注意二极管、电容器的正负,不要装反了。

7)注意发光二极管的高度要合适,并且要弯曲成型,正好对准前框的小孔。【总结一】收音机的发展趋势:

<1>全型收音机造型发展的趋势

在科学技术发展的推动下,全型收音机的体积趋向微型化、袖珍化;全型收音机的频率趋向于显示化,以数字液晶屏取代传统的机械旋钮和接线刻度盘指针。技术上的变化作用于全型收音机的造型,同时为了适应使用者多方面的需要,受到现代多元化设计风格的影响,全型收音机的造型朝着更加多样化、自由化的方向发展。<2>半型收音机造型发展的趋势

近几年,半型收音机已经得到了飞跃式的发展,收音机功能和其他功能结合的范围不断扩大化,收音机已不仅仅是收听广播节目的工具,与其他功能组合在一起成为多用器具,许多产品都带有收音功能,各种类型的半型收音机不断涌现。随着微芯片技术的发展,收音机的功能模块更趋于微型化,收音机将和更多的其他功能相结合,产生更多种多样的半型收音机。

<3>虚拟型收音机造型发展的趋势

目前网络收音机主要是通过互联网络传输广播信号,以电脑为功能载体,使用者通过电脑中的虚拟的网络收音机界面来收听网络广播。在造型上,这种虚拟的操作界面不需要实体材料,所以在保证实现功能的基础上,制约造型的因素很少,虚拟型网络收音机造型塑造发挥的空间非常大,往往一种网络收音机配有多种皮肤(操作界面)。虚拟型网络收音机,为了满足不同使用者的个性需要,造型多种多样。

但是,由于虚拟型网络收音机必须在使用电脑并且使电脑连接互联网的条件下使用,这极大地限制了使用者使用网络收音机的时间和场合,所以虚拟型网络收音机开始有向实体网络收音机发展的趋势。由于网络收音机的使用者主要是网络的使用者,网民的年龄普遍集中在中青年,这些年轻的网民受到网络文化的影响,在审美上追求由明亮的色彩和抽象化的形体构成的简洁、轻松、愉悦的造型。所以实体网络收音机的造型会朝着年轻化、时尚化、卡通化、人性化的方向发展。

二、金属探测器

浅谈简易金属探测器

以感应平衡为基本原理,通过利用电感,555定时器,LM2917以及MSP430F4260单片机为基本元器件搭建一个简易的金属探测器。可以分辨硬币的类型以及一些常用的金属类型。系统简单易用,功耗底下,分辨率高,是一款性能优异的金属探测器。电路工作原理

该金属探测器电路由探测振荡器、基准振荡器、振荡信号处理器、混合放大器和电流表PA等组成,如图所示。

探测振荡器由振荡管VI、探寻线圈L1、电容器C1~C4和电阻器R1~R3等组成。

基准振荡器由振荡管V2、电感器L2、电容器C6~C9和电阻器R2~R4等组成。

振荡信号处理器由六非门(Dl~D6)集成电路IC和外围阻容元件组成。

混合放大器由二极管VD、电阻器R12、R13、电容器C13和场效应晶体管VF组成。

接通电源开关S后,探测振荡器和基准振荡器均振荡工作,从V1和V2的集电极分别输出两个频率相同的正弦波振荡信号,两信号经振荡信号处理器放大和变换处理为两个频率与幅度相同、而相位相反的矩形波信号,再经RIO、Rll和VD1混合后送至YF的栅极。

在探测线圈Ll未探测到金属物时,两路方波信号的频率相同、相位相反,VF的栅极电压低于2.5V,VF不工作,电流表PA指示为0(电流表的指针指在刻度盘的正中间)。

当L1探测到金属物时,探测振荡器的工作频率将低于或高于基准振荡器的频率(探测到有色金属与探测到非有色金属时会有所不同),使VP栅极电压超过2.5V,VF工作,电流表PA的指针向左或向右偏转(当Ll探测到有色金属时,其电感量会变小,使探测振荡器的工作频率升高,电流表PA的指针向右偏转;若Ll探测到的是非有色金属,其电感量会增大,使探测振荡器的工作频率减小,电流表PA的指针向左偏转)。

【总结二】:金属探测器的未来前景

现在社会生活中,人们对于金属探测器已经越来越不陌生了,很多的时候,很多的场合我们都能够看到这些能够探测到金属的探测器。比如,在公众交通运输场所,像是 火车站、汽车站等地,都有专门的安检人员手持这样的探测器。再比如,在一些考古挖掘的现场,考古学家手中也会拿着这些能够探测到地下金属的仪器。

从几十年前金属探测器的发明到现在也是短短的时间,这种能够探测到金属的仪器也是从最初单一的功能发展到现在比较完善的功能。其实这种能够探测到金属的仪器的技术在这些年的发展一直是针对于探测器的灵敏度与稳定性的问题。一开始的探测器,灵敏度非常的低。一开始发明的探测器只能探测到地下一到两米的深度,而且一开始这种能够探测到金属的仪器是运用到军事当中,这么低的探测灵敏度造成了大量扫雷士兵的死亡。而后来人们不断研究将探测器的探测灵敏度提高,到现在这种能够探测到金属的仪器已经能够探测到地下几十米的深度,而且探测的稳定性也是令人称赞。

虽然现在的金属探测器的探测灵敏度和探测稳定性已经被大众所认可,但是随着技术的不断进步,很多的相关人士表示对于未来的探测器技术都相当看好。很多人认为未来的探测器不仅能比现在的稳定性更好,同时探测功能多样也是未来探测器技术发展主要方向。

【参考文献】

[1] 中国金属探测仪市场前景调查分析报告

[2] 金属探测器的原理与应用.电子技术.1984.25-29 [3] 张肃文.《高频电路》.高等教育出版社,2004.11

[4] 陆宗逸.《非线性电子线路实验指导书》.北京理工大学出版社,1989 [5] 曾兴雯 陈健.《高频电子线路辅导》 西安电子科技大学出版社

[6] 邱关源.《电路原理》.高等教育出版社《第十八届多国仪器仪表学术会议暨

展览会学术论文集(应用篇)》2007年 田士祥、胡泽建等。[7] Paul Scherz.电子元器件与电路基础[M].夏建生,王仲奕,等译.北京:电

子工业出版社,2009.[8] 张桂红.实用新型电子元器件[M].京电子工业出版社, 2005.[9] 陈淑静.基于热释红外探头的电灯节能自动开关[J].山西电子技

术,2009(01).[10] 胡寿松.自动控制原理(第四版)[M].北京:科学出版社,2003.[11] 刘远明,李道霖,韩绪鹏.感应式循迹小车的设计与实现[J].电子设计工

程,2011,10:70-73.[12] 陈雅萍.电子技能与实训:项目式教学.高等教育出版社,2007.

