分布式光伏电站实用典型案例分享

2024-07-21

分布式光伏电站实用典型案例分享(精选6篇)

篇1:分布式光伏电站实用典型案例分享

OFweek太阳能光伏网 — 中国太阳能光伏行业门户

分布式光伏电站实用典型案例分享

近几年,政府陆续出台了多项政策,分布式光伏发电技术正日趋成熟。各级地方政府也随之颁布了相关推动政策,有效地激发了企业和居民用户投资安装太阳能发电应用的积极性。目前仅上海市松江区居民就已有60多户安装了光伏发电系统,对于光伏产业企业来说,前景一片光明。经过这段时间的推广应用,我们坚信:能源革命就在你我身边!同时,我们也常常在考虑,如何与政府提出的遮阳节能、建筑节能相关节能配套措施以及合理利用资源这几个问题相互有机的结合,这将是我们推广太阳能光伏发电和应用所思考的方向。本文将分享几个分布式发电系统的典型案例,供大家分享,希望打开大家更宽广的思路。

一、玻璃阳光房屋顶的光伏发电系统

在我们的周边,玻璃阳光房和玻璃阳光棚较为普遍,阳光房在冬季给我们带来温暖并提供采光,但是夏季炎炎也给我们带来了很多烦恼,所以到了夏季考虑到遮阳问题,许多用户也加装了遮阳系统,外遮阳效果很好,采用内遮阳收效甚微。6月份,我们提出“安装太阳能光伏发电和遮阳降温”的思路给上海耀江玻璃厂的200㎡的玻璃大棚安装了30KW光伏发电系统,每天平均发电量110KWh,安装改造后也大大地改善了车间的温度。同时为了保证车间的采光,留有15%的采光面积,整体效果明显。

佘山居民经某家中有二个阳光房,阳光房内设施陈旧,如同饱经风霜一般,夏季的闷热给经老先生也常常带来烦恼……今年7月我们给他安装了4.5KW的发电系统,同时给他家的屋顶窗留有15%左右的采光,保证光晒和冬季的光照,以下是我们给他家安装前后的对比图: OFweek太阳能光伏网 — 中国太阳能光伏行业门户

对于阳光房的充分利用,我们在设计建站时,需考虑以下几点:

屋顶必须满足载重能力; OFweek太阳能光伏网 — 中国太阳能光伏行业门户

设计的安装支架尽量用轻型结构,例如用铝材料,同时也让结构更加坚固,安装角度一般不易太大,以避免抗风压力的风险。

为了提高效率,防止太阳光射度的不同而影响系统的整体发电效率,尽量采用微逆系统。

阳光房的光伏组件面积占整个可安装面积的80-90%左右,要留作采光用。

整个系统防雷接地保护必须有效可靠。

案例 农业基础性应用,渔光互补

渔业生产是我们菜篮子工程的后勤保障,渔业养殖户一般都分布在郊区边远地方。因此,渔业养殖户的用电保障常常是个问题,据相关报道金山区的渔业养殖户一到夏天,鱼塘增养设备一开启,常常是跳闸、断电。

上海湿地生态农业投资有限公司,揭开了渔光互补新的篇章,率先在五厍的鱼塘放水塘装置了80KWp的发电系统,我们负责此项目的设计与施工(附施工图):

通过这个工程案例,我们可以把渔光互补归纳为以下几点:

可以不占用土地资源和其他可用资源;

在夏季可以让螃蟹等水产也能遮阳避暑;

可以保障养殖户的用电可靠运行;

在环保节能起作用的同时,也可以回收投资;

但是,一般鱼塘都在偏僻的地方,施工难度大; OFweek太阳能光伏网 — 中国太阳能光伏行业门户

通过这个案例,在安装结构方面我们也将进一步完善。

二、大型停车遮阳棚与新能源汽车的结合:

目前,国家正大力发展新能源汽车,汽车使用的能源不再只是石化能源,取而代之的将是新能源汽车,石油公司遍布全国各地的加油站将成为新能源汽车的补给站。在发展新能源汽车的过程中需按储备电能充电装置实现新能源汽车的能源补给。而电能最终还是来自可持续发展的太阳能。只要有太阳能的地方,无数不能。我们希望有关部门在大力扶持太阳能光伏发电,大力提倡绿色出行,扶持新能源汽车的同时,有机将遮阳停车棚和新能源充电桩相结合,使广大新能源汽车用户与投资光伏发电相结合起来,让两者环保产品逐渐成熟和完善。

