生物质能并网发电技术发展趋势

2024-08-17

生物质能并网发电技术发展趋势(通用8篇)

篇1:生物质能并网发电技术发展趋势

摘 要:生物质发电技术因为其原料对环境的有好性和可再生性,越来越被重视,本文介绍了生物质发电技术分类,对生物质直燃发电、气化发电和混合燃烧发电技术进行分析,比较了三种技术的优劣,指出了生物质发电的技术趋势。

关键词:生物质发电;直燃发电;气化发电;混合燃烧发电;技术趋势

引言

生物质能是我国“十二五”期间重点发展的新兴能源产业之一,按我国提出的非化石能源占能源消费总量15%的目标初步估算,到20我国生物质能装机总量将达3000万千瓦,沼气年利用量440亿立方米,生物燃料和生物柴油年产量达到1200万吨。

截止底,中国生物质能并网发电装机量779万千瓦,预计底,生物质发电装机将有望达到1100万千瓦,上网电量有望达到500亿千瓦时[1]。

从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

1.生物质发电技术分类

1.1 生物质直燃发电

生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽带动蒸汽轮机及发电机发电,用于发电或者热电联产。

国内生物质直接燃烧发电的锅炉主要有两种:炉排炉、循环流化床锅炉。

采用生物质燃烧设备可以快速度实现各种生物质资源的大规模减量化、无害化、资源化利用,而且成本较低,因而生物质直接燃烧技术具有良好的经济性和开发潜力。

1.2 生物质气化发电

生物质气化发电是指生物质在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。

气化炉对不同种类的生物质原料有较强的`适应性。

内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机要求容量小,适于燃烧高杂质、低热值的生物质燃气。

1.3 生物质混合燃烧发电

生物质混合燃烧发电是指将生物质原料应用于燃煤电厂中,和煤一起作为燃料发电。

生物质与煤有两种混合燃烧方式: 一种是生物质直接与煤混合燃烧,生物质预先与煤混合后再经磨煤机粉碎或生物质与煤分别计量、粉碎。

生物质直接与煤混合燃烧要求较高,并非适用于所有燃煤发电厂,而且生物质与煤直接混合燃烧可能会降低原发电厂的效率。

第二种是将生物质在气化炉中气化产生的燃气与煤混合燃烧,即在小型燃煤电厂的基础上增加一套生物质气化设备,将生物质燃气直接通到锅炉中燃烧,这种混合燃烧方式通用性较好,对原燃煤系统影响较小。

2.生物质发电技术比较

生物质与煤混合燃烧发电技术投资少,发电效率决定于原燃煤电站的效率.其中生物质气化混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强[2]。

由于气化发电技术关键设备―小型低热值燃气轮机技术尚未成熟,对10 MW以上的生物质发电系统而言,比较有优势的技术是直接燃烧发电[3]。

对10 MW以下的生物质发电系统而言,气化一余热发电系统效率远高于直接燃烧发电系统,具有更大的优势。

另外,生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提高,只有在大规模利用时才具有较好的经济性,比较适合于10 MW以上的发电系统。

生物质混烧发电技术在已有燃煤电站的基础上将生物质与煤混烧发电,混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强,投资成本是三类技术中最少的,但可能降低原燃煤电站效率。

表2-1 三种生物质发电技术比较表

分类 直燃发电 气化发电 混合燃烧发电

规模 10MW以上 10MW以下 10MW以上

通用性 强 低 强

热电连供 可以 可以 不可以

并网独立性 可以 可以 不可以

投资成本 中 高 低

效率变化 中 高 不确定

3.生物质发电技术趋势

3.1直燃技术

自以来,我国生物质直燃发电开始进行商业化运行,国产循环流化床燃烧技术已成为生物质直燃发电市场的主导技术。

循环流化床内可采用SNCR脱销,脱硝率可达50%以上。

虽然生物质燃料含硫量较低,但实际SO2排放浓度在200mg/m3以上,炉内可以加石灰石脱硫,在脱硫效率达到70%时,即可满足国家标准的要求。

对灰熔点较低的生物质,如油菜秆、棉花杆等,燃烧此类生物质的锅炉,蒸汽温度不宜提的过高,除非有很好的防积灰、腐蚀的措施作为保障。

此外,生物质水分很高,着火推迟,导致不完全燃烧,炉排上未燃尽的生物质含碳量很高,需要增加炉排长度,提高燃烧效果。

3.2气化技术

生物质气化发电中含焦油废水无害化处理是制约气化发电的瓶颈,国内外研究结果均提出采用有机溶剂作为燃气净化介质,避免二次水污染。

循环流化床气化技术已有较好的基础,在循环流化床中进行生物质气化,气化温度控制在950~1000度,可以获得中值热燃气,同时彻底解决焦油问题,燃气净化后实现燃气内燃机-蒸汽联合循环,发电效率可达30%以上,在此基础上研发加压(30atm)循环流化床生物质气化技术,采用燃气内燃机-蒸汽联合循环,发电效率可达40%。

双床气化技术是采用循环流化床与鼓泡床双床组合技术技术,将生物质燃料送入鼓泡床内,气化热源为循环流化床分离下的高温灰,流化介质为高温水蒸气或气化气。

循环流化床燃烧气化室送来的半焦,产生高温烟气,烟气经分离后进入鼓泡床作为气化室热源,分离后的高温烟气进入余热锅炉,加热蒸汽进行发电。

气化室反应温度控制在650~850度,产生的燃气经气固分离、净化后送内燃机发电,内燃机尾气经余热锅炉吸热后产蒸汽送蒸汽轮机发电。

燃气中焦油通过闭式循环水水洗系统,经有机溶剂萃取后回收焦油,废水采用膜技术处理后达标排放。

4.结论

在各类生物质发电技术中,直燃生物质开发利用已经初步产业化,混烧发电技术的投资经济性最好,其发电经济性决定于原电厂的效率,而且会对原电厂有一定的影响。

生物质气化发电技术的发电规模比较灵活,投资较少,适于我国生物质的特点,但是技术还不成熟。

从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

参考文献:

[1]水电水利规划设计总院和国家可再生能源信息管理中心.中国生物质发电建设统计报告[R].北京:国家可再生能源中心,.

[2]李利文.生物质能发电模式探讨[J].内蒙古科技与经济,(19):71-75.

[3]吴创之,周肇秋,马隆龙,阴秀丽.生物质发电技术分析比较[J].可再生能源, (03):34-37.

[4]高立,梅应丹.我国生物质发电产业的现状及存在问题[J].生态经济,, (08):123-127.

篇2:生物质能并网发电技术发展趋势

现本文主要分析了当前我国的生物制药技术发展现状以及存在的问题,并指出其未来的发展趋势主要是向着产业化发展,从而为我国的医药行业做出更大贡献。

关键词:生物制药技术;发展现状;趋势;产业化

生物制药技术的应用历史已经有五十年左右。

在这近半个世纪的发展中,生物制药技术从最初的简单DNA重组技术发展到今天的抗体工程技术、基因工程技术、细胞工程技术等等多种多样的高新生物制药技术,其为人类的健康所做出的贡献的非常巨大的。

直到今天,生物制药技术依然是国际医学界最重视的高新技术,具有很大的发展前景。

在我国,应用生物制药技术的时间相对较晚,生物制药技术水平也与国际先进水平有着一段差距,但我国目前正在加大生物制药技术的投入,并建立了一定的生物制药产业基地,相信在未来的发展中,我国的生物制药技术必将得到飞速发展。