篇2:电工电子资料查询总结

专业:

摘要:为期一周的电工电子实习不仅要求我们学会动手去验证理论知识,进一步的接触电工电子这一学科,还要求资料的查询与搜集。本文为实习资料的查询总结。正文:

一、HX108-2 AM收音机

简要介绍:该机为七管中波调幅袖珍式半导体收音机,采用全硅管标准二级中放电路,用二只二极管正向压降稳压电路,稳定从变频、中频到低放的工作电压,不会因为电池电压降低而影响接收灵敏度,使收音机仍能正常工作,本机体积小巧,外观精致,便于携带。

HX108-2 七管半导体收音机电原理图:

本机电路图如图所示。由B1及C1-A组成的天线调谐回路感应出广播电台的调幅信号,选出我们所需的电台信号f1进入V1基极,本振信号调谐在高出f1一个中频(465KHz)的f2进入V1发射极,由V1三极管进行变频(或称混频),在V1集电极回路通过B3选取出f2与f1的差频(465KHz中频)信号;中频信号经V2和V3二级中频放大,进入V4检波管,检出音频信号经V5低频放大和由V6、V7组成变压器耦合功率放大器进行功率放大,推动扬声器发声。图中D1、D2组成1.3V±0.1V稳压,提供变频、一中放、二中放、低放的基极电压,稳定各级工作电流,保证整机灵敏度。V4发射结结用作检波。R1、R4、R6、R10分别为V1、V2、V3、V5的工作点调整电阻,R11为V6、V7功放级的工作点调整电阻,R8为中放的AGC电阻,B3、B4、B5为中周(内置谐振电容),既是放大器的交流负载又是中频选频器,该机的灵敏度、选择性等指标靠中频放大器保证。B6、B7为音频变压器,起交流负载及阻抗匹配的作用。本机由3V直流电压供电。为了提高功放的输出功率,因此,3V直流电压经滤波电容C15去耦滤波后,直接给低频功率放大器供电。而前面各级电路是用3V直流电压经过由R12、VD1、VD2组成的简单稳压电路稳压后(稳定电压约为1.4V)供电。目的是用来提高各级电路静态工作点的稳定性。(“×”为各级Ic工作电流测试点)输入回路:

由磁性天线感应得到的高频信号,实际上是高频载波信号(由于声波在空中传播速度很慢,衰减快。因此将音频信号加载到高频信号上去称为调制。调制方式有调频和调幅之分。我们装的收音机接收的是调幅高频信号)经过LC调谐回路加以选择到欲接收电台信号。(为使收音机获得较高选择性、灵敏度,应选合适 L1与L2 匝数比。变频电路:

由输入回路送来的高频信号是调幅波,本机振荡产生的本振频率信号是等幅波,混频后经选频得到465KHZ 中频信号。因此变频级主要作用:是将调幅的高频信号变为调幅的中频信号。变换前后仅是载波频率改变,而信号包络不变。本机用一只变频管来完成该机的振荡和混频作用。对混频来讲,要求工作在非线性区,电流不能太大,否则变频增益下降,但对本振来讲,电流大一点,变频增益高又容易起振,电池下降不易停振。但振荡也不能太强,否则波形失真引起“咯”、“咯”声,增益反而下降,一般选电流为0.4~0.6MA。中频放大:

中放级的好坏对收音机灵敏度、选择性等等有决定性影响。中放级工作频率是465KHZ用并联的LC 谐振回路作负载,因此只有在信号频率为465KHZ时并联谐振回路电压最大,因此提高了整机选择性。本机采用一级中放(常用的为二级中放)单调谐中频放大器,选择性及灵敏度不一定十分理想,但回路损耗小,调整方便,因此袖珍机广泛采用此线路。检波级:

中频信号仍旧是调幅信号,经过检波级,由二极管或三极管检波,从调幅波中取出音频信号。本机选用的是三极管利用其中一个PN结在非线性工作状态下起大信号检波作用,同时此管还进行来复低频电流放大。低放和功率放大:

检波后的音频信号送到低放级进行音频放大,然后通过输入变压器送到推挽功率放大级进行功率放大,输出信号推动扬声器发出声音。

本机用推挽功放电路的管子工作在乙类状态。在无信号时截止,有信号时二管轮流工作,因此效率高,但乙类工作在小信号,在特性曲线弯曲部分产生失真。因此本机线路在无信号时基级也有一定的偏压,使之工作在甲乙类状态,这样效率高,输出功率大,而且省电。要求二只管子参数一致。凡一有一只管损坏,必须配对选管。

收音机的发展趋势:

<1>全型收音机造型发展的趋势

在科学技术发展的推动下,全型收音机的体积趋向微型化、袖珍化;全型收音机的频率趋向于显示化,以数字液晶屏取代传统的机械旋钮和接线刻度盘指针。技术上的变化作用于全型收音机的造型,同时为了适应使用者多方面的需要,受到现代多元化设计风格的影响,全型收音机的造型朝着更加多样化、自由化的方向发展。<2>半型收音机造型发展的趋势

近几年,半型收音机已经得到了飞跃式的发展,收音机功能和其他功能结合的范围不断扩大化,收音机已不仅仅是收听广播节目的工具,与其他功能组合在一起成为多用器具,许多产品都带有收音功能,各种类型的半型收音机不断涌现。随着微芯片技术的发展,收音机的功能模块更趋于微型化,收音机将和更多的其他功能相结合,产生更多种多样的半型收音机。

<3>虚拟型收音机造型发展的趋势

目前网络收音机主要是通过互联网络传输广播信号,以电脑为功能载体,使用者通过电脑中的虚拟的网络收音机界面来收听网络广播。在造型上,这种虚拟的操作界面不需要实体材料,所以在保证实现功能的基础上,制约造型的因素很少,虚拟型网络收音机造型塑造发挥的空间非常大,往往一种网络收音机配有多种皮肤(操作界面)。虚拟型网络收音机,为了满足不同使用者的个性需要,造型多种多样。

但是,由于虚拟型网络收音机必须在使用电脑并且使电脑连接互联网的条件下使用,这极大地限制了使用者使用网络收音机的时间和场合,所以虚拟型网络收音机开始有向实体网络收音机发展的趋势。由于网络收音机的使用者主要是网络的使用者,网民的年龄普遍集中在中青年,这些年轻的网民受到网络文化的影响,在审美上追求由明亮的色彩和抽象化的形体构成的简洁、轻松、愉悦的造型。所以实体网络收音机的造型会朝着年轻化、时尚化、卡通化、人性化的方向发展。

二、多谐振荡器闪光灯

简要介绍:利用深度正反馈,通过阻容耦合使两个电子器件交替导通与截止,从 而自激产生方波输出的 振荡器。常用作方波发生器。

多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生器。“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。多谐振荡器没有稳态,只有两个暂稳 态。在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的 时钟信号。构成:

1、分立元件构成

2、运放构成

3、集成门电路构成

4、集成施密特触发器组成的

5、晶体管稳频的 6、555集成电路组成 电路原理图:

工作原理:

当接通电源后,两只三极管就要争先导通,但由于元器件的差异性,只有某一只管子最先导通。然后电路中两只三极管便轮流导通和截止,两只发光二极管就不停地循环发光。改变阻值或电容的容量可以改LED闪烁的速度。电路通电时,假设V1优先导通,则C1通过R1开始充电,由于充电时电容相当于短路,所以V2基极近似接地,故V2截止。此时LED1点亮,LED2熄灭。当C1充电毕,V2 基极为高点平,故导通,LED被点亮,同时C1上电荷被泄放,V1截止,LED1熄灭。C2通过R2充电,充电毕V1又导通,电路如此循环,两个LED交替闪烁。因为R1、R2、C1、C2都可以自由配置,因此可以自由决定振压周期及duty cycle。不过,在每个状态的持续时间是由电容在充电开始时的初始状态(电容两端的电压)决定的,而这又与前一个状态中的放电量有关;前一个阶段的放电量又由放电过程中电流通过的电阻R1、R4与放电过程的持续时间决定。总而言之,在刚启动电路时,要花费颇长的时间把电容充电(一般而言电容两端在未启动时是完全放电的),不过之后的各个阶段的持续时间便会变短并趋于稳定。因为多谐振荡器是利用电流的充电过程控制周期,所以振荡周期同时也与输出端流出多谐振荡器的电流量有关。由于种种不稳定因素对多谐振荡器振荡周期的影响,因此在实作中通常使用更精确的计时集成电路取代单纯的多谐振荡器电路。