今年7月,我们承建了上海海洋大学行政大楼的停车棚,并安装了1500㎡左右150KW分布式光伏并网发电系统。系统(图片如下)的概况和特点:

OFweek太阳能光伏网 — 中国太阳能光伏行业门户

此系统的设计由五个30KW的并网逆变器组成,交流并网在配电系统的低压侧。

基础结构是200*200*5和80*80*3的方钢构成,由45*60*3的U型钢做檀条,用整条中压块作为接缝处的连接处理,边上仍用单个80长的边压块,让光伏板作为建筑物体,发挥遮阳挡雨功能的同时,也让它发电,从而使建筑物体发挥更好的功能。

为了让此系统更加完善,我们在电线连接和接线盒方面都设计了遮避处理,从而更加美观。与传统方法在车棚安装光伏电池,相比这种投资成本小,且有投资回报。

根据校方的要求,我们还在某些停车位上安装了新能源汽车充电桩,每天可满足约20-30辆车的充电要求,大大方便了新能源汽车的用户。

三、光伏建筑一体化应用

光伏建筑一体化是我们目前面临的最棘手问题,也是最有实用意义的一个课题,如何将太阳能光伏发电阵列安装在建筑的围护结构外表,并提供发电功能,这样可有效利用建筑外表,无需额外占用土地资源、和建光伏支架等设施,也节约外饰材料(如玻璃幕墙等);同时也使建筑物体夏季遮阳降温,降低空调的负荷,光伏建筑一体化让我们的建筑物体附有更多的功能作用。OFweek太阳能光伏网 — 中国太阳能光伏行业门户

1.屋顶光伏太阳能发电系统

利用屋顶资源装置太阳能发电系统是光伏建筑一体化的很好结合,这使建筑体可以得到保温,光伏设备也不占用土地资源,是目前我们大家广泛推广应用的,无论是斜面还是平面的屋顶,都已有很多的范例,这里我们不再赘述。

2.光伏幕墙系统

这次我们承接了永旺梦乐城43KW光伏幕墙,系通的效果图如下东南方向侧的上端立面。

系统有十个规格的电池幕墙玻璃尺寸,有8毫米超白玻璃为基板,周边留有打胶的空距,电池组件电性能均为:30V/230kw,由156X156多晶硅芯片组成,系统安装结构简图如下。光伏系统框架是钢结构,整个背面用高强度板遮蔽,使整体性更加好。

3.建筑材料与光伏一体化单元的研究

以陶土材料为基板,作为光伏PV组件的底板,组成:发电瓷砖、发电屋瓦、发电幕墙单元材料,目前我们正与陶土研究的相关人员一起开发了许多种类的产品,待样品进一步成熟后推广应用。

篇2:分布式光伏电站实用典型案例分享

分布式光伏发电项目管理暂行办法要点 • 总则 – 分布式光伏发电是指在用户所在场地或附近建设运行,以用户侧自发自用为主、多余电量上网 且在配电网系统平衡调节为特征的光伏发电设施; – 鼓励各类电力用户、投资企业、专业化合同能源服务公司、个人等作为项目单位,投资建设和 经营分布式光伏发电项目; – 分布式光伏发电实行“自发自用、余电上网、就近消纳、电网调节”的运营模式; 规模管理 – 对需要国家资金补贴的项目实行总量平衡和指导规模管理,不需要国

家资金补贴的项目部 纳入指导规模管理范围; – 下达各地区指导规模; 项目备案 – 能源主管部门依据本地区分布式光伏发电的指导规模指标,对实行备案管理; 建设条件 – 项目所依托的建筑物及设施应具有合法性,当非同一主体时,项目单位应与所有人签订建筑物、场地及设施的使用或租用协议,签订合同能源服务协议; – 设计和安装应符合有关管理规定、设备标准、建筑工程规范和安全规范等要求,承担项目设计、查咨询、安装和监理的单位,应具有国家规定的相应资质。采用主要设备应通过符合检测认 证,符合相关接入电网的技术要求。电网接入与运行 计量与结算 – 享受电量补贴政策的项目,由电网企业按月转付国家补贴资金,按月结算余电上网电量电费。– 在经济开发区灯相对独立的供电区同一组织建设的分布式光伏发电项目,余电上网部分可向该 供电区内其他电力用户直接售电; 产业信息监测 违规责任 • • • • • • •