一、当前我国的生物制药技术发展现状

与美国等西方国家相比,我国在生物制药技术的研究方面相对起步较晚,且在早期受经济、技术以及其他因素的限制,其发展速度较为缓慢。

直到近年来在社会经济、科学技术不断发展的推动下,生物制药技术才得到了较快的发展,目前我国的生物制药技术已经取得了一定的成就,并且生物制药产业也在逐渐形成并不断扩大规模。

现如今我国已经在肿瘤、心脑肺血管、免疫以及内分泌等诸多疾病的药物研制中充分应用了生物制药技术,研发出大批特效新药,为这些疑难病症的治疗技术水平提高提供重要支撑。

但相对来讲,我国当前的生物制药技术水平还是落后与西方等发达国家,且在发展中还是存在着一定的问题与不足,大致可以分为以下几点:

1、新药研发力度不足

在生物制药技术的发展中,我国对新药品的研发力度依然相对较弱,尤其是在经费投入上 ,更是略显落后。

在国外的生物制药技术研究发展中,对研发环节是非常重视的,在研发经费投入方面一般都会占新药销售额的20%以上,而我国则远远达不到这一经费投入标准,且国家相关部门也没有给予足够的监管与引导。

就生物制剂的上市情况来看,我国只有重组人p53腺病毒注射液与IFN-α-1b等药物产品被批准上市,其他的则都是仿制药。

从当前世界范围内的生物制药产品发展来看,最有市场的生物制药将会集中在单克隆抗体、基因治疗药物、疫苗、反义药物和可溶性蛋白等五个方面,由此可见,我国的新药研发力度还远远不能满足生物制药市场发展的多样性需求。

2、融资渠道不通畅

由于生物制药技术产业是一种高新技术产业,在研发初期是需要大量的资金投入才能顺利进行的。

尤其是生物制药产业属于医药产业的范畴,其行业特点更是决定了只有巨大的资本支撑才能推动新药的研制。

而这数量较大的资金需求除了企业自身资本承担部分以外,还可以依靠政府的相关财政补助,但这仍然是远远不够的,还必须要进行一定的融资来为生物制药的发展提供经济保障。

但目前我国生物制药产业的融资渠道相对较少,其所具备的风险和较长的资金回笼周期都使得很多投资者不敢轻易给予投资,这也在一定程度上阻碍了生物制药技术的进一步发展。

3、研发成果转换困难

与生物科学的发展水平相比,我国的生物制药技术水平并不与之成正比,这主要是因为我国的科研成果转化较为困难,使得一些先进的生物科学技术不能很好的转化应用在药品研发生产上,这对于我国生物制药技术的发展来讲是非常不利的。

二、生物制药技术的发展趋势

尽管目前我国的生物制药技术发展进程中存在着诸多问题,但我国目前已经开始将生物制药产业作为重点产业来对待,并给予了高度的重视。

从当前的发展形势来看,我国未来生物制药技术的发展趋势主要体现在以下几方面:

1、 生物制药产业呈现集群式发展

产业集群发展具有明显的发展优势,能够极大地促进产业的快速发展。

生物制药产业作为高科技产业,不仅需要在基础设施、上下游配套产业等方面的支持,还需要同教育培训、专业服务、技术转移中心等相关服务组合在一起,方能发挥高效作用优势。

当前,我国在生物技术产业迅猛发展的浪潮推动下,经过多年的发展和市场竞争,加上政府不失时机地加以引导,我国生物技术、人才、资金密集的区域,已逐步形成了生物医药产业聚集区,由此形成了比较完善的生物医药产业链和产业集群。

这些产业集群对于促进生物制药产业的发展具有重要的作用,使得生物制药整体产业链得到优化,在生产效率方面得到大幅提升。

我国生物制药产业以后仍会朝着这一方面快速发展,政府也将会加大投资力度、重点建设产业集群区,在基础设施、配套服务业、研究开发、服务创新、教育培训和风险投资等方面进行发展和创新,为生物制药产业集群发展提供良好的发展环境。

2、生物医药技术向产业化推进

将生物医药技术从科研转向产业化生产是科研的重要目的,只有将技术转化为生产力,才能使得社会生活水平得到提升。

我国生物医药技术当前很大一部分还停留在科研方面,并没有有效地转换为生产力,这不仅浪费了很多的资源,也使得我国的生产实践跟不上研发,造成了生产的滞后状况。

生物医药技术向产业化推进要求企业通过委托外包策略,建立技术同盟,形成优势互补,使得自身能够专注于自身专长方面,从而能够降低生产成本、提高竞争优势。

我国生物制药公司在未来发展过程中,势必会朝这一趋势发展,通过外包方式进行新药开发,将技术较强的研发内容分包给具备研究实力的小型公司来完成,充分发挥小公司在某些领域的技术优势,共同开发新药,大大提高新药开发效率,使新药研发周期缩短,实现技术与资金互补。

3、生物制药新兴技术将不断应用于产业发展

生物制药产业作为高新技术产业,需要不断进行技术创新,才能不断解决产业发展中存在的问题,并不断满足医药水平提升的要求。

我国通过不断参与国际前沿生物发展课题来提升科研水平,如在人类基因组和功能基因方面参与到国际化发展研究中,并取得了很好的成绩;药物相关基因药理学的研究也取得了很大的发展,对于提高我国基因治疗水平具有重要的推动作用。

生物制药新兴技术的发展将会不断应用到产业发展当中来,从而促进产业技术水平和社会医疗水平的提升。

三、结语

我国生物制药产业具有起步晚,发展滞后的特点,但在国内庞大市场的推动下,我国生物制药产业仍然有着非常良好的发展前景。

再加上我国政府对生物医药领域不断加大的投资力度和政策扶持,未来我国生物制药产业将会成为推动国民经济发展的朝阳行业。

参考文献

[1] 胡显文,马清钧.生物制药产业发展现状与趋势分析[J].生物技术产业,.

篇3:风力发电技术现状及发展趋势

随着能源日益枯竭,环境不断恶化,风能作为一种高效清洁无污染的新能源逐渐引起人们的重视,已成为致力于可再生能源利用国家面对能源危机的共同选择,经过近年的飞速发展,已成为我国三大能源之一,风力发电技术也随之得到迅猛发展。我国幅员辽阔,陆疆总长2万多公里,海岸线1.8万多公里,是一个风力资源丰富的国家[1,2]。近年来,我国的风电产业发展迅速,截至2013年底我国风电新增装机容量16 088.7 MW,同比增长24.1%;累计装机容量91 412.89 MW,同比增长21.4%,新增装机和累计装机两项数据均居世界前列。

大规模风电场并网将会对原有电网的功率传输方向、电网电压、频率、系统稳定性、谐波污染、线路损耗和保护装置等产生不利影响[3],提高风电穿透功率、开展风功率预测、研究低电压穿越和动态无功补偿等技术将会对解决上述问题产生积极作用。基于风能随机性和波动性的特点,加之风电装机容量占电网总容量比例较大时会对电网安全运行产生不利影响,合理协调分配风电场与原有电源之间的出力关系,减小风电场并网对输电网的冲击,使其能向常规电源发展将是构建统一坚强智能电网和分布式电源发电的重要组成部分。本文详细综述了现阶段风电技术发展所面临的难点和研究的热点,并展望了风力发电技术的发展前景及风力发电趋势。

1 主流风力发电机系统

当前风电系统中主要有三大风力发电机型,恒速恒频异步发电机、变速恒频双馈异步和直驱永磁同步发电机。变速恒频系统因桨距角可调,能在较宽的风速范围内保持最佳叶尖速比、最大功率点运行等优良特性已成为当今的主流机型。尤其直驱永磁同步发电机加上全功率变流器拥有更加广阔的发展前景。