【参考文献】

[1] 《收音机制作入门》任致程 1995-10-15 [2] 《谈谈半导体收音机》朱达,严毅 1965-3-2 [3]《电子元器件及手工焊接》陈俊安 2006

[4]陈雅萍.电子技能与实训:项目式教学.高等教育出版社,2007 [5] 曾兴雯 陈健.《高频电子线路辅导》 西安电子科技大学出版社

[6] 邱关源.《电路原理》.高等教育出版社《第十八届多国仪器仪表学术会议暨

展览会学术论文集(应用篇)》2007年 田士祥、胡泽建等。[7] Paul Scherz.电子元器件与电路基础[M].夏建生,王仲奕,等译.北京:电

子工业出版社,2009.[8] 张桂红.实用新型电子元器件[M].京电子工业出版社, 2005.[9] <<多谐振荡器双闪灯电路设计与制作>>百度文库 [10]多谐振荡器 搜狗百科

[11]<<收音机的发展过程综述报告>>百度文库

篇3:电工电子资料查询总结

(一) 审计依据是电子资料动态查询系统是信息化审计实现的需要

企业内部审计日益受到重视, 审计工作逐步规范, 审计领域不断扩大, 审计方式向信息化审计转变。审计信息化是指审计工作中对信息技术和设施的运用及处理过程, 包括审计手段、审计理念、审计对象、审计成果、审计过程管理等全方位、立体化的监督解决方案, 其最终目的是促进企业战略目标的实现。

企业信息化给内部审计组织方式、技术方法以及审计资源的配置等方面带来了巨大变化, 对内部审计信息化提出了更高的要求。信息化审计的前提是对企业内外部相关信息"全生命周期"的管理与应用;信息化审计的基础是搭建具备"大数据"处理能力的信息平台;信息化审计的核心是要形成一套"智能化"的审计方法体系;信息化审计的研究基础是审计依据。

(二) 审计依据电子资料动态查询系统, 是现行审计依据的高度概括, 是内部审计监督的重要抓手

审计依据是指查明审计客体的行为规范, 是据以做出审计结论、提出处理意见和建议的客观尺度。审计依据是审计工作的指导纲领和行动指南。严格依法审计监督, 强化制度的执行与落实, 是适应经济发展新常态, 切实履行监督职责的有力保障。审计依据可按不同的标准进行分类, 不同种类的审计依据有着不同的用途。对审计依据进行适当的分类, 有利于审计人员根据需要选用恰当的审计依据。在具体的审计工作实践中, 由于本行业制定的各项规章制度繁杂, 涉及面广, 需要查询时费时费力, 给审计工作带来了很多不便。在烟草系统审计工作中, 创新工作理念, 促进制度落实, 寻找新的审计突破口, 建立审计依据电子资料动态查询系统, 探索审计依据信息查询的标准化操作, 具有很强的针对性、实用性、指导性和效率性, 真正体现审计工作的系统化、全局化、微观化。

二、审计依据电子资料动态查询系统实施过程

(一) 加强调研分析和理论研讨, 确立“763”总体架构

按照近几年国家烟草专卖局和省局 (公司) 审计要求, 紧密结合审计工作实际, 本系统在总体定位上确立“763”总体架构, 将审计依据围绕烟叶类、卷烟类、专卖类、管理类、人劳类、财务类、审计类七大模块分类整理, 对应同级审计、经济责任审计、工程项目审计、科技经费审计、专卖经费审计、两烟资金审计六条主线, 分国家局、省局、市局“三个层级”, 建立审计依据电子资料动态查询系统, 该查询系统通过超链接, 根据审计项目需要, 点击制度文号迅速实时查看制度, 提高工作效率。该系统既能快速提供信息和服务于审计工作, 又能多点突破, 整体推进, 加速审计工作信息化新跨越。查询系统的建立进一步推动实施审计监督全覆盖, 使全覆盖的实施有法可依、有章可循, 从而为整合审计资源, 推动审计监督全覆盖工作的具体落实提供有力保障。

(二) 注重实用性和可行性, 不断提高审计依据的层次水平

充分考虑烟草审计依据电子资料动态查询系统的具体特点, 满足目前审计项目需要, 注重实用性和可行性, 以审计需求为基础, 规划系统建设, 做到经济、高效。考虑后续发展, 性能可维护性、可扩展性, 我们采用先进、稳定及成熟的超链接系统技术, 做好数据备份工作, 保障整个系统的稳定可靠。每个审计项目的实施方案针对具体审计内容都有不同的审计依据及方法要求, 审计人员根据审计分工不同, 可利用审计依据电子资料动态查询系统迅速快捷的找到需要的审计依据, 节省时间, 提高工作效率, 做到理论指导实践。课题研究与审计项目有机结合, 从而加强审计过程控制, 努力保持审计依据在动态发展中不断实现提升。

(三) 加强创新成果推广应用, 深化审计项目研究领域

创新的目的是指导实践, 促进审计工作的开展。选定经济责任审计和审计整改作为创新成果进行实践和探索, 将创新成果运用到具体审计项目中, 实现审计全覆盖, 并进一步将创新项目融入审计整改中, 及时发现问题, 及时整改, 有效提高了审计时效性、审计效率和质量, 确保审计整改目标的实现, 真正实践了审计目标与管理目标一致的审计理念, 并通过跟踪审计发现以往事后审计中难以发现的管理短板, 通过举一反三, 深入分析整改, 全面促进了企业管理水平的提升, 创新成果的初步运用成效显著, 适宜在全系统内推广应用。

(四) 依托审计成果, 提升成果整合水平、开发利用水平和审计信息资源共享水平

审计部门采取多项措施、多种途径, 促进审计成果的运用, 科学、全面地提升审计监督职能和“免疫系统”功能。坚持开展审计课题研究与审计项目有机结合的工作方针, 以审计依据电子资料查询系统为依托, 确定审计重点和审计程序, 努力把审计项目做精做细, 审深审透, 提高审计效率, 保证审计质量, 从内审的管理和效益方面拓展思路, 筛选延伸审计线索, 节约审计成本, 提高审计成果利用率, 加快审计问题整改, 促进审计工作上水平。随着审计依据电子资料动态查询系统的建立和完善, 将使审计工作走向规范化、信息化轨道, 将会对审计工作的管理思想、管理模式产生重大而深远的影响。

三、审计依据电子资料查询系统的主要成效及推广应用

(一) 审计依据电子资料动态查询系统的使用, 实现了审计项目的精益化管理

一是制度体系进一步完善。依法履行审计职责、提高审计效率的首要条件是要建立完善的制度体系。牢固树立科学审计理念与研究性审计理念, 依法加大审计力度, 创新审计方式。通过对国家局、省局、市局三个层面的制度进行梳理, 整理出国家局层面的制度, 省局层面的制度86个, 市局层面的制度113个, 共计252个。审计依据电子资料动态查询系统是一个可以随时变化的动态系统, 可根据国家局、省局、市局 (公司) 的相关时限, 增加或废止制度。通过及时增加或减少查询系统中的制度, 对废止的制度进行备案处理, 进行系统更新和升级, 保持查询系统的延续性、及时性、同步性, 为审计工作的精细化建设提供保障。

二是审计项目精益化。针对不同的审计项目, 依据审计电子资料动态查询系统, 通过创新思想、转变观念, 探索和建立“事前参与、事中监控、事后评价”的全程审计监督格局, 加强内部审计的“制度化、程序化、规范化”建设, 实现“审计一控制一管理”的协调统一, 增强审计项目精益化、程序化、标准化, 进一步促进内部审计监督职责的有效履行, 促进企业经济效益的提高。