总 结 • 国家布局为集中开发与分布式应用并举,更关注分布式发电市场 • 发挥“市场机制和政策扶持双重作用”应该是今后几年内光伏应用市场 的基调;目标可能浮动,但安装总量会加以控制; • “有序推进光伏电站建设”——希望稳定发展 – 真正实现“保障性收购”,着力解决“接入”和“限发”、补贴资 金到位慢三大问题可使大型电站效益改善; – 西部仍是重点、东部有望突破、路条依然难拿、投资相对旺盛; – 2013年估计实现装机4-5GW,2014年控制规模4-5GW。• “大力开拓分布式光伏发电”——希望重点突破、快速发展 – 政策密集出台,细节尚需补充完善; – 分布式光伏发电示范园区项目启动,但受“屋顶落实”和“融资方 式”两大难题影响,(也包括年底抢装因素对市场供应的影响)实 施进度必将后移; – 2013年估计实现装机2-3GW,2014年指导性规模预方案7-8GW。• 综上:2013年估计可实现光伏发电总装机7-8GW; 2014年期望可实现年 总装机10-12GW。(如果分布式发电的几个难点问题不能很好解决,该 分布式光伏装机目标实现难度还是比较大的)

篇3:小型光伏分布式电站的设计

1 太阳能并网发电原理

太阳能光伏并网发电是完全无污染、无噪声、不耗费化石能源、应用前景最广阔的一种太阳能利用方式。

并网发电系统一般由太阳能电池组件、并网逆变器等组成, 通常还包括数据采集系统、数据交换系统、运行显示和监控设备等。

并网发电方式是将太阳能电池阵列所发出的直流电通过逆变器转变成交流电输送到电网中, 无需蓄电池进行储能。并网发电系统采用的并网逆变器拥有自动相位和电压跟踪装置, 能够非常好地配合电网的微小相位和电压波动, 不会对电网造成影响。光伏并网系统原理如图1所示。

2 光伏电站设计案例

某设计方案拟在某厂房1万㎡屋顶安装1MWp容量的并网型太阳能光伏发电系统, 包括太阳能光伏发电系统及相应的配套并网设施。

光伏发电系统采用晶体硅太阳能电池作为光电转换装置, 没有储能装置, 利用逆变器将直流电转换成交流电后, 通过低压配电系统就近并入低压局域电网或升压到10k V公司内网中。

2.1 气候条件及太阳辐射状况

该地区冬夏季风交替明显, 终年气温较高, 偶有阵寒, 年、日温差小, 属南亚热带与热带过渡型海洋性气候;太阳能丰富, 热量充足, 年均日照1991.8h, 太阳幅射年总量为4651.6MJ/㎡;年平均气温为22.4℃, 大部分地区全年无霜冻;降雨量丰富, 年均1700~2200mm, 但降雨在年内分配不均, 主要集中在雨季的4~9月, 占年总量的84%。

2.2 系统方案

2.2.1 1MWp光伏系统

采用245Wp多晶硅组件, 安装在某厂房屋顶, 采用合肥阳光生产的SG500K3集中型并网逆变器, 最大效率为97%。逆变器和组件相关配置如表1所示。

方阵组串的确定:

(1) 考虑组件表面60℃高温对逆变器工作电压的影响, 组件串联数要求在18串以上。

(2) 考虑组件表面5℃低温对逆变器最高电压的影响, 组件串联数要求在22串以下。

(3) 从耐压、通用性、线缆选型、方阵排布、要求容量等多方面考虑, 组件串联数确定为21串。根据相应逆变器可承受的充电电流并联组件数, 综合考虑最大输入功率和可安装面积, 500k W逆变器配21串99并245Wp多晶组件, 光伏装机容量509.355k Wp。