1.1 恒速恒频风力发电系统

典型恒速恒频风电系统如图1所示,主要有风力机、齿轮箱、异步发电机及并联电容组成。采用定桨距失速控制的风轮机使异步发电机输出恒定频率的电压,因异步发电机发出有功的同时还需从电网中吸收无功功率,故采用并联电容器组提高电网的功率因数。由于风速随机性和间歇性的特点,恒速恒频系统的风能利用系数较低且输出功率易波动,现已逐渐被变速恒频发电系统所取代。

1.2 变速恒频双馈异步发电系统

双馈异步发电机为当今世界的主流机型,约占总装机容量的80%。与恒速恒频系统不同的是:风力机使用变桨距角控制,不仅可以实现风能的最大利用,且在机组紧急停机时,可将风力机调为顺桨状态,减少风能的捕获,延长机组使用寿命。如图2所示,其定子侧直接与电网相连,转子经过背靠背的双PWM变换器结构实现交流励磁,使定子侧输出恒定频率的交流电,电功率可通过定转子双向通道与电网交换。

1.3 变速恒频直驱永磁同步发电系统

风力机直接与永磁同步机相连,减少了因齿轮箱故障所带来的诸多不便。如图3所示,同步机发出的交流电通过全功率变流器AC-DC-AC实现并网,即机侧变流器将同步机发出的交流电整流为电压恒定的直流电,再经网侧变换器逆变成交流电馈入电网。因电机本身是永磁体不需要电网提供励磁电流,因而节省了励磁及电刷滑环等损耗。但永磁机的极对数较多,导致发电机体积庞大,增加了制造成本和难度。

2 风电场接入电网对电力系统的影响

风电场通常处于电网的边缘,是电网最薄弱的环节。随着风电技术发展,大规模风电场的并入,将改变原有电力系统潮流方向和继电保护配置。进一步深入研究并网风电场对电力系统的影响,具有重要意义。

2.1 风电场并网后改变功率流动的模式

传统电网是电源发出电能经输电线路送至配电网,再由配电网分配到各个负荷,电能是单向传输的。而风电场通常建立在电网的末梢,远离负荷区的风电场并网后,此时的配电网就变成了功率双向流动的电力传输系统,改变了潮流的流动方式,对继电保护的整定产生不利影响[4]。应按双电源或多电源网络考虑保护装置和配置,整定值应躲过风电并网所产生的冲击电流。

2.2 对电网调度的影响

风能的不可控性使其很难像传统能源一样具有良好的可调性和预测性,风电接入电网后,使得系统的备用容量增大。因常规火电机组的投运需要长达几小时,若系统的备用容量不足,则会限制风电场的接入。风电并网常常会出现“削谷填峰”的现象[5],即在高峰负荷期风能很少,而在低谷负荷期风能发电量却很大。这使得电网调度工作具有一定的难度,通常采用储能技术将低谷负荷期的电能存储起来,在高峰期时馈入电网,达到“削峰填谷”的效果[6]。

2.3 影响配电网电能质量

并网后的风电场相当于在配电网上增加了电源,由于风能的随机性和波动性,风电场输出的有功功率也是随机波动,从而引起电压稳定性降低。目前风电系统中多为异步电机,需要从电网中吸收大量无功功率,若无功供应不足,则会引起电网电压下降、闪变等问题。风力发电机组及其并网所使用的电力电子设备还会产生大量谐波污染。通常解决上述问题的设备有并联电容器组、静止无功补偿器(SVC)、静止同步补偿器(STATCOM)、有源电力滤波器(APF)和动态电压恢复器(DVR)等[7,8,9]。

3 风力发电技术几个重要研究问题

风电产业作为最有潜力规模化和商业化的新能源之一,已受到世界各国越来越多的重视。随着装机容量的不断增大,如何将风电场像常规能源那样与电力系统整合在一起则显得尤为重要,由此引发了许多研究问题。

3.1 风电功率预测

风能预测是风力发电技术的一项重要分支,由于风能的随机性和波动性,加之大规模风电场并入系统后对电力系统的稳定性及电能质量产生较大影响,威胁电网运行安全。对风能进行有效的预测,有助于选择风电场址及电网调度分配备用容量。目前风能预测方法有[10,11]:基于数值天气预报(NWP)的预测,即利用数值气象参数对中长期风能预测的一种较为准确方法;时间序列方法,利用一组历史风能数据即可对短期风能进行预测;人工神经网络方法,具有自学习自适应特性,应对非线性较强的模型具有良好的预测效果。风能的预测具有重要意义,将不同的预测方法组合在一起,是未来风能预测的重要发展方向。

3.2 风电场中的电力电子设备及控制技术

现代风力发电技术是基于电力电子技术的快速发展,换句话说电力电子技术为风电事业的发展卯足了劲,如双馈异步发电机转子侧和网侧之间的双PWM变流器、直驱永磁同步发电机定子侧经交-直交变换电路接入电网、基于电压源换流器高压直流输电(SVC-HVDC)的风电场并网技术和为满足低电压穿越所设置的电力电子装置及其控制等。因此,电力电子设备及其控制策略的研究,对于解决风力机转速控制、变流器等所产生的谐波及并网带来的各种问题具有重要意义。

3.3 低电压穿越

低电压穿越(Low voltage ride through,LVRT)在一定范围内上可归纳为:应用电力电子技术解决电网发生故障时,保持风电场在一定时间内不脱网运行,并向电网提供一定的无功功率支持“穿越”这段低电压时间的能力。当电网电压降低时,风电机组通常处于被动式自我保护而从电网中解列,当风电在电网中所占比例不大时是可以接受的。然而,随着风电装机容量的不断增大,若电网故障时仍采取被动式解列运行,则在电网的故障上又加了一个扰动源,严重威胁电网安全运行,甚至导致系统解列。因此,各国分别出台了不同的低电压运行标准。我国规定当电网发生故障时,并网点的电压跌至额定电压的20%,风电机组应能保证不脱网运行625 ms等。目前的解决方案是改进变流器的控制策略、增加Crowbar电路或储能装置[12]。但面对电网中的各种故障,多数方案并不满足低电压穿越的要求,这已成为制约大规模风电并网的瓶颈,对于低电压穿越技术的研究仍将是一个热点话题。

4 风力发电技术的发展趋势

随着世界各国经济的发展,对能源的需求量逐年增大,而风电作为最具有开发前景的新能源和再生能源之一,已成为各国持续关注的焦点。目前风电产业总体发展的趋势如下[13,14,15,16]:

(1)单机从小容量到大容量发展。为提高风能及发电设备的利用效率,减少风电场的占地面积,使风电产业的经济利益最大化,兆瓦级大容量机组已成为发展趋势。

(2)定桨距向变桨距变速发展。风能具有随机性和爆发性的特点,当风速变化时,改变风轮的桨距角使其保持在最佳叶尖速比。以期获得风能的最大利用效率。并且在电网发生故障时,通过调整叶轮桨距角减少风能捕获,以利于机组紧急停机或配合低电压穿越控制策略。

(3)双馈主导,直驱引领。由于双馈风机技术较为成熟、控制性能好、生产成本低等优点,已占据风电市场的主导地位。而与之相比的直驱电机,因减少了齿轮箱带来的故障隐患,提高了运行可靠性,与之相连的全功率变流技术具有良好的低电压穿越能力。因此,直驱风机及其衍生的半直驱风机将引领未来的风电市场。

(4)风电场向常规电厂发展。随着能源的短缺,新能源势必将要代替传统能源。由于风能的不确定性,如何使风电场向常规电厂那样满足电网运行的要求,及具有良好的可控可调性,还有很长的路要走。