三是审计工作流程标准化。根据具体审计项目, 自觉树立按政策办事、按制度办事、按标准办事的理念, 将经营管理各项工作都纳入内部审计之中。第一步, 依据审计依据电子资料动态查询系统中各相关制度, 根据审计对象特点编制审计实施方案, 找准审计重点和范围;第二步, 审计人员针对审计过程中遇到的问题展开讨论, 总结审计经验, 检验审计方案可操作性, 理顺操作步骤, 完善审计方案;第三步, 实施审计中, 通过利用动态查询系统, 审计人员对审计问题对比、归纳、分析, 敏锐捕捉疑点信息, 从细节中挖掘问题;第四步, 审计人员抓住关键问题, 查深查透, 根据动态查询系统, 做出准确审计定性。

(二) 审计依据电子资料动态查询系统的建立, 为审计工作的发展提供了坚实支撑

一是审计人员审计技术和工作效率不断提高。特别是对于新进审计人员, 为其提供了审计的切入点与重要参考学习资料。动态查询系统的应用, 使审计人员不断拓展审计的广度和深度, 极大提高了审计人员的工作效率和整体水平, 提高了审计质量和效率, 创造了审计工作新的增长点, 为推动审计创新发展提供了保障。

二是在具体审计项目中发挥实效。审计依据电子资料动态查询系统的建立, 在今年开展的审计项目中发挥了重要作用, 在实践中获得了成效。如在今年上半年开展的昌乐分公司任期经济责任审计中, 从制定实施方案到实施审计, 全体审计人员运用了审计依据电子资料动态查询系统, 并注重在实践中完善查询系统, 使其应用更加便利。审计项目结束后, 审计人员反应审计效率得到较大提高, 并为审计发现问题提供了重要依据, 应用效果良好。另外, 利用动态查询系统及时更新审计依据, 可以为随后的审计工作开展提供重要保障。

三是增强审计整改工作实效, 审计整改依据查询快速实现。审计整改涉及面广, 不同的审计项目涉及的审计整改内容不同, 相关部门可按照各自的业务内容, 根据审计依据电子动态查询系统中的相关制度和要求, 找到相应的审计整改依据, 依法依规审计整改, 确保审计整改执行到位。该系统的建立, 既有利于审计人员快速了解和掌握审计整改依据, 便于更好更快的指导审计项目整改工作;又为全面加强审计质量建设, 夯实审计整改工作基础, 完善审计整改机制, 提高审计成果利用率发挥了积极的作用;同时增强了审计整改的实效性, 实现了纠正问题、改进工作、改善管理、规避风险、增加效益的目的, 促进了企业持续健康发展。

篇4:文字记录 资料的电子化存储

图文转换

摄像头记录生活中的点滴让我们体验到了手机带来的记录快感,但这只是摄像头记录手段的初级阶段。随着摄像头素质的提高,通过拍照记录文字也变为了可能。在智能手机时代,我们可以在电子市场中发现不少OCR应用,这种高效的输入方式能让我们快速地将图片上的文字转换为电子文本。

当我们需要记录整篇文章时,手工输入总是比摄像头扫描要慢许多,“全能扫描王”就能顶替传统的键盘输入,应用提供的高识别率与标记功能保证了资料电子化存储的准确性。

“全能扫描王”采用直观且简洁的交互界面,用户可以直接选取下方工具栏中的相机或是本地相册来实现纸质文本的扫描。用户开启应用的拍照功能后,就能实现扫描记录工作(如图1)。完成后,应用会自动识别需裁减的部分,图片生成界面中提供了8点的手动剪裁功能,如果对自动裁减不满意,便可使用手动裁减。确定剪裁后即可点击屏幕上的“√”选项,这时系统会自动对相片进行二次处理,针对剪裁后的图片进行增强、增强并锐化、灰度模式以及黑白文档四种色彩校正,每一种模式在特定的使用场景中都有不错的表现,特别是增强并锐化功能能为用户提供非常不错的图片文字识别能力,而黑白文档则在存储所占磁盘资源上有不错的优势(如图2)。

完成纸质文字的扫描处理后,应用会在主界面将其添加为新文档,点击进入后,我们可以对进行其命名操作。当然,这并不是文字最终的处理,当我们在查看文字资料时,可选择下方的“OCR”将扫描的文字生成更利于我们修改或标注的Word文本格式(如图3)。

语音与图片的结合

会议记录相信是职场人士最平常不过的事儿了,频繁的会议日程、海量的会议内容总能让人手忙脚乱,抄写得乱七八糟的会议记录、无法归类的相片以及搞不清状况的PPT在整理时都会令你苦不堪言。其实你只需要在智能手机上安装一款名为“商务相机”的App,就能利用摄像头以及麦克风解决这样的麻烦。

应用的主界面整体架构很简单,在主界面上预留了大部分空间为用户展示保存记录的笔记,点触主界面底部工具栏的创建按钮即可进入新笔记记录页面(如图4),在新笔记页面能直观看到应用的文字、图片以及录音三种记录方式。开始记录时,用户只需点击主界面工具条上的麦克风就能启动商务相机的后台语音记录,这时用户依然能利用应用提供的提前记录方式(如图5)。当用户拍摄并插入一张相片时,系统会自动启动智能纠偏功能,按照边界以及修正拍摄时的角度的方式,截取所拍摄图片作为插入笔记中的内容,当然了,此项功能运用于会议的PPT拍摄上更合适不过,如此一来就能增强记录图像的清晰度以及二次利用率。在记录时如需对一张图片再次进行处理,用户可在笔记中选中并开启图片编辑功能,并利用下方的工具条对图片进行注释、编辑、分享和删除的操作(如图6)。

当记录完成后,系统所生成的会议记录会像一本完整的笔记并以列表的形式保存在系统中,这时你就可以一边听取录音一边按顺序播放图片,效果与PPT毫无区别,并且语音的方式比传统的PPT展示更加的清晰,再加上图片与录音方式,比录制视频所占用的磁盘空间更小,在分享时也更加的方便,直接输出PDF文件,保证了记录资料二次存储的可能。

随手的文字输入

一般来说,对普通用户手机内置的记事本应用就能解决日常文字记录的需求。摆放在桌面的Wigdet能让用户轻松地开启记事本并录入文字,再辅以记事本内部的相机应用,我们能让日常的记录来得更加方便,在记事本中插入的图片(如图7),最好选择与记录的事件紧密相关,如果图片能直接为我们提供所需的信息,那其他信息的输入就不是那么重要了。

篇5:微电子加工工艺总结资料

分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。

2、平面工艺的特点

平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。P-N结形成的方法: ① 合金结方法

A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。

B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个pn结。

合金结的缺点:不能准确控制pn结的位置。

②生长结方法

半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。生长结的缺点:不适宜大批量生产。扩散结的形成方式 与合金结相似点:

表面表露在高浓度相反类型的杂质源之中 与合金结区别点:

不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点

扩散结结深能够精确控制。平面工艺制作二极管的基本流程:

衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试

3、微电子工艺的特点

高技术含量 设备先进、技术先进。

高精度 光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。超纯 指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。

超净 环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。大批量、低成本 图形转移技术使之得以实现。

高温 多数关键工艺是在高温下实现,如:热氧化、扩散、退火。

4、芯片制造的四个阶段

固态器件的制造分为4个大的阶段(粗线条): ① ② ③ ④

晶圆制备:(1)获取多晶

(2)晶体生长----制备出单晶,包含可以掺杂(元素掺杂和母金掺杂)(3)硅片制备----制备出空白硅片 硅片制备工艺流程(从晶棒到空白硅片):