2.2.2 1MWp配置方案

在屋顶设置2套509.355k Wp子系统, 共计组件4158块, 装机容量1018.71k Wp, 配SG500K3逆变器2台。

2.2.3 组件和逆变器的选型

组件选用无锡尚德生产的高效大功率STP245-20/Wd多晶硅组件, SUNTECH名牌产品质量有保证, 高效组件占地面积少, 大功率组件适于并网用。

并网逆变器按产地分国产和进口两类;按组串方式分组串型和集中型。对于小型并网光伏电站, 建议采用组串型并网逆变器;大中型并网光伏电站, 建议采用集中型并网逆变器。该系统1MWp光伏组件采用集中排布, 所以采用集中型并网逆变器更合适。

3 并网方案

3.1 光伏系统组成

光伏系统组成如图2所示。

3.2 并网方案

初步设计可铺设高效多晶硅组件STP245-20/Wd, 总计4158块, 合计功率约1018.71k Wp。太阳能系统采取多子方阵、由2台500k W逆变器输出并网的电气结构。由屋顶太阳能方阵进行直流汇流, 接入汇流箱, 通过线槽或桥架连接至各方阵对应直流配电柜, 然后接入并网逆变器, 并网逆变器的交流输出沿线槽或桥架敷至低压开关柜, 接入380V低压电网。太阳能阵列的直流输出至并网逆变器之间的直流电气线路应尽可能短, 以避免过多的损耗。汇流箱可户外安装, 集中逆变器需户内安装, 配电柜室内立式安装。太阳能系统所发的电量主要用于厂房负荷。

1MW光伏系统方案电气主结构如图3所示。

3.3 安装方阵倾角

通常, 光伏系统中固定式安装的太阳能板的最佳倾角应使处于该倾角下的方阵全年能获得最多太阳辐射。经初步计算并参照相关计算软件, 该系统中固定式太阳能板的最佳倾角为20°。

3.4 方阵方位角

处于北半球的光伏系统方阵应朝向正南方设置, 但一般来说只要在正南±10°之内, 方阵的输出功率不会降低很多。

3.5 光伏系统防雷与接地

太阳电池方阵结构件通过接地体接地防止直击雷, 防雷接地电阻小于4Ω, 接地电阻通过电阻测量仪测量;在光伏阵列输出端和交流输出端, 为防止二次感应雷, 安装防雷模块;在并网系统中, 因为系统电压较高, 需要耐压高、保护灵敏的防雷模块。

3.6 其它要求

选用的集中型并网逆变器应具有防孤岛效应功能;光伏并网直流电压高, 应选用耐压高的电缆;基础要牢固, 满足抗风要求;各级电气保护功能要相匹配等。

4 光伏并网电站发电量

并网光伏电站预计发电量统计如表2所示。

注:预计发电量是以气象统计资料和数学模型估算。

5 结语

未来光伏设备价格会进一步降低, 转换效能将大幅提升, 从长远来看, 建一个屋顶光伏发电站是一项不错的投资。随着我国经济的发展, 资源短缺的矛盾日益突出, 因地制宜发展新能源及可再生能源发电是解决后续能源问题的有效途径。

摘要:介绍太阳能光伏并网发电原理, 以及小型光伏分布式电站的设计。

篇4:分布式光伏电站实用典型案例分享

关键词:分布式;光伏电站;接入电网;并网型光伏发电;继电保护

中图分类号:TM461 文献标识码:A 文章编号:1009-2374(2013)13-0131-02

光伏发电是将太阳能直接转换为电能的一种发电形式。光伏发电系统通常可分为离网(独立)型光伏发电系统和并网型光伏发电系统。并网型光伏发电系统与电网相连,发出的电能向电网输送。并网型光伏发电系统可分为分布式并网型光伏发电系统和集中式并网型光伏发电系统两大类。分布式并网型光伏发电系统就属于微电网中的分布式发电,特点是光伏发电系统发的电直接分配给用户负荷,多余或不足的电力通过连接电网来调节。

1 工程规模

本工程总装机容量为5×5MWp,预计年发电量为2948.321万kWh。该光伏发电系统以380V电压等级并网于临近某110kV变电站10kV母线所用变低压侧,160kW经直流汇流后接逆变器,并网于电站配电区两台配电变压器低压侧0.4kV母线。储能系统1套80kW/160kWh磷酸铁锉电池经PCS,分别并网于电站两台配电变压器低压侧母线。每个5MWP光伏阵列均逆变升压至10kV电压等级,形成1路10kV交流电源线路,接至110kV变电站10kV线路上,光伏电站所发电力首先在该线路进行消纳,多余电力可以输送至某110kV变电站10kV母线上重新分配。