(5)陆上发电向海上风力发电发展。随着风电机组单机容量逐渐增大,庞大的体积难以运输和风电场选址困难限制了其在陆地上的发展。海上风能资源极其丰富,风速高、对噪音要求低、大容量机组易于运输等特点,加之VSC-HVDC技术及其构成的多端直流输电技术为海上风电传输扫除了技术障碍,使其成为未来风电的一个重要发展方向。

5 结语

风力发电是可再生能源中发展最快最具规模化的绿色能源,对解决我国能源短缺、环境保护、可持续发展等问题都具有十分重要的意义。本文详细分析了大规模风电场并网对输电网安全稳定运行的影响及其应对措施,探讨了未来风电技术产业向直驱式、大机组、常规能源及近海发展趋势,并指出新一代的柔性直流输电技术将成为解决大型风电基地功率外送瓶颈的最佳方案,值得更加深入的研究。

摘要:介绍了现阶段的三大主流风力机型的应用及其特点,分析了大规模风电场并网对电网安全稳定运行带来的问题:一是改变电网潮流分布,二是对电网调度的影响,三是对配电网电能质量影响。基于当前的风电产业现状给出了风电功率预测、风电场中的电力电子设备及控制技术、低电压穿越等几个研究热点,并展望了未来风电发展前景。

篇4:生物质能并网发电技术发展趋势

生物质能是可再生能源,具有资源面广、对环境影响小等特点,在未来可持续能源系统中占有重要地位。如通过一定的技术手段将蕴藏在生物质中的能量转化成电力,则可使生物质能这一传统能源重新发挥其在人类社会发展中的巨大作用。这一技术就是生物质直燃发电。

现代生物质直燃发电技术诞生于丹麦。上世纪70年代的世界石油危机以来,丹麦推行能源多样化政策。该国BWE公司率先研发秸秆等生物质直燃发电技术,并于1988年诞生了世界上第一座秸秆发电厂。该国秸秆发电技术现已走向世界,被联合国列为重点推广项目。

我国农业人口众多、秸秆资源丰富,可利用秸秆总量达6.4亿吨,但大部分秸秆被农民在田间大量焚烧,既污染环境,又造成可再生资源浪费。以生物质直燃发电产业为龙头,可有效带动上下游相关产业链发展,秸秆发电除提供环境友好型绿色电能、热能外,燃烧后的灰渣还可直接还田或生产复合肥料,对中国新农村建设,减少温室气体排放均具有重要现实意义。

中国国家电网公司旗下的国能生物发电有限公司,引进丹麦先进的生物质直燃发电技术,于2006年12月1日建成投产了中国第一个生物质直燃发电项目——国能单县125MW生物质发电工程,实现了中国大容量生物质直燃发电零的突破。对该项目的成功建设和运行,温家宝总理做出了重要批示:“要鼓励生物质能源的开发和利用,国家电网公司的做法和经验值得重视。”

2007年,中央一号文件明确强调要推进生物质产业发展,指出以生物质能源、生物质产品和生物质原料为主要内容的生物质产业,是拓展农业功能、促进资源高效利用的朝阳产业。为此,中央政府对生物质发电在电网接入、价格、税费等方面都给予了优惠政策。中国在国民经济和社会发展第“十一五”规划中,明确提出建设生物质发电5500MW装机容量的发展目标,提出到2020年生物质发电装机容量达到30000MW,生物质能利用量占到一次能源消费量4%的中期目标。

生物质发电的主要燃料,来源于小麦秸秆、玉米秸秆、稻草稻壳、棉花秸秆、林业间伐及加工剩余物等农林废弃物。秸秆发电变农民在田间无序焚烧,为集中燃烧并发电、造肥,节省了大量煤炭资源,并增加农民收入。以国能单县生物质发电厂为例,该电厂应用1×25MW单级抽凝式汽轮发电机组,配一台130t/h生物质专用振动炉排高温高压锅炉。单县生物质发电厂于2007年全年稳定运行8200多小时,发电2.2亿千瓦时,消耗农林剩余物20多万吨,为农民增加收入5000万元以上。农民生活用能,秸秆燃烧效率仅约为15%,而直燃发电锅炉可将热效率提高到90%以上。

秸秆作为一种可再生能源,在生长和燃烧中不增加大气中二氧化碳量,不但可以替代部分化石燃料,而且还能减少温室气体排放量。据测算,中国可开发的生物质能资源总量近期约为5亿吨标准煤,远期可达10亿吨标准煤。即使按5亿吨标准煤计算,生物质发电可满足中国能源消费量的20%以上的电力,年可减少排放二氧化碳近3.5亿吨,二氧化硫、氮氧化物、烟尘减排量近2500万吨。除此之外,秸秆燃烧产生的灰分还可作为优质钾还田使用,一台2.5万千瓦生物质发电机组年生产达8000吨左右灰分。

篇5:生物质能并网发电技术发展趋势

【摘要】201 2年英固《经济学人》杂志将三维打印 誉为“第三次工业革命的重要标志之..”。5D打印正在引发全球制遣业革命性变革,它与生物技术结合形成了一个重要的分支一生物三维打印。生物三维打印是 5D打印技术研究的最前沿领域,也是5D打印技术中最具活力和发展前景的方向,本文综述了生物三维打印技术的研究现状及发展趋势。

【关键词】生物5D打印;生物医学工程;研究现状;发展趋势;学术论文 1.前言

三 维打印(T hree Dim ensi on P rinting,3DP)正在国内外掀起新一轮研究热潮,引发全球制造业产生革命性变革。2012年 英国《经济学人》杂志誉共为“第三次工业革命的重要标志之一”,并称其为“制造业未来的趋势”。美国《时代》周刊近期将3D打印列为“美国十大增长最快的 工业”。2013年,美国总统奥巴马在新任期内的酋份国情咨文指出美国在新一轮的科研发展中需要大力发展3D打印技术,觉得“3D打印有潜力去改变现有制 造事物的方式”。2013年7月习近平主席在考察东湖高新区时指出:“这个技术(3D P)很重要,要抓紧产业化。”

生 物三维打印(Bio-3DP)是三维打印技术的一个分支,它是在三维打印技术在生物医学领域中的交叉应用。生物三维打印是以生物材料或活细胞进行三维打 印,以构建复杂生物三维结构,如个性化植入体、可再生人工骨、体外细胞三维结构体、人工器官等。它是目前3D打印技术研究的最前沿领域,也是3D打印技术 中最具活力和发展前景的方向。

2000年在德 国Freiburg大学召开了“快速成型技术在生物医学的应用研讨会”,会上首次探讨了以3D打印技术为基础的组织工程支架和器官打印技术的发展。此后,以组织器官修复与重建为目的,国际上开发了各种生物3D打印技术包括用于组织工程支架构建的熔融挤出技术;基于喷墨技术的细胞打印,细胞和细菌的激光直写 t细胞和细菌的微接触印刷等。

2. 生物三维打印技术引发新一轮研究热潮

被誉为“第三次工业革命的重要标志之一”的3D打印,正在迅速发展成为生物医学工程中的一项热门研究技术,其相关研究已在国内外掀起新一轮研究热潮。目前国内各级部委,科研院所、企业、医院、投融资机构等已充分意识和重视到该技术的重要意义和诱人前景。

2013 年8月22日,在北京市科委的支持下,北京新材料发展中心组织召开了“北京生物三维打印前沿技术研讨暨成果对接会”。清华大学、北京工业大学、北医三院、等3O余家科研院所、企业、医院、投融资机构参加了此次研讨。与会专家就生物三维制造技术现状、发展及前景展望做了专题报告,并认为我国在生物医学领域的 长足发展,及制造领域的传统优势资源与生物三维打印技术结合,具有发展生物三维打印技术及相关产业的优势。

2014 年1月l7日,由中国生物材料学会主办、清华大学承办的„生物三维打印高层论坛”在清华大学紫光国际交流中心成功召开。国家科技部社会发展司、国家工信部 装备司、国家食品药品监督管理总局相关领导、两院院士(5位)、以及国内多所知名高校、科研机构学者、专家和企业界人士近80人参加了此次论坛。专家们一 致认为生物三维打印将成为支撑第三次产业革命中生物材料与产业发展的关键技术,生物三维打印技术的兴起和发展必将为我国的生物医学工程及相关产业链发展带 了新一轮的增长点和机遇!