晶体准备(直径滚磨、晶体定向、导电类型检查和电阻率检查)→

切片→研磨→化学机械抛光(CMP)→背处理→双面抛光→边缘倒角→抛光→检验→氧化或外延工艺→打包封装 芯片制造的基础工艺

增层——光刻——掺杂——热处理 材料制备

晶体生长/晶圆准备 晶圆制造、芯片生成 封装

5、high-k技术

High—K技术是在集成电路上使用高介电常数材料的技术,主要用于降低金属化物半导体(MOS)晶体管栅极泄漏电流的问题。集成电路技术的发展是伴随着电路的元器件(如MOS晶体管)结构尺寸持续缩小实现的。随着MOS晶体管结构尺寸的缩小,为了保持棚极对MOS晶体管沟道电流的调控能力,需要在尺寸缩小的同时维持栅极电容的容量,这通常需要通过减小棚极和沟道之间的绝缘介质层厚度来实现,但由此引起的棚极和沟道之间的漏电流问题越来越突出。High—K技术便是解决这一问题的优选技术方案。因为,MOS器件栅极电容类似于一个平板电容,由于MOS器件面积、绝缘介质层厚度和介电常数共同决定,因此MOS器件栅极电容在器件面积减小的前提下,采用了High—K材料后,可以在不减小介质层厚度(因此栅极泄漏电流而不增加)的前提下,实现维护栅极电容容量不减小的目标。High—K材料技术已被英特尔和IBM应用到其新开发的45mm量产技术中。目前业界常用的High—K材料主要是包括HfO2在内的Hf基介质材料。

6、拉单晶的过程

装料——融化——种晶——引晶——放肩——等径——收尾——完成

7、外延技术的特点和应用 外延特点: 生成的晶体结构良好 掺入的杂质浓度易控制 可形成接近突变pn结的特点 外延分类: 按工艺分类

A 气相外延(VPE)利用硅的气态化合物或者液态化合物的蒸汽,在加热的硅衬底表面和氢发生反应或自身发生分解还原出硅。B 液相外延(LPE)衬底在液相中,液相中析出的物质并以单晶形式淀积在衬底表面的过程。此法广泛应用于III-V族化合半导体的生长。原因是化合物在高温下易分解,液相外延可以在较低的温度下完成。C 固相外延(SPE)

D 分子束外延(MBE)在超高真空条件下,利用薄膜组分元素受热蒸发所形成的原子或分子束,以很高的速度直接射到衬底表面,并在其上形成外延层的技术。特点:生长时衬底温度低,外延膜的组分、掺杂浓度以及分布可以实现原子级的精确控制。按导电类型分类

n型外延:n/n, n/p外延 p型外延:p/n, p/p外延 按材料异同分类

同质外延:外延层和衬底为同种材料,例如硅上外延硅。

异质外延:外延层和衬底为不同种材料,例如SOI((绝缘体上硅)是一种特殊的硅片,其结构的主要特点是在有源层和衬底层之间插入绝缘层——— 埋氧层来隔断有源层和衬底之间的电气连接)按电阻率高低分类

正外延:低阻衬底上外延高阻层n/n+ 反外延:高阻衬底上外延低阻层

硅的气相外延的原理:在气相外延生长过程中,有两步: 质量输运过程--反应剂输运到衬底表面

表面反应过程--在衬底表面发生化学反应释放出硅原子

掺杂

有意掺杂:按器件对外延导电性和电阻率的要求,在外延的同时掺入适量的杂质,这称为有意掺杂。自掺杂:衬底中的杂质因挥发等而进入气流,然后重新返回外延层。杂质外扩散:重掺杂衬底中的杂质通过热扩散进入外延层。外延的应用

1、双极型电路:n/n外延,在n型外延层上制作高频功率晶体管。+ 外延:双极型传统工艺在p衬底上进行n型外延通过简单的p型杂质隔离扩散,实现双极型集成电路元器件的隔离。

2、MOS电路:外延膜的主要应用是作为双极型晶体管的集电极。

外延膜在MOS集成电路中的较新应用是利用重掺杂外延减小闩锁效应(寄生闸流管效应)。

8、分子束外延(MBE)的原理及其应用

在超高真空下,热分子束由喷射炉喷出,射到衬底表面,外延生长出外延层。

9、二氧化硅膜的用途

表面钝化:保护器件的表面及内部,禁锢污染物。

掺杂阻挡层:作为杂质扩散的掩蔽膜,杂质在二氧化硅中的运行速度低于在硅中的运行速度。绝缘介质:IC器件的隔离和多层布线的电隔离,MOSFET的栅电极,MOS电容的绝缘介质。

10、二氧化硅膜的获得方法 A:热氧化工艺 B:化学气相淀积工艺 C:溅射工艺 D:阳极氧化工艺

11、热氧化机制

① 线性阶段,② 抛物线阶段(生长逐渐变慢,直至不可忍受)

影响氧化速率的因素有:氧化剂、晶向、掺杂类型和浓度、氧化剂的分压。热氧化生长方法:

(1)干氧氧化:干燥氧气,不能有水分;随着氧化层的增厚,氧气扩散时间延长,生长速率减慢;适合较薄的氧化层的生长。氧化剂扩散到SiO2/Si界面与硅反应。

(2)水汽氧化:气泡发生器或氢氧合成气源;原理:

(3)湿氧氧化:湿氧氧化的各种性能都是介于干氧氧化和水汽氧化之间,其掩蔽能力和氧化质量都能够满足一般器件的要求。(4)掺氯氧化:薄的MOS栅极氧化要求非常洁净的膜层,如果在氧化中加入氯,器件的性能和洁净度都会得到改善。减

+弱二氧化硅中的移动离子(主要是钠离子)的沾污影响,固定Na离子;减少硅表面及氧化层的结构缺陷

12、SiO2/Si界面特性: 热氧化薄膜是由硅表面生长得到的二氧化硅薄膜。高温生长工艺将使SiO2/Si界面杂质发生再分布,与二氧化硅接触的硅界面的电学特性也将发生变化。杂质再分布:有三个因素: ① 分凝效应② 扩散速率 ③ 界面移动

水汽氧化速率远大于干氧氧化速率,水汽氧化SiO2/Si界面杂质的再分布就远小于干氧氧化;湿氧氧化速率介于水汽、干氧之间,SiO2/Si界面杂质的再分布也介于水汽、干氧之间。二氧化硅层中存在着与制备工艺有关的正电荷,这种正电荷将引起SiO2/Si界面P-Si的反型层,以及MOS器件阈值电压不稳定等现象。可动离子或可动电荷

主要是Na、K、H等,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质。其中主要是Na。在人体与环境中大++++量存在Na,热氧化时容易发生Na沾污。加强工艺卫生方可以避免Na沾污;也可采用掺氯氧化,固定Na离子。固定离子或固定电荷

主要是氧空位。一般认为:固定电荷与界面一个很薄的(约30Å)过渡区有关,过渡区有过剩的硅离子,过剩的硅在氧化过程中与晶格脱开,但未与氧完全反应。干氧氧化空位最少,水汽氧化氧空位最多。热氧化时,首先采用干氧氧化方法可以减小这一现象。氧化后,高温惰性气体中退火也能降低固定电荷。

13、氧化膜厚度的检测

劈尖干涉和双光干涉:利用干涉条纹进行测量,因为要制造台阶,所以为破坏性测量。

比色法:以一定角度观察SiO2膜,SiO2膜呈现干涉色彩,颜色与厚度存在相应关系。比色法方便迅速,但只是粗略估计。椭圆仪法:入射的椭圆偏振光经氧化膜的多次反射和折射以后,得到了改变椭圆率的反射椭圆偏振光,其改变量和膜厚与折射率相关。高频MOS结构C-V法:测量金属栅极的电容,利用公式测量氧化膜层的厚度。

14、化学气相沉积定义

化学气相淀积(Chemical Vapor Deposition)是通过气态物质的化学反应在衬底上淀积薄膜的工艺方法。与之对应的是:PVD(蒸发和溅射),它主要应用于导体薄膜。

15、淀积技术包括哪两种?CVD和PVD

16、LPCVD和APCVD的主要区别?LPCVD有何优势?