2 电气计算

2.1 最大工作电流

该工程为分布式光伏电站为太阳能电池阵列,输出的是直流电,经过汇流、逆变、升压等过程之后,再连接至公用电网。本工程总容量为5×5000kWp,若不考虑逆变及升压过程中的电能损失,最大工作电流约为1443A。

2.2 短路电流

对于含有光伏电站的系统,发生短路故障时,故障点短路电流可以分为两部分,一部分是由交流系统提供,另一部分是由光伏发电系统提供。对于光伏发电系统提供的短路电流,其大小主要与光伏发电出力、逆变器参数等因素有关。根据光伏发电原理,光伏发电元件经日照产生直流电,再经过逆变器逆变为400V交流电输出,其发电出力值与日照等环境因素有关。由于日照等环境因素骤变的可能性很小,在短路故障发生瞬间,光伏系统发出的直流功率可以认为是恒定的,逆变后的交流功率也可以认为是恒定的。因此,发生短路后,由于母线电压急剧下降,在功率恒定的情况下,逆变器输出的电流将会急剧增大,直至逆变器保护动作,关闭输出。

2.3 并列点及人工解列点

各电站并列点设在电站并网线路10kV侧断路器上;人工解列点设在所并变电站的所并10kV线路断路器侧。

3 继电保护

3.1 继电保护配置依据

根据国家电网发展[2009]747号《国家电网公司光伏电站接入电网技术规定(试行)》,《继电保护和安全自动装置技术规定》(GB/T14285-2006),并依据系统一次设计方案,进行系统继电保护的配置。

3.2 继电保护及安全自动装置

光伏电站线路侧应配置普通的微机线路保护除普通线路保护功能,相应加装欠压/超压、欠频/超频保护,并能接收1#电站所发跳闸命令并执行。工程中的110kV变电站10kV线路保护侧已配置微机线路保护并满足系统要求,不需重新配置。T接点的高压分支断路器应配置普通的过流脱扣装置。110kV变电站主变间隙保护应增加联切10kV线路对侧光伏电站并网断路器。光伏电站以1#电站为主站,与110kV变电站中主变间隙保护装置配合。

3.3 防孤岛保护

光伏电站必须具备快速检测孤岛并立即断开与电网连接的能力,其防孤岛保护应与电网侧线路保护相配合。光伏电站必须设置主动和被动防孤岛保护各1套。微电网从并网转人孤岛运行瞬间,流过公共连接点的功率被突然切断,切断前通过PCC处的功率如果是流入微电网的,则它就是微电网离网后的功率缺额;如果是流出微电网的,则它就是微电网离网后的功率盈余;大电网的电能供应突然中止,微电网内一般存在较大的有功功率缺额。

在离网运行瞬间,如果不启用紧急控制措施,微电网内部频率将急剧下降,导致分布式光伏电源采取保护性的断电措施,这使得有功功率缺额变大,加剧了频率的下降,最终使得微电网崩溃。因此,要维持微电网较长时间的孤岛运行状态,必须在微电网离网瞬间立即采取措施,使微电网重新达到功率平衡状态。

微电网离网瞬间,如果存在功率缺额,则需要立即切除全部或部分非重要的负荷、调整储能装置的出力,甚至切除小部分重要的负荷;如果存在功率盈余,则需要迅速减少储能装置的出力,甚至切除一部分逆变器。这样,使微电网快速达到新的功率平衡状态。

微电网离网瞬间内部的功率缺额(或功率盈余)的计算方法:就是把在切断PCC之前通过PCC流人微电网的功率,作为微电网离网瞬间内部的功率缺额,PPCC以从大电网流人微电网的功率为正,流出为负。当Pqe为正值时,表示离网瞬间微电网内部存在功率缺额;为负值时,表示离网瞬间微电网内部存在功率盈余。

由于储能装置要用于保证离网运行状态下重要负荷能够连续运行一定时间,所以在进入离网运行瞬间的功率平衡控制原则是:先在假设各个储能装置出力为0的情况下切除非重要负荷;然后调节储能装置的出力;最后切除重要负荷。

4 结语

本试点工程采用分散式微电网,接入配电网时采取就地平衡原则,正常用电期间用电负荷峰值在100kW左右,此时光伏发电可部分就地被消纳,光伏发电超过用电负荷,可将多余电量储存,当夜间用电负荷较小期间,整个系统用电负荷小于30kW,微电网离网运行时可使用储存电量,当110kV变电站全站检修或失压时,可为变电站充当临时电源,加强电网与用电侧互动与管理、推进分布式发电利用,加速智能电网和互动服务体系建设,节能降耗,提高能效,具有明显的创新性和实用性。

参考文献

[1] 李瑞生,周逢权,李燕斌.地面光伏发电系统及应用[M].北京:中国电力出版社,2011.