生物三维打印技术的巨大潜力,同时引起了欧美等发达国家的重视。欧盟委员会在《制造业的未来:2015-2020战略报告》中提出将重点发展生物材料、仿生材料和人工假体制造技术,并将生物技术列为支撑制造业未来发展的四大学科之一。

美 国在(2020年制造技术的挑战》中将生物制造列为l1个主要发展方向之一。当前,由美国国家科学基金会(N SF)和美国国家健康研究院(N IH)已 经联合启动开展了与生物三维打印有关的5项重点科研计划。2009年由美国国家科学基金会和美国南卡罗来纳州(South C aroli n a State)总投资四千万美元共同资助的南卡罗来纳州器官生物制造研究计划。

3.生物3D打印技术的应用及发展趋势 生物3D打印包含的内容十分广泛,但可以根据所成形材料的生物学性能不同,将生物制造技术分为四个层次的应用:

(1)个性化体外模型制造:材料为无需生物相容性的工程材料,主要制造个性化体外器官模型、仿生模型等,用于手术规划、假肢设计、测试标准等。

(2)个性化植入体制造:材料为具有优良生物相容性,不降解材料,如:钛合金、聚氨酯等,可制造人工假肢植入物,用于人工器官、整形等。

(3)可降解组织工程支架制造:材料为既具有优良生物相容性,又能被生物降解的材料,如:胶原、聚乳酸等,可制造各种组织工程支架,应用于组织再生与修复等。

(4)细胞三维结构体的人工构建:材料为活细胞及其外基质材料,如:肝细胞一明胶、干细胞一纤维蛋白原等,用于构建三维细胞结构体,体外三维细胞模型及组织或器官胚体等。

这 四个层次是生物3D打印所提供的具体生物材料成型应用手段,对生物医学领域的基础研究、药物开发和临床应用都具有重要的促进作用。它们的应用研究预示着生 物3D打印必然将向更高层次、更为复杂的生物材料、生物组织、生物器官构建发展。其研究的发展趋势及重点预计包含以下几方面:

(1)细胞3D打印,即通过生物3D打印对细胞进行受控组装。高效单细胞精确打印技术、材料与细胞共打印技术、三维培养(生物反应器)技术等预计将会成为细胞3D打印的发展重点。这些技术是生物3D打印得以实现和满足生物学要求的核心。

(2)个性化组织工程支架和植入体打印。典型的需求应用如骨植入体的个性化仿生打印。在美国,骨修复材料市场每年超过200亿美元,这是一个需要高度个性化订制的生物医学材料产品。通过生物3D打印有望很好地实现患者骨缺损的个性化治疗。

(3)生物活体组织,器官构建。在组织器官解剖结构模型指导下,通过生物3D打印定位装配细胞、材料单元,制造组织或器官前体。通过构建的活体器件,这些定位组装的细胞自发的迁移、扩散、自组织进而形成了一个活体器官。

(4)药物研发领域的生物模型打印。药物的开发产业是一个投入非常大,但是成功率很低的产业。201 1年美国制药工业协会新药研发投入约为674美元,而其中 光辉瑞一家就投资了94tL美元,然而真正原创型新药的开发速度很慢,其瓶颈问题在于新药开发需要高通量的筛选过程。生物3D打印技术有望构建人工的组织 器官,用以进行有效的药物筛选。如打印类肝组织模型,代谢综合症模型等将是生物3D打印重要发展方向。

4结论

篇6:生物质能并网发电技术发展趋势

与世界上一些发达国家的生物制药业相比较下,我国的生物制药工业起步还是比较晚的,发展也相对而言比较滞后。不过,我国的市场非常的庞大和完善,在这种背景的影响下,我国生物制药业也将会面临着可观的发展前景。另一方面,政府一直关注在生物制药这一领域,并给于了政策和经济上的扶持。所以,未来我国的生物制药业将会是国家经济发展的非常重要的行业。在传统的发展情形中,我国生物制药业已经取得了相当好的成绩。但是,目前正处于一个发展平稳期,所以目前的问题是我国生物制药业面领着一个非常严峻的考验,若想突破这一瓶颈,得到更加美好的发展,就应该乐观的面对这样的考验,对问题进行深度和广度的研究,并解决问题。也只有这样,我国生物制药行业才会取得更加美好的成绩。

2 生物制药的原理和技术

对于“生物制药”这一名词,或许大家会感到陌生,简单的理解,就是利用生物的活体进行生产药物的方法。有时候也可以利用转基因的动物或植物的活体来作为反应器,进而加工药物。比如利用转基因的玉米活体来作为生物反应器,生产人源抗体。但是生物制药具体指,用微生物学,医学,化学,生物学等不同学科领域所包含的原理和技术方法,来制造出能够治疗,诊断或者预防的药物产品。之所以大家对生物制药感到陌生是因为生物制药是一种新的技术,不过生物制药行业的发展非常迅速,规模也在逐渐扩大。生物制药的发展已经经历了半个世纪左右,在这几十年的发展中,生物制药技术组成是DNA重组,现在是抗体,基因工程和细胞工程,为人类的健康做出了非常大的贡献。到目前为止,生物制药依然是医学领域最高的技术水平,未来会有非常好的发展空间。我国的生物制药技术起步相对比较晚,因此与国际的领先水平存在着一定的差距,但我国正在加大这个领域的投入,并且建立生物制药基地。以我国目前的药物生产情况来看,将近百分之五十以上的药物属于生物制药,生物制药简单的操作和高效率,经济成本低的特点将会有良好的市场发展空间。

3 生物药物的分类

基因组和蛋白质组等研究计划陆续启动。这将会给生物制药业带来强大的发展动力。世界各国非常重视,并不断地将生物制药业作为自己国家经济发展的增长点。其实生物制药技术不仅仅依赖于生物学自身的发展,它是依赖于众多学科的存在,许多相关领域的发展将会影响到生物制药技术的发展。目前世界生物技术的发展非常迅速,人们无法预测生物技术的未来发展和走向。第一代生物制药技术是天然产物,第二代重组药物是到白质工程组成的新的重组药物。

4 生物制药技术的发展状况

与西方一些发达国家相比,我国对于生物制药技术的研究和发展起步是相对比较晚的,早期的中国受到经济和技术等众多因素的影响限制,它的发展变得非常缓慢。直到近些年来我国的经济和技术正在逐渐的发展和提高,在这种发展状况的有利推动下,生物制药技术得到了较快的发展,在生物制药技术领域取得了很好的成绩,并有所成就,生物制药业的规模正在逐渐的扩大,现如今免疫和内分泌等许多疾病也是通过生物制药技术研究药物,为患有这些疑难杂症的患者带来了福音。但相对来讲我国的生物制药技术依然和发达国家有一定的差距,而且在发展过程中存在许多问题和缺点,可以分为以下几点:

4.1 新药研发力度不足

在生物制药的发展过程中,我国在众多方面的研究力度依然是比较不足的,比如在经济方面,支持力度不够,经费欠缺,在这方面明显与西方国家有一定的差距。在一些西方国家进行生物制药发展过程中,技术人员对研发环节相当重视,会将大量的资金投入到研发当中,一般投入的资金将会占到整个生产过程中的20%甚至更高,但是我国的经费投入远远达不到这一水平,而且有关部门对这一领域不是很重视,没有足够的监管和引导。在目前上市的情况来看,我国只有某些药物产品被允许上市,其他的都是仿制品。从目前国际上的生物制药产品来看,左右市场竞争力的便是单克隆抗体和疫苗等。因此,就目前来看,我国的制药研发力度还是远远不能够满足市场的需求。

4.2 融资渠道受到阻碍

由于生物制药技术是对新药物的研究,所以在研发阶段就需要进行大量的资金投入,如果没有这些足够的经费将会阻碍生物制药技术的发展。由于生物制药行业属于医学领域,这就标志着他的特点就是需要有巨大的资金投入来支撑制药的前期阶段,才能够推动研发技术的发展和药物的研制。这部分较大的资金投入一部分是需要公司自己来承担的,但是依然还需要政府的相关补贴,其实这还远远不够,需要通过融资的手段来提供这么巨大经济保障。但是就目前的情况来看,我国的生物制药技术的融资渠道不是很多,原因是将会面临较大的风险和资金周转问题,所以许多投资者不会轻易的对这些制药公司进行资金投入,这在一定的程度上阻碍了我國的生物制药技术。

4.3 研究成果转换问题

篇7:风力发电研究现状及发展趋势

摘要:本文首先针对风力发电与其他能源的优势进行对比;接着阐述我国风力发电产业的研究现状;再对我国未来风力发电发展趋势进行了分析。

关键词:风力发电;可再生能源;现状;趋势

The Status and Development Trend of Chinese Wind

Power Abstract: The wind power generation and the Other forms of energy are compared;The status of wind power in China are introduced;Our future wind power status are analyzed.Key words: wind power;renewable energy;present situation;status

引言

风能是由地球表面大量空气流动所产生的动能。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同从而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。

随着世界经济规模的不断增大,世界能源消费量持续增长。能源危机的阴影正日益困扰着人类的生产和生活,世界上越来越多的国家也认识到,一个能够持续发展的社会应该是一个既能满足社会的需要,而又不危及子孙后代前途的社会

[1]。节约能源,提高能源利用效率,尽可能多地利用洁净能源替代高含碳量的矿物燃料,已成为世界利用能源的主题。近年来,人们已经逐渐认识到风力发电在减轻环境污染、调整电网中的能源结构、解决偏远地区居民用电问题等方面的突出作用,无论从调整电网结构,还是从商业化方面都促使人们开始重视发展风力发电[2]。

1风力发电与其他能源相比较有以下几方面的优势

1.1全球拥有丰富的风能资源

风的产生式由于地球表面上的大气受到太阳辐射引起部分空气的流动,是太阳能的一种转化形式,风能是地球与生俱来的资源。世界拥有巨大的风能资源。据估计,世界风能资源高达每53万亿千瓦时,预计到 2020年全球电力需求会上升至年25578万亿千瓦时, 也就是说全球风能资源是世界预期电力需求的2倍[3]。

1.2风能是可再生的清洁能源

风能是不需要开采、运输、不产生任何污染的清洁可再生能源。而且1台单机容量1000千瓦的风机与同容量火电装机相比,每年可减排二氧化碳2000吨、二氧化硫10吨、二氧化氮6吨。仅2007年, 全球940亿瓦风机容量就将减少

[4]二氧化碳排放12200万吨,相当于20个大型燃煤发电站的排放量。

1.3风机建造周期短、运行和维护成本低

风力发电和其他发电方式相比,建设周期一般很短(1台风机的安装时间不超过3个月),1个50万千瓦级的风力发电厂建设期不到1年,而且安装1台投入运行1台,装机规模灵活。目前风电厂造价为 8000-9000元/千瓦,其中,机组(设备)占75%,基础设施占20%,其他为5%;风能利用小时数在2700-3200小时/年,其风电成本约0.45-0.6元/千瓦时。风电机组的设计寿命一般为20-25年,其运行和维护费用一般相当于风电机组成本的 3%-5%[5]。

1.4风力发电占地少,现场所需人员少

风力发电相关建筑仅占风力发电场约7%的土地,其余场地仍可供其他产业使用;可以灵活地建设在山丘、海边、荒漠等地[6]。风电厂建成后,现场几乎不需要运行人员,可进行远程控制操作。中国风电发展的现状

2.1中国风力资源分布情况

我国风能资源比较丰富。根据全国第2次风能资源普查结果,中国陆地风能离地面10米高度的经济可开发量2.53亿千瓦, 离地面50米估计可能增大一倍。近海资源估计比陆地上大3倍,10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦

[7]。

我国的风力资源主要分布在两大风带: 一是三北地区(东北、华北和西北地区)。包括东北3省和河北、内蒙古、甘肃、青海、西藏、新疆等省区近200千米宽的地带, 可开发利用的风能储量约2亿千瓦, 约占全国可利用储量的79%。该地区风电场地形平坦, 交通方便, 没有破坏性风速, 是我国连成一片的最大风能资源区, 有利于大规模地开发风电场。二是东部沿海陆地、岛屿及近岸海域。冬春季的冷空气、夏秋的台风, 都能影响到沿海及其岛屿, 是我国风能最佳丰富区, 年有效风功率密度在200瓦/平方米以上。如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等, 可利用小时数约在7000至8000小时。这一地区特别是东南沿海,由海岸向内陆丘陵连绵, 风能丰富地区仅在距海岸50千米之内。另外, 内陆地区还有一些局部风能资源丰富区[8]。

从上述风力资源分布情况来看, 中国有相当大的地区有着丰富的风能资源, 具有很大的开发利用价值, 商业化、规模化的潜力很大。

2.2 风电场发展迅速,建设规模不断扩大

我国的风力发电始于20世纪50年代后期,在吉林、辽宁、新疆等省建立了单台容量在10kW以下的小型风力发电场,但其后就处于停滞状态。到了20世纪70年代中期以后,在世界能源危机的影响下,特别是在农村、牧区、海岛等地方对电力迫切需求的推动下,我国的一些地区和部门对风力发电的研究、试点和推广应用又给予了重视与支持,但在这一阶段,其风电设备都是独立运行的。直到1986

年,在山东荣城建成了我国第一座并网运行的风电场后,从此并网运行的风电场建设进入了探索和示范阶段,但其特点是规模和单机容量均较小。到1990年已建成4座并网型风电场,总装机容量为4.215兆瓦,其最大单机容量为200千瓦。在此基础上,风力发电从1991年起开始步入了逐步推广阶段,到1995年,全国共建成了5座并网型风电场,装机总容量为36.1兆瓦,最大单机容量为500千瓦。1996年后,风力发电进入了扩大建设规模的阶段,其特点是风电场规模和装机容量均较大,最大单机容量为1500千瓦[9]。据中国风能协会最新统计,2007年中国除台湾省外新增风电机组3,144 台。与2006 年相比,2007年当年新增装机增长率为145.8%,累计装机增长率为126.6%。2008年又新增风电装机容量630万千瓦,新增容量位列全球第2,仅次于美国.截至2008年底总装机容量达到1215.3万千瓦,同比增长106% ,总装机容量超过了印度,位列全球第4,同时跻身世界风电装机容量超千万千瓦的风电大国行列.2007年中国除台湾省外累计风电机组6458

[10]台,装机容5890兆瓦。截至2010年底,我国新增风电装机1600万千瓦,累计装

机容量达到4182.7万千瓦,均居世界第一,其中3100万千瓦装机实现并网发电。目前,甘肃酒泉、蒙东、蒙西、东北、河北、新疆、江苏、山东等多个千万千瓦风电基地正有序推进,蒙西和甘肃酒泉风电基地装机均超过500万千瓦,河北、吉林等多个地区装机超过250万千瓦。上海世博会期间,上海东海大桥10万千瓦海上风电场并网发电,成为除欧洲之外世界上第一座海上风电场。随后,总规模100万千瓦的海上风电特许权项目也在江苏启动。2010年,风电发电量达到450