APCVD:原料以气相方式被输送到反应器内,原料气体向衬底基片表面扩散,被基片吸附,由于基片的温度高或其它能量提供给原料气体,使其发生表面化学反应,生成物在基片表面形成薄膜,而生成物中的其它物质是气相物质,扩散到气相中被带走。LPCVD:低压情况下,分子自由程较长,薄膜电极的均匀性较高。LPCVD相对APCVD的特点:

增加了真空系统,气压在1-10Torr之间;压下分子自由程长,可以竖放基片;热系统一般是电阻热壁式。

17、PECVD的机理?PECVD有何优势?

优势:采用等离子体把电能耦合到气体中,促进化学反应进行,由此淀积薄膜;因此该法可以在较低温度下淀积薄膜。PECVD常常是低温和低压的结合。-2+++

+机理:反应器的射频功率使低压气体(真空度1-10Torr)产生非平衡辉光放电,雪崩电离激发出的高能电子通过碰撞激活气体形成等离子体。衬底基片(具有一定温度,约300℃)吸附活泼的中性原子团与游离基即高能的等离子体发生化学反应,生成的薄膜物质被衬底吸附、重排进而形成淀积薄膜,衬底温度越高形成的薄膜质量越好。

18、多晶硅淀积和外延淀积的主要区别。淀积多晶硅薄膜的方法:主要采用LPCVD的方法。掺杂则采用:离子注入;化学气相淀积;扩散。多晶硅的淀积和外延淀积的主要区别:硅烷的使用

19、金属薄膜的用途?金属化的作用?

(1)在微电子器件与电路中金属薄膜最重要的用途是作为内电极(MOS栅极和电容器极板)和各元件之间的电连接。(2)在某些存储电路中作为熔断丝。

(3)用于晶圆的背面(通常是金),提高芯片和封装材料的黏合力。

金属化的作用:集成电路中金属化的作用是将有源器件按设计的要求连接起来,形成一个完整的电路与系统。20、说明为什么铝作为通常使用的金属薄膜,说明铜作为新一代金属薄膜的原因。铝膜:用途: 大多数微电子器件或集成电路是采用铝膜做金属化材料

优点:导电性较好;与p-Si,n-Si(>5*10)能形成良好的欧姆接触;光刻性好;与二氧化硅黏合性好;易键合。缺点:抗电迁移性差;耐腐蚀性、稳定性差 ;台阶覆盖性较差。工艺:蒸发,溅射 铜膜:用途:新一代的金属化材料,超大规模集成电路的内连线;缺点:与硅的接触电阻高,不能直接使用;铜在硅中是快扩散杂质,能使硅中毒,铜进入硅内改变器件性能;与硅、二氧化硅粘附性差。优点:电阻率低(只有铝的40-45%),导电性较好;抗电迁移性好于铝两个数量级; 工艺:溅射

21、VLSI对金属化的要求是什么?

① 对n+硅和p+硅或多晶硅形成低阻欧姆接触,即金属/硅接触电阻小 ② 能提供低电阻的互连引线,从而提高电路速度 ③ 抗电迁移性能要好

④ 与绝缘体(如二氧化硅)有良好的附着性 ⑤ 耐腐蚀 ⑥ 易于淀积和刻蚀

⑦ 易键合,且键合点能经受长期工作

⑧ 层与层之间绝缘要好,不互相渗透和扩散,即要求有一个扩散阻挡层

22、Al-Si接触的常见问题及解决办法?

Al和Si之间不能合成硅化物,但是可以形成合金。Al在Si中溶解度很小,但是相反Si在Al中溶解度很大,这样就形成尖楔现象,从而使P-N结失效。解决尖楔问题: +(1)一般采用Al-Si合金代替Al作为Al/Si的接触和互连材料。但是又引入了硅的分凝问题。

(2)由于铜的抗电迁移性好,铝-铜(0.5-4%)或铝-钛(0.1-0.5%)合金结构防止电迁移,结合Al-Si合金,在实际应用中人们经常使用既含有铜又含有硅的Al-Si-Cu合金以防止合金化(即共熔)问题和电迁移问题。(3)(4)Al-掺杂多晶硅双层金属化结构:在多晶硅中掺杂重磷或重砷,构成掺杂多晶的结构。铝-隔离层结构:在Al-Si之间沉积一层薄的金属层,替代磷掺杂多晶硅,成为阻挡层。

23、说明难熔金属在金属连线中的作用?

难熔金属及其硅化物有较低的电阻率和接触电阻。难熔金属的一个广泛应用是在多层金属结构中填充连接孔,这个工序叫作过孔填充,填补好的过孔叫做接线柱。

24、金属化的实现方法有几种?请论述真空溅射方法 金属化的实现主要通过两种方式来实现: ① 物理淀积

A:真空蒸发淀积(较早,金属铝线)

B:真空溅射淀积(Al-Si合金或Al-Si-Cu合金)2LPCVD(难熔金属)○真空蒸发淀积 :被蒸物质从凝聚相转化为气相;气相物质在真空系统中的输运;气相分子在衬底上淀积和生长。分为电阻、电子束等蒸发沉积。真空溅射沉积:溅射淀积是用核能离子轰击靶材,使靶材原子从靶表面逸出,淀积在衬底材料上的过程。

25、说明金属CVD的优势和主要用途。金属CVD : LPCVD可以应用于制作金属薄膜。

优势:不需要昂贵的高真空泵;台阶覆盖性好;生产效率较高。用途:难控制金属;难熔金属,主要是钨。

26、什么叫做光刻,光刻有何目的?

光刻是图形复印与腐蚀作用相结合,在晶片表面薄膜上制备图形的精密表面工艺技术。

光刻的目的就是:在介质薄膜、金属薄膜或金属合金薄膜上面刻蚀出与掩膜版完全对应的几何图形,从而实现选择性扩散和金属薄膜布线的目的。

27、光刻技术的图形转移分为哪两个阶段? 图形转移到光刻胶层;图形从光刻胶层转移到晶圆层

28、列出光刻工艺的十个步骤,并简述每一步的目的。表面准备:微粒清除,保持衬底的憎水性。

涂光刻胶:与衬底薄膜粘附性好,胶膜均匀,是光刻工艺的核心材料。

前烘:使胶膜体内的溶剂充分挥发使胶膜干燥;增加胶膜和衬底的粘附性以及胶膜的耐磨性 对准和曝光:把所需图形在晶圆表面上定位或对准;通过曝光灯或其他辐射源将图形转移到光刻胶涂层上