[2] 毛建荣,周逢权,马红伟.微电网组网优化设计[J].华北电力技术,2012,(1):32-35.

[3] 张洋,李献伟.基于有功缺额的微电网集中控制策略研究[J].电力系统保护与控制,2011,39(23):106-111.

[4] 丁明,王敏.分布式发电技术[J].电力自动化设备,2004,24(7):31-36.

作者简介:贾继灏(1981—),男,河南省电力公司检修公司工程师,研究生,研究方向:电力系统运行;马丽丽(1982—),女,河南省电力公司安阳供电公司工程师,研究生,研究方向:电力系统继电保护;张大伟(1983—),男,河南省电力公司安阳供电公司助理工程师,研究方向:电力系统一次检修。

篇5:光伏分布式电站运行维护

1.分布式光伏发电系统的常见故障有哪些?系统各部件可能出现哪些典型问题?

由于电压未达到启动设定值造成逆变器无法工作、无法启动,由于组件或逆变器原因造成发电量低等,系统部件可能出现的典型问题有接线盒烧毁、组件局部烧毁。

2.PID现象是什么?会发生于什么环境下的分布式光伏发电系统?如何诊断和避免影响?

PID(Potential Induced Degradation),又称“电势诱导衰减”,是指光伏组件受到外在因素诱导而产生的功率衰减现象。针对PID现象产生的机理,组件制造商研发出一系列预防PID现象发生的生产工艺,其中包括:使用抗PID电池,增加组件复合材料的体积电阻率、降低材料的水气透过率、光伏系统负极接地、双玻无边框组件等,经过试验和实际系统运行数据验证,光伏发电系统即便建立在高温高湿的环境场所中也能很好的规避PID的产生。

3.分布式光伏发电系统的寿命有多长?

核心部件光伏组件寿命为25年以上,光伏逆变器一般5年以上,具体使用寿命详见质保单。

4.导致光伏发电系统效率下降和损失的主要因素有哪些?

光伏发电系统效率受外界影响有所损失,包括遮挡、灰层、组件衰减、温度影响、组件匹配、MPPT精度、逆变器效率、变压器效率、直流和交流线路损失等。

每个因素对效率的影响也不同,在项目前期要注意系统的最优化设计,项目运行过程采取一定的措施减少灰尘等遮挡对系统的影响。

5.在屋面资源一定的情况下,如何提高分布式光伏发电系统发电量?

分布式光伏发电系统发电量主要受组件、逆变器、电缆、方阵设计倾角、组件清洁程度等因素影响,在屋面资源一定的情况下提高系统发电量主要可以从以下四个方面考虑:(1)优质产品

选择行业知名品牌、售后质保佳、获得监测认证证书的产品;(2)降低系统损耗

a,优化系统设计:优化方阵设计,减少或避免阴影遮挡;优化光伏组件与逆变器之间电压、电流匹配,提升MPPT效率;

b,减少各种电缆及开关器件传输损耗;

c,注重减少组件失配:组件电流分档,减少“木桶效应”引起的输出电缆影响。

(3)最佳方阵朝向和倾角设计

在条件允许的情况下,尽可能做到方阵最佳朝向和倾角设计,要考虑屋顶面积资源、装机容量、维护方便,投资等各种因素,给予综合优化分析和设计。在彩钢屋面承载力满足的前提下,适当提升方阵倾角,将有利于提升发电量,且便于后期维护。(4)维护与清洁

定期喷淋清洗组件,可明显提高发电量。有条件的单位,可增加对组件喷淋系统。

6.如何降低光伏发电系统的维护成本?