[11]亿千瓦时,比上年增长63%。

2.3 国家及政府有关部门重视和支持风力发电

风电的迅速发展与国家的政策扶持密不可分。“十一五”时期,我国陆续出台了《可再生能源法》、《关于风电建设管理有关要求的通知》及《可再生能源中长期发展规划》等一系列配套政策和实施细则,这些政策不仅为风电长远发展提供了法律保障、政策支持,也明确提出了装备先行、市场化的发展战略。截至目前,风电企业享受所得税“三免三减半”、“增值税减免50%”、“即征即退”等一系列优惠政策。除了国家推出的标杆电价外,部分省份还另外推出风电补贴,[12]山东、广东的风电上网电价均高于国家标杆电价。

2.4 专业队伍和国产化水平逐渐提高

风力发电的“装备先行”战略使风电快速发展[13]。据统计,2004年全国装机的风电设备中,进口设备占90%,2010年全国装机的风电设备中国产设备占90%。随着国内风电市场的发展,有10余家风电设备制造企业实现了规模化生产,华锐、金风等7家制造企业已经跻身2010年世界风电设备制造15强,其中华锐风电已经跃居世界第二。经过多年的技术积累和资本投入,国内风电设备生产水平不断提高,兆瓦级风机等科技难关被相继攻克。

风电设备的国产化,带动了国内风电技术水平和运营质量的快速提升。目前,国内风电机组普遍采用当今世界主流技术,世界领先的3兆瓦机和海上风电项目均在国内落户。单位千瓦造价已从“十一五”初期的7000元左右降到4000元以

[14]下,降幅达40%。

2010年全国累计风电装机容量已突破40000兆瓦,海上风电大规模开发正式起步。国内风电市场竞争形势日趋激烈,使得企业在满足国内需求的基础上,积

极拓展海外市场。中国风力发电行业发展前景广阔,预计未来很长一段时间都将保持高速发展,同时盈利能力也将随着技术的逐渐成熟稳步提升。“十二五”期间,我国风电产业仍将持续每年10000兆瓦以上的新增装机速度,风电场建设、[15]并网发电、风电设备制造等领域成为投资热点,市场前景看好。

3全球风力发电的趋势

风力发电是一种主要的风能利用形式,风力发电已经开展了多年,随着能源环境的变化和风力发电产业的成熟,未来几年风力发电将呈现新的趋势。

3.1风力发电投资成本降低

风力发电相对于太阳能、生物质等可再生能源技术更为成熟、成本更低、对环境破坏更小。在过去20多年里,风力发电技术不断取得突破,规模经济性日益明显。

根据美国国家可再生能源实验室NREL的统计,从1980年至2005年期间,风力发电的成本下降超过90%,下降速度快于其他几种可再生能源形式[16]。根据丹麦RIS国家研究实验室对安装在丹麦的风力发电机组所进行的评估,从1981~2002年间,风力发电成本由15.8欧分/千瓦时下降到4.04欧分/千瓦时,预计2010电成本下降至3欧分/千瓦时,2020年降低至2.34欧分/千瓦时[17]。

随着风力发电技术的改进,风力发电机组将越来越便宜和高效。增大风力发电机组的单机容量就减少了基础设施的投入费用,而且同样的装机容量需要更少数目的机组,这也节约了成本。随着融资成本的降低和开发商的经验丰富,项目开发的成本也相应得到降低。风力发电机组可靠性的改进也减少了运行维护的平均成本。总体上,风力发电成本将得到大幅降低[18]。

3.2风力发电国产化必要性

实现风力发电技术装备国产化的目的是提高我国风力发电装备的制造能力和技术水平,降低风力发电成本,提高市场竞争能力,为推动我国风力发电技术大规模商业化发展奠定基础。加大风力发电机组的国产化力度,一方面可为风力发电场建设采用国产设备提供优质廉价的选择;另一方面,也可迫使国外同类企业在参与我国市场竞争时大幅度降低产品价格。风力发电技术装备国产化的指导思想是以市场为导向,以工程为依托,在引进消化吸收国际先进技术的基础上,进行创新提高,开发具有自主知识产权的风力发电设备[19]。

风力发电国产化水平日益提高,如全部实现风力发电机组国产化,预计可降低风力发电机组成本30%,在不改变其它条件的前提下,可使风力发电成本降至0.332元/千瓦时。为此,国家必须加大科研开发投资力度,在目前条件下以风力发电场建设投资1.5%-3%的比例支持我国的风力发电技术科研开发和国产化是适宜的[20]。其重要意义不仅仅在于降低风力发电成本,还将推动我国风力发电机组产业的形成,利用我们的优势走向国际市场。

3.3海上风力发电将成为风力发电的新视点

海上有丰富的风能资源和广阔平坦的区域,使得近海风力发电技术成为近来研究和应用的热点。多兆瓦级风力发电机组在近海风力发电场的商业化运行是国内外风能利用的新趋势。

国际上,到2003年末,围绕欧洲海岸线的海上风力发电总装机已达到600兆瓦,其中大部分都集中在丹麦、瑞典、荷兰和英国。目前最大的海上风力发电场是位于丹麦南海岸的Nysted风力发电场,容量为165.6兆瓦,由72台Bonus2.3兆瓦海上风力发电机组组成,于2003年12月开始发电。到2010年,欧洲海上风力发电的装机容量已达到10000兆瓦。海上风速大且稳定,年利用小时数可达到3000小时以上。同容量装机,海上比陆上成本增加60%,电量增加50%以上。随着风力发电的发展,陆地上的风机总数已经趋于饱和,海上风力发电场将成为未来发展的重点。海上发电是近年来国际风力发电产业发展的新领域。[21]

海上风能资源储量远大于陆地风能,储量10米高度可利用的风能资源超过7亿千瓦,而且距离电力负荷中心很近。目前上海已开始海上风力发电项目的建设,到2010年,上海的风力发电总装机容量将达到200-300兆瓦[22]。为达到这一目标,第一座长距离跨海大桥东海大桥两侧将建成内地首个海上风力发电场。随着海上风力发电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源。

3.4大型发电机组是风力发电必然的趋势

随着现代风力发电技术发展的日趋成熟,风力发电机组正不断向大型化发展。2002年前后,国际风力发电市场上主流机型已经达到1500千瓦以上。目前,欧洲已批量安装3600千瓦风力发电机组,美国已研制成功7000千瓦风力发电机组,而英国正在研制巨型风力发电机组。目前风力发电机组的规模一直在不断增大,国际上主流的风力发电机组已达到2-3兆瓦。国家2008年7月发改委共核准了222.45万千瓦大型风电项目,是2007年底全国累计装机600万千瓦的[23]37%。

大体上大型风力发电机组有两种发展模式。陆地风力发电,其方向是低风速发电技术,主要机型是2-5兆瓦的大型风力发电机组,这种模式关键是向电网输电。近海风力发电,主要用于比较浅的近海海域,安装5兆瓦以上的大型风力发电机,布置大规模的风力发电场,这种模式的主要制约因素是风力发电场的规划和建设成本,但是近海风力发电的优势是明显的,即不占用土地,海上风力资源较好[24]。