后烘:减少驻波效应,激发化学增强光刻胶的PAG产生的酸与光刻胶上的保护基团发生反应并移除基团使之能溶解于显影液。显影:将掩膜板上的图形显示在光刻胶上。

坚膜:除去光刻胶中剩余的溶剂,增强光刻胶对衬底的附着力。

刻蚀:把显影后的光刻胶微图形下层材料的裸露部分去掉,将光刻胶图形转移到下层材料上去的工艺叫作刻蚀。去胶:刻蚀完成以后将光刻胶去除掉。

29、光刻胶的分类,谈谈正胶和负胶的区别。

正胶:胶的曝光区在显影中除去。正胶曝光时发生光分解反应变成可溶的。使用这种光刻胶时,能够得到与掩膜版遮光图案相同的图形,故称之为正胶。负胶:胶的曝光区在显影中保留,用的较多。具体说来负胶在曝光前对某些有机溶剂是可溶的,而曝光后发生光聚合反应变成不可溶的。使用这种光刻胶时,能够得到与掩膜版遮光图案相反的图形,故称之为负胶。30、刻蚀的方法分类,刻蚀常见有哪些问题? 分类:刻蚀分为湿法刻蚀和干法刻蚀。

湿法刻蚀:化学腐蚀,在腐蚀液中通过化学反应去除窗口薄膜,得到薄膜图形。优点:工艺简单,无需复杂设备,选择比高;均匀性好。缺点:各向同性腐蚀;分辨率低,自动化难。干法刻蚀:使用气体和等离子体能量来进行化学反应的化学工艺。

常见问题:不完全刻蚀、刻蚀和底切、各向同性刻蚀。优点:刻蚀非常有方向性(各向异性),导致良好的小开口区域的精密度。缺点:选择性差。

31、掺杂技术实现的两种方式以及掺杂的目的 方式:扩散和离子注入

目的:在晶圆表面下的特定位置处形成PN结;在晶圆表面下得到所需的掺杂浓度。

32、扩散的基本原理、离子注入的基本原理及其比较

微电子工艺中的扩散是杂质在晶体内的扩散,因此是一种固相扩散。晶体内扩散有多种形式:填隙式扩散、替位式扩散、填隙-替位式扩散。离子注入技术:离子注入是将含所需杂质的化合物分子(如BCl3、BF3)电离为杂质离子后,聚集成束用强电场加速,使其成为高能离子束,直接轰击半导体材料,当离子进入其中时,受半导体材料原子阻挡,而停留在其中,成为半导体内的杂质。离子注入时可采用热退火工艺,修复晶格损伤,注入杂质电激活。离子注入技术的优势:① 离子注入克服热扩散的几个问题:

A 横向扩散,没有侧向扩散 B 浅结

C 粗略的掺杂控制 D 表面污染的阻碍 ② 离子注入引入的额外的优势:

A 在接近常温下进行 B 使宽范围浓度的掺杂成为可能

33、集成电路的形成

集成电路的制造工艺与分立器件的制造工艺一样都是在硅平面工艺基础上发展起来的,有很多相同之处,同时又有所不同。相同点:单项工艺相同的方法外延,氧化,光刻,扩散,离子注入,淀积等。不同点:主要有电隔离,电连接,局部氧化,平整化以及吸杂等。

电隔离:

(1)PN结隔离:双极型集成电路多采用PN结隔离,是在硅片衬底上通过扩散与外延等工艺制作出隔离岛,元件就做在隔离岛上。(2)介质隔离:SOS集成电路(Silicon on Sapphire)是最早的介质隔离薄膜电路,新材料SOI(Silicon on Insulator)有很大发展,SOI集成电路也是采用介质隔离工艺的电路。

电连接:集成电路各元件之间构成电路必须进行电连接,这多是采用淀积金属薄膜,经光刻工艺形成电连接图形,电路复杂的集成电路一般是多层金属布线,构成电连接。局部氧化:分离器件的氧化工艺是在整个硅片表面制备二氧化硅薄膜,而集成电路工艺中的氧化有时是在局部进行,如MOS型电路中以氮化硅作为掩蔽膜的局部氧化技术。平整化:超大规模集成电路的制备经过多次光刻、氧化等工艺,使得硅片表面不平整,台阶高,这样在进行电连接时,台阶处的金属薄膜连线易断裂,因此,有时通过平面化技术来解决这一问题,如在金属布线进行电连接之前,采用在硅片表面涂附聚酰亚胺膜的方法达到平面化的工艺技术。

吸杂:硅单晶本身的缺欠以及电路制备工艺中的诱生缺欠,对电路性能影响很大,有源元件附近的缺欠,通过吸杂技术可以消除或减少缺欠,如通过在硅片背面造成机械损伤,喷沙或研磨,这种背损伤可以吸收杂质与缺欠。

34、封装的工艺流程

底部准备:底部准备通常包括磨薄和镀金。划片:用划片法或锯片法将晶片分离成单个芯片

取片和承载:在挑选机上选出良品芯片,放于承载托盘中。

粘片:用金硅熔点技术或银浆粘贴材料粘贴在封装体的芯片安装区域。

打线:A:芯片上的打线点与封装体引脚的内部端点之间用很细的线连接起来(线压焊);B:在芯片的打线点上安装半球型的金属突起物(反面球形压焊);C:TAB压焊技术; 封装前检查 有无污染物;芯片粘贴质量;金属连接点的好坏 电镀、切割筋成和印字 最终测试

35、封装设计

篇6:电工电子资料查询总结

一.半导体二极管

*单向导电性------正向

,反向

。(二极管的正向电阻

,反向电阻

。)*二极管伏安特性----

*正向导通压降------硅管

V,锗管

V。*死区电压------硅管

V,锗管

V。

3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳

 直流等效电路法

*总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴(正偏),二极管导通(短路);若 V阳

二、稳压二极管及其稳压电路

*稳压二极管的特性---正常工作时处在PN结的,所以稳压二极管在电路中要

连接。

第二章 三极管及其基本放大电路

一.三极管的结构、类型及特点 1.类型---分为

两种。

2.特点---基区

,且掺杂浓度

;发射区掺杂浓度

,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积

。二.三极管的工作原理

1.三极管的三种基本组态

2.三极管内各极电流的分配: * 共发射极电流放大系数: 3.共射电路的特性曲线 *输入特性曲线---同二极管。

* 输出特性曲线 饱和管压降,用UCES表示

放大区---发射结

,集电结

。截止区---发射结

,集电结

。饱和区---发射结

,集电结

。4.温度影响

温度升高,输入特性曲线向左移动。温度升高ICBO、ICEO、IC以及β均增加。三.低频小信号等效模型(画出简化模型)

hie---输出端交流短路时的输入电阻,常用rbe表示;

hfe---输出端交流短路时的正向电流传输比,常用β表示;

四.基本放大电路组成及其原则 1.VT、VCC、Rb、Rc、C1、C2的作用。2.组成原则----能放大、不失真、能传输。五.放大电路的图解分析法 1.直流通路与静态分析

*概念---直流电流通的回路。*画法---电容视为开路。*作用---确定静态工作点

*直流负载线---由VCC=ICRC+UCE 确定的直线。

*电路参数对静态工作点的影响

1)改变Rb :Q点将沿直流负载线上下移动。

2)改变Rc :Q点在IBQ所在的那条输出特性曲线上移动。3)改变VCC:直流负载线平移,Q点发生移动。2.交流通路与动态分析 *概念---交流电流流通的回路

*画法---电容视为短路,理想直流电压源视为短路。*作用---分析信号被放大的过程。

*交流负载线---连接Q点和V CC’点 V CC’= UCEQ+ICQR L’的 直线。

3.静态工作点与非线性失真

(1)截止失真 *产生原因---*失真现象---*消除方法---(2)饱和失真 *产生原因---*失真现象---*消除方法---

4.放大器的动态范围

(1)Uopp---是指放大器最大不失真输出电压的峰峰值。(2)范围

*当(UCEQ-UCES)>(VCC’ - UCEQ)时,受截止失真限制,UOPP=2UOMAX=2ICQRL’。

*当(UCEQ-UCES)<(VCC’ - UCEQ)时,受饱和失真限制,UOPP=2UOMAX=2(UCEQ-UCES)。*当(UCEQ-UCES)=(VCC’ - UCEQ),放大器将有最大的不失真输出电压。六.放大电路的等效电路法