建议选择的系统各部件和材料市面上口碑好的,售后服务好的产品,合格的产品能降低故障的发生率,用户应严格遵守系统产品的使用手册,定期对系统进行检测和清洁维护。

7.系统后期维护怎么处理,多久维护一次?怎样维护?

根据产品供应商的使用说明书对需要定期检查的部件进行维护,系统主要的维护工作是擦拭组件,而水较大的地区一般不需要人工擦拭,非雨季节大概 1 个月清洁一次,降尘量较大的地区可以增加清洁的次数,降雪量大的地区及将厚重积雪去除,避免影响发电量和雪融后产生的不均匀,及时清理遮挡的树木或杂物。

8.清洁光伏组件时用清水冲洗和简单的擦拭就行么?用水擦拭的时候会不会有触电的危险?

为了避免在高温和强烈光照下擦拭组件对人身的电击伤害以及可能对组件的破坏,建议在早晨或者下午较晚的时候进行组件清洁工作,建议清洁光伏组件玻璃表面时用柔软的刷子,干净温和的水,清洁时使用的力度要小,以避免损坏玻璃表面,有镀膜玻璃的组件要注意避免损坏玻璃层。

9.如何正确利用停机维护时间?

优先选择清晨或傍晚光线弱系统未运行的时候对系统进行维护,维护前做好防护措施载绝缘手套使用绝缘工具。

10.如何发现光伏阵列中某一块光伏组件是否出现故陣?

当用户发现在相同时间系统的发电量有所降低或与邻近安装相同的发电系统相比有所降低,则系统可能存在异常,用户可通过汇流箱中监测数据的异常波动及时发现光伏阵列中某一组件是否出现故障,然后联系专业人员用钳型表、热像仪等专业化设备对系统进行诊断,最终确定系统中出现问题的组件。

11.光伏组件上的房屋阴影、树叶甚至鸟粪的遮挡会对发电系统造成影响吗?

光伏组件上的房屋阴影、树叶甚至鸟粪的遮挡会对发电系统造成比较大的影响,每个组件所用太阳电池的电特性基本一致,否则将在电性能不好或被遮挡的电池上产生所谓热斑效应,一串联中被遮挡的太阳电池组件将被当做负载消耗其它有光照的太阳电池组件所产生的能量,被遮挡的太阳电池组件此时会发热,这就是热效应现象,这种现象严重的情况下会损坏太阳能组件,为了避免串联支路的热斑需要在光伏组件上加装旁路二极管,为了防止串联回路的热斑则需要在每一路光伏组串上安装直流保险。

12.为防止光伏组件遭重物撞击,能不能给光伏阵列加装铁丝防护网?

不建议安装铁丝防护网,因为沿光伏阵列加装铁丝防护网可能会给组件局部造成阴影,形成热斑效应,对整个光伏电站的发电效率造成影响。另外,由于合格的光伏组件均已通过冰球撞击实验,一般情况下的撞击不会影响组件的性能。

13.烈日当空,易损器件坏了需立即更换吗?

不能够立即更换,如要更换建议在早晨或者下午较晚的时候进行,应及时联系电站运维人员,由专业人员前往更换。

14.雷雨防雷天气需要断开光伏发电系统吗?

分布式光伏发电系统都装有防雷装置,所以不用断开。为了安全保险建议可以选择断开汇流箱的断路器开关,切断与光伏组件的电路连接,避免防雷模块无法去除的直击雷产生危害,运维人员应及时检测防雷模块的性能,以避免防雷模块失效产生的危害。

15.雪后需要清理光伏发电系统吗?光伏组件冬天积雪消融结冰后如何处理?可以踩在组件上面进行清理工作吗?

雪后组件上如果堆积有厚重积雪是需要清洁的,可以利用柔软物品将雪推下,注意不要划伤玻璃,组件是有一定承重的,但是不能踩在组件上面清扫,会造成组件隐蔽损坏,影响组件寿命,一般建议不要等积雪过厚在清洗,以免组件过度结冰。

16.分布式光伏发电系统能抵抗冰雹的危害吗?

光伏并网系统中的合格组件必须通过正面最大静载荷(风载荷、雪载荷)5400PA,背面最大静载荷 2400PA 和直径 25MM 的冰雹以 23M/S 秒的速度撞击等严格的测试,因此不会对光伏发电系统带来危害。

17.如何处理太阳电池的温升和通风问题?