4结论

风力发电具有既能保证能源的有序利用,又能战胜全球气候变化,更有利于全球的环境资源保护的优点。通过对我国风能资源及利用状况的调查,我国的风能开发和利用已经进入一个崭新时期,尤其是小型风机的生产和应用已经相当广泛,效果也非常不错,并且前景非常广阔。我们要充分有效地利用风能这种可再生、无污染、环保节净的自然资源,通过致力于风力发电的技术创新与科研开发,使我国的风力发电得到长足发展,使风电在我国得到更加广泛的应用。

参考文献:

[1] 刘宝兰,文华里.世界风力发电现状与前景[J].能源工程,2000,(4):12-14.[2] 宋正良.世界风力发电发展概况[J].上海大中型电机,2004,(2):1-3.[3] 黎发贵,郭太英.风力发电在中国电力可持续发展中的作用[J].贵州水利水电,2006(2):7-12.[4] 李俊峰,高虎,马玲娟.我国风力发电现状和展望[J].中国科技投资,2007,(11):1-7.[5] 严陆光.力促大规模非水可再生能源发展[J].山西能源与能,2009(5):1-3.[6] 杨磊.浅析风力发电可持续发展[J].应用能源技术,2007(9):33-34.[7] 李贤明,张霄,刘红雷,等.浅谈我国风力发电产业的现状和市场前景[J].上海大中型电机,2006,(3):1-4.[8] 邓杉杉.我国风电发展的现状、问题与对策研究[D].西南交通大学(成都),2006.[9] 郑源,张德虎.风力发电机组控制技术[M].北京:中国水利水电出版社,2009:33-41.[10] 施鹏飞.2008年国内外风电持续快速发展[J].可再生能源,2009,27(2):6-10.[11] 李俊峰,高虎,王仲颖,等.2008 中国风电发展报告[M].北京:中国环境科学出版社, 2008:7-17.[12] 王玉萍,赵媛.对我国风电电价政策的分析与建议[J].电力需求管理,2007,(06):13-19

[13] 吴庆广.中国风力发电公司融资模式探讨[J].环境科学与管理,2008,(01):5-9.[14] 赵子健.促进风电产业发展的政策分析[D].上海交通大学(上海),2009.[15] 宋艳霞.我国风电产业发展的财税支持政策研究[D].财政部财政科学研究所(北京),2010.[16] 王素霞.国内外风力发电的情况及发展趋势[J].电力技术经济,2007,19(1):29—31.

篇8:浅谈风力发电技术未来发展趋势

关键词:电力,技术风力发电,发展趋势

1 我国风力发电技术的现状

我国风力资源非常的丰富, 但是, 对于风力资源的利用还是远远不够, 只要能够利用好风力进行发电, 就会给人们的日常生活带来很多方便。随着我国科学技术的不断发展, 风力发电技术已经得到了广泛的应用。我国的风力发电具有以下几个特点:第一, 我国风力发电技术的规模在不断的扩大, 同时风力发电在我国电力资源中的比例也不断在增加。第二, 风力发电的技术也需要进行不断的完善, 进而保证风力发电的应用更加的广泛。第三, 由于海上发电具有风力稳定、风速快和发电量大等优势, 海上风力发电的使用也越来越广泛。第四, 由于风力发电需要的成本相对较高, 在我国实现大规模的风力发电还有一定的难度。以上就是我国风力发电技术的基本现状, 我国的风力发电技术还不是很成熟。但是, 国家对风力发电技术的发展非常重视, 因而我国风力发电技术具有非常广泛的使用前景。

2 风力发电技术主要技术的应用

近年来, 风力发电的市场不断在完善, 并且风力发电被应用的领域也越来越广, 因此, 风力发电现在已经成为我国发电行业中的主要发电形式。为了更好地利用我国的风力资源进行发电, 风力发电机的使用非常重要, 现在使用最广的是可变速涡轮发电机, 主要是由于这种发动机能够获得的能量较多, 并且它更加容易被控制。随着我国电子高技术的快速发展, 采用电子计算机技术控制发电的技术得到了迅速的发展, 并且具有发电质量高和与各电网的兼容性好等优点。所以, 可变速涡轮发电机在我国进行风力发电的过程中使用得到了极大的发展。由于我国对风力发电主要技术的掌握还不是很完善, 即使国家和相关行业的人员都投入了大量的人力和物力进行研究, 但是风力发电技术还存在一定的问题。不过随着风力发电技术的不断发展, 这些技术上面的问题一定会被解决。

3 风力发电技术的发展趋势

3.1 大功率中压变流器

目前, 为了更好地利用风力进行发电并且提高发电的效率, 大功率中压变流器的使用不断在增加。一般情况下, 大功率中压变流器主要有以下几个优点:第一, 大功率中压变流器具备双向开关接口。第二, 大功率中压变流器具备多元三项逆变器。第三, 大功率中压变流器具备二极管箱位的多电平结构。大功率中压变流器由于各处配件的功率不断提高, 并且它的优点越来越被认知, 同时大功率中压变流器也被广泛使用。当然, 风力发电的优劣主要是由电力系统的开关耗损多少所决定的, 因此, 当电力系统的开关频率低的时候, 电力系统的损耗也小。由于大功率中压变流器具有许多较大的优势, 而被广泛应用于我国的风力发电行业。

3.2 用于风电场的储能技术

当前, 我国风电场的储能技术已经发展的比较完善了, 主要是由于风电场储能技术能够有效地实现更加经济的风力发电, 并且储能技术对于维持电压的稳定非常有帮助, 因此, 我国风电场的储能技术受到了广泛关注。在风力发电的系统中, 可以使用多种形式的储能系统, 现在使用最广泛的是蓄电池储能系统。蓄电池储能系统具有充放电速度较快的优点, 但是, 它也存在一个明显的缺点, 那就是它的放电速度会受到蓄电池类型的影响。为了进一步减少风电场的储能的成本, 我国很多研究者加大了对蓄电池储能系统技术研究。因此, 蓄电池储能技术的使用是目前风力发电的趋势, 并且会随着技术的不断成熟, 其应用的范围会更加的广泛。

3.3 海上风力发电

当前, 我国利用风力发电的主要趋势还包括对海上风力的利用, 我国的海上风力资源非常丰富。当然, 利用海上风力发电也存在一定的缺点, 那就是将发电机安装离海岸较远的海域还比较的困难, 并且安装发电设备的成本还比较的大, 离海岸近的海域又存在风力不够等诸多的问题。为了能够更好地解决这个问题, 目前采用最多的方式是将空气流通产生的热量用来调节发电系统, 同时使用高压电直流系统, 这样就能将电能安全地输送到用电中心。高压直流电技术具有以下几个优点:第一, 在离海岸远的海域安装发电设备与大陆是相互隔离的。第二, 海上风力发电的电缆功率损耗电量较低。第三, 电力系统的接受端和发送端是相互独立的。第四, 单位个数的电缆的传输电量的能力较好。第五, 电力系统的流量是一定的并且容易控制。第六, 电缆所负荷的电流量对直流电的传输距离没有直接影响。

4 结语

总而言之, 我国对风力发电的技术的现状还不容乐观, 并且还有很大的发展空间, 同时, 我国风力发电的技术还比较单一化。我国风力发电正在朝向较好的趋势发展, 随着科学技术的不断发展, 风力发电将会变得更加的普遍, 并且随着大规模的风力发电系统被广泛的使用, 风力发电的成本也会进一步降低。所以说, 风力发电技术对于我国的经济发展有着至关重要的作用。因此, 现阶段研究风力发电技术未来发展趋势具有非常重大的现实意义。

参考文献

[1]张永莲.概论风力发电发展的现状与趋势[J].民营科技, 2012 (10) :66.

[2]吴广龙.浅谈风力发电的技术现状与发展趋势[J].科技纵横, 2013 (26) :29.

上一篇:简单的秋作文下一篇:情景剧策划书我院