1.静态分析(1)直流通路

(2)静态工作点的近似估算

(2)Q点在放大区的条件

欲使Q点不进入饱和区,应满足RB>βRc。

2、放大电路的动态分析 交流通路 微变等效电路

rbe

* 放大倍数

* 输入电阻

* 输出电阻

七.分压式稳定工作点共射 放大电路的等效电路法 1.静态分析(1)直流通路

(2)静态工作点的近似估算

2.动态分析 交流通路 微变等效电路 电压放大倍数

输入电阻

输出电阻

1.静态分析(1)直流通路

(2)静态工作点的近似估算

2.动态分析 交流通路 微变等效电路 电压放大倍数

输入电阻

输出电阻

八.共集电极基本放大电路 电路特点

第四章 多级放大电路

一.级间耦合方式

*零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使uo偏离初始值“零点”而作随机变动。

二、多级放大电路性能指标 电压放大倍数

输入电阻

输出电阻

第四章 集成运算放大电路

一.集成运放电路的基本组成

1.输入级----采用 电路,以减小。2.中间级----多采用 电路,以提高。3.输出级----多采用 电路以提高。

4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。二.长尾差放电路的原理与特点 1.抑制零点漂移的过程----2静态分析 3.动态分析

1)差模电压放大倍数

• • 双端输出 单端输出时

从VT1单端输出 : 从VT2单端输出 : 2)差模输入电阻 3)差模输出电阻

• • 双端输出: 单端输出: 三.集成运放的电压传输特性

当uI在+Uim与-Uim之间,运放工作在线性区域 :uo=

四.理想集成运放的参数及分析方法 1.理想集成运放的参数特征 * 开环电压放大倍数 Aod→ * 差模输入电阻 Rid→ ; * 输出电阻 Ro→ ; * 共模抑制比KCMR→ 2.理想集成运放的分析方法 1)运放工作在线性区: * 电路特征—— * 电路特点——: 2)运放工作在非线性区 * 电路特征—— * 电路特点——

第六章 放大电路中的反馈

一.反馈概念的建立

反馈放大倍数一般表达式:

二.反馈的形式和判断

1、有无反馈的判断

是否有联系输入、输出回路的反馈通路;是否影响放大电路的净输入。

2、反馈极性的判断方法:瞬时极性法。

假定某输入信号Xi在某瞬时的极性为正(用+表示),根据该极性,逐级推断出放大电路中各相关点的瞬时极性(对分立元件而言,C与B极性相反,E与B极性相同。对集成运放而言,uO与uN极性相反,uO与uP极性相同。)。确定反馈信号Xf的极性。

若反馈信号与输入信号加在不同输入端(或两个电极)上,两者极性相同时,净输入电压减小, 为 负反馈;反之,极性相反为正反馈。若反馈信号与输入信号加在同一输入端(或同一电极)上,若反馈信号与输入信号加在同一输入端(或同一电极)上,两者极性相反时,净输入电压减小, 为 负反馈;反之,极性相同为正反馈。

3、直流反馈与交流反馈的判断

反馈通路如果存在隔直电容,就是交流反馈;反馈通路如果存在旁路电容,就是直流反馈;如果不存在电容,就是交直流反馈。

4、反馈阻态的判断

并联:反馈量Xf和输入量Xi接于同一输入端。串联:反馈量Xf和输入量Xi接于不同输入端。

反馈电路直接从输出端引出的,是电压反馈;从负载电阻RL的靠近“地”端引出的,是电流反馈。

三.负反馈对放大电路性能的影响

四、引入负反馈的一般原则

第七章 信号的运算

分析依据------“虚断”和“虚短”

一.基本运算电路 1.反相比例运算电路

2.同相比例运算电路

3.反相求和运算电路

4.同相求和运算电路

5.加减运算电路

二.积分和微分运算电路 1.积分运算

2.微分运算

第八章 信号的处理

1、滤波器分类

用低通和高通滤波器实现带通滤波器的条件是

,实现带阻滤波器的条件是

。在某个信号处理系统,要求从输入信号中取出低于2kHz的信号,应该选用。

第九章 信号发生电路

一.正弦波振荡电路的基本概念

1.产生正弦波振荡的条件(人为的直接引入正反馈)自激振荡的平衡条件 : 即幅值平衡条件: 相位平衡条件: 2.起振条件: 幅值条件 : 相位条件: 3.正弦波振荡器的组成、分类 正弦波振荡器的组成 正弦波振荡器的分类 二.RC正弦波振荡电路 1.RC串并联正弦波振荡电路

(1)电路的起振条件是什么?(2)电路的振荡频率是多少?(3)Rf应该为多大? 三.LC正弦波振荡电路

判断是否能振荡: 振荡频率:

(1)电感反馈三点式振荡器(哈特莱电路)振荡频率:

(2)电容反馈三点式振荡器(考毕兹电路)(3)串联改进型电容反馈三点式振荡器(克拉泼电路)振荡频率:

(4)并联改进型电容反馈三点式振荡器(西勒电路)振荡频率:

四.石英晶体振荡电路

1.并联型石英晶体振荡器 2.串联型石英晶体振荡器

第十章 功率放大电路

一.功率放大电路的三种工作状态 1.甲类工作状态

导通角为 ICQ,管耗,效率。2.乙类工作状态

ICQ≈0,导通角为,效率,失真。3.甲乙类工作状态

导通角为,效率较高,失真较大。二.乙类功放电路的指标估算 1.工作状态

 任意状态:Uom≈Uim  尽限状态:Uom=VCC-UCES  理想状态:Uom≈VCC

2.输出功率

3.直流电源提供的平均功率 4.管耗

5.效率 三.甲乙类互补对称功率放大电路

1.问题的提出

在两管交替时出现波形失真—— 失真。2.解决办法

 甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。

动态指标按乙类状态估算。

 甲乙类单电源互补对称功率放大器OTL----电容 C2 上静态电压为VCC/2,并且取代了OCL功放中的负电源-VCC。

动态指标按乙类状态估算,只是用VCC/2代替。四.复合管的组成及特点

1.前一个管子c-e极跨接在后一个管子的b-c极间。2.类型取决于第一只管子的类型。3.β=

第十一章 直流电源

一.直流电源的组成框图 二.单相半波整流电路 1.输出电压的平均值UO(AV)2.正向平均电流ID(AV)

3.最大反向电压URM 三.单相全波整流电路 1.输出电压的平均值UO(AV)

2.整流二极管的平均电流I D(AV)

3.最大反向电压URM

四.单相桥式整流电路

UO(AV)、ID(AV)与全波整流电路相同,URM与半波整流电路相同。

五.电容滤波电路 1. 放电时间常数的取值

2.输出电压的平均值UO(AV)

3.整流二极管的平均电流I D(AV)

六.三种单相整流电容滤波电路的比较和故障分析

七.并联型稳压电路 1.稳压电路及其工作原理 2.电路参数的计算 * 稳压管的选择 * 输入电压的确定 * 限流电阻R的计算

八、串联型稳压电路 九、三端集成稳压器

1、分类

2、输出为固定电压的电路

上一篇:怎样帮助孩子选择及适应幼儿园下一篇:办公楼消防制度