光伏电池的输出功率会随着温度上升而降低,通风散热可以提高发电效率,最常用的办法为自然风进行通风。

18.光伏发电系统对用户有电磁福射危害吗?

光伏发电系统是根据光产生伏打效应原理将太阳能转换为电能,无污染、无辐射,逆变器、配电柜等电子器件都通过 EMC(电磁兼容性)测试,所以对人体没有危害。

19.光伏发电系统有噪音危害吗?

光伏发电系统是将太阳能转换为电能,不会产生燥音影响,逆变器的噪音指标不高于 65 分贝,也不会有噪音危害。

20.户用分布式光伏发电系统的防火和消防应注意什么问题?

分布式发电系统附近禁止堆放易燃易爆物品,一旦发生火灾所造成的人员及财产损失不可估量,除了基本的消防安全措施外,还特别提醒光伏系统具有自我检测、和防火功能,降低火灾发生可能性,此外还需要每隔最长 40 米就必须预留防火和维修通道,而且必须有方便操作的紧急直流系统断路开关。

21.分布式光伏系统的消防安全应对措施有哪些?

分布式光伏电站主要建设在建筑屋顶,安全性是考虑的首要因素,主要包括人身安全和项目资产安全,消防措施主要以预防为主,一方面注意产品质量,选用通过安全认证和防火认证的光伏组件,另一方面可采取人防与技防相结合的现场实时监控方案:(1)选用具备电缆感温实现火灾预警的智能汇流箱;

(2)选用具备可监测组串回路拉弧、虚接特征谐波分析并进行告警的智能汇流箱;(3)专用消防系统;

篇6:分布式光伏电站投运申请

申请报告

国家电网青海省西宁市供电有限公司:

我公司目前建设的“青海瑞丝丝业500kwp分布式光伏发电项目”已取得政府能源投资主管部门的光伏电站项目备案(核准)文件和电网企业的光伏电站介入电网意见函。

我方的一、二次设备符合国家标准和行业标准、反事故措施和其他有关规定,且与有资质的检测机构签订并网后检测合同,基础建设也通过了国家规定的程序验收合格;并网正常运行方式也已明确,逆变器、汇流箱等有关参数已合理匹配,设备整定值已按照要求整定,具备并入电网运行、接受电网调度机构统一调度的条件。

青海瑞丝丝业500kwp分布式光伏发电项目电力调度通信符合国家标准、行业标准和其他有关规定,按国家授权机构审定的设计要求安装、调试完毕,经国家规定的基础程序验收合格,满足于光伏电站发电设备同步投运的条件和相关约定。

光伏电站电能计量装置按照《电能计量装置技术管理规定》(DL/T448-2000)进行配置,并通过电网公司组织的测试和验收。

光伏电站的二次系统按照《电力二次系统安全防护规定》(国家电监会5号令)及有关规定,已实施安全防护措施,并经电网调度机构认可,具备投运条件。

光伏电站运行、检修规程齐备,相关管理制度齐全,其中涉及电网安全部分与电网规程相一致。光伏电站有调度令权的运行值班人员,根据《电网调度管理条例》及有关规定,经过严格培训,已取得相应的合格证书,持证上岗。

电网公司与我方运行对应的一、二次设备符合国家标准、行业标准和其他有关规定,按经国家授权机构审定的设计要求安装、调试完毕,经国家规定的验收程序验收合格。相关参数合理匹配,设备整定值已按照要求整定,具备光伏电站接入运行的条件。

电网公司与我方针对光伏电站并入电网后可能发生的紧急状况,已制定相应的反事故措施。并已送电网调度机构备案。

我公司建设的 青海瑞丝丝业500kwp分布式光伏发电项目 已具备上述投运条件。特此申请于2016年11月9日并网投运。

附:2016年5月15日完成光伏弱电部分安装联调。

2016年6月20日完成箱式变电站及柱上保护开关安装测试。

2016年8月21日电网公司组织第一次基础设施验收。

2016年9月15日完成电网公司提出的整改要求。

2016年10月15日完成电网公司组织的缺陷部分整改验收及基础设施部分验收完成。

2016年10月15日通过电网公司全面验收合格。

特此申请

望批准

青海瑞丝丝业有限公司

上一篇:水库工程管理设计规范下一篇:南昌大学学生军训工作领导小组