抽屉原理的应用

2024-08-19

抽屉原理的应用(精选6篇)

篇1:抽屉原理的应用

抽屉原理及其应用

张 志 修

摘要:抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。

关键词:代数 几何 染色 存在性

引言

抽屉原理最早是由德国数学家狄利克雷发现的,因此也叫狄利克雷重叠原则。抽屉原理是一条重要的理论。运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。

抽屉原理的内容

第一抽屉原理:

原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的nkk1,这不可能。

原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m1个或多于m1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉

至多放进mn个物体,与题设不符,故不可能。

原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。.原理1 2 3都是第一抽屉原理的表述 第二抽屉原理:

把mn﹣1个物体放入n个抽屉中,其中必有一个抽屉中至多有mn﹣1个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

一、应用抽屉原理解决代数问题

抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题,它易于接受,在数学问题中有重要的作用。

1、整除问题常用剩余类作为抽屉。把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用0,„,2,1,m﹣1表示。

例1:对于任意的五个自然数,证明其中必有3个数的和能被3整除。

证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:

0,1,2

①若这五个自然数除以3后所得余数分别分布在这3个抽屉中

(即抽屉中分别为含有余数为0,1,2,的数),我们从这三个抽屉中各取1个(如1到5中取3,4,5),其和34512 必能被3整除。

②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数。

③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除。

2、还有的以集合造抽屉

例2:从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

分析与解答:在这12个自然数中,差是7的自然数有以下5对:12,5 11,4 10,3 9,2 8,1。另外,还有2个不能配对的数是6 7。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为12,5 11,4 10,3

9,2 8,1 6 7,显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7。

二、应用抽屉原理解决几何问题

利用分割图形的方法构造抽屉

本方法主要用于解决点在几何图形中的位置分布和性质问题,通常我们把一个几何图形分割成几部分,然后把每一部分当做一个“抽屉”,每个抽屉里放入相应的元素。

例3:已知边长1为的等边三角形内有5个点,则至少有两个点

距离不大于1/2。

证明:用两边中点的连线将边长为1的等边三角形分成 四个边长为1/2的等边三角形,若规定边DE、EF、FD上的 点属于三角形DEF,则三角形ABC内的所有点被分为 4个全等的小等边三角形,由抽屉原理,三角形内的任意5个点至少有2个点属于同一小等边三角形,由“三角形内(包括边界)任意两点间的距离不大于其最大边长”知这两个点距离不大于1/2。

抽屉原理与中学数学的关系,常用抽屉原理的最值的思路解中学数学题。

例4:用柯西不等式及二元均值不等式证明了如下三角不等式: 在△ABC中,有sin2Asin2Bsin2C.证明:由抽屉原理知sinA,sinB,sinC中必有两个不大于或不小于3294,不妨设sinA33,sinB22或sinA33,sinB22则[sin2A(323)][sin2B()2]0,故 2243sin2Asin2Bsin2Asin2B

34于是

43sin2Asin2Bsin2Csin2Asin2Bsin2C

344cos(AB)cos(AB)23]sin2C =[32413(1cosC)21cos2C 34219(cosC)2 3249 4

三、应用抽屉原理解决染色问题

染色问题是数学中的重要内容之一,也是深受广大师生喜爱的的题目类型之一。染色问题是借用图论的思想心提高解决问题的能力,所涉及的各科数学知识都不是很难,但染色法解数学问题技巧性非常强,而且解题的途径都比较独特,难度往往在于寻求解决问题的关键所在或最佳方法.

平面染色问题为点染色或线染色问题。通常是根据各个物体所存在的状态,将它们的状态看作抽屉原理中的“抽屉”和“元素”,从而来解决问题的。

(1)点染色问题

例5:将平面上每点都任意地染上黑白两色之一。求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色。

证明:在这个平面上作一个边长为1的正三角形。如果A、B、C这三点同色,则结论成立,故不妨设A和B异色。以线段AB为底边,作一个腰长为2的等腰ABD。由于点A和B异色,故无论D为何色,总有一腰的两个端点异色。不妨设点A和D异色。设AD的中点为E,则AE=ED=1。不妨设点A和E为白色,点D为黑色。

以AE为一边,在直线AD两侧各作一个等边三角形:AEF与AEG。若点F和G中有一个是白点,则导致一个边长为1的等边三角形的三个顶点都是白点;否则,边长为3的等边DFG的三个顶点同为黑点。

(2)边染色问题

例6:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。

四、应用抽屉原理解决实际问题

在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例7:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?

解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。第一步先确保取出的筷子中

有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4711根筷子,就能保证达到目的。

例8:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n﹣1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n﹣2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n﹣2,还是后一种状态1、2、3、„、n-1,握手次数都只有n﹣1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。解决问题,抽屉原理是一个利器。我们在解题的过程中可以迅速代入,更多要思考怎样用抽屉原理让问题清晰化,简单化。通过学习,使我的逻辑思维能力得到了提高,扩展了我的知识面,掌握了“抽屉原理”的基本内容,懂得把所学知识运用到生活中去,运用“抽屉原理”解决生活中的许许多多以前不明白的现象。

参考文献:

[1] 殷志平、张德勤著《数学解题转化策略举要》

《中学教学教与学》1996.1 第19页 [2] 宿晓阳著《用抽屉原理巧证一个三角不等式》

《中学数学月刊》2010.6 第45页

[3] 其他参考:http:// http://baike.baidu.com/view/8899.htm http://wenku.baidu.com/view/4527ed3710661ed9ad51f30e.html http://wenku.baidu.com/view/158dd2***92ef78c.html http:///free/20101221/84545509713564.html http://wenku.baidu.com/view/4272e8f9941ea76e58fa0489.html 8

篇2:抽屉原理的应用

摘 要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。关键词: 组合数学;抽屉原理;抽屉构造

1.引言

抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。

2.抽屉原理的基本形式与构造

2.1基本形式

陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。

原理Ⅱ 把m个元素任意放到n(mn)个集合里,则至少有一个集合里至少有k个元素,其中

m , 当n能整除m时,nkm  1 , 当n不能整除m时.n原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。

2.2基本构造

利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。构造抽屉是用抽屉原理解题的关键。有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。3.利用抽屉原理解题的常用方法

3.1利用划分数组构造抽屉

例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。

分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。现在的问题是如何对这12个自然数:1,2 ,„,12 进行分组, 注意到一个自然数, 它要么是奇数, 要么是偶数。若是偶数, 我们总能把它表达为奇数与2k(k1,2,3...)的乘积的形式,这样, 如果允许上述乘积中的因子2k的指数K可以等于零, 则每一个自然数都可表达成“ 奇数2k”(k1,2,3...)的形式, 于是, 把1,2,3„,12个自然数用上述表达式进行表达, 并把式中“奇数” 部分相同的自然数作为一组, 构成一个抽屉。

证明: 把前12个自然数划分为如下六个抽屉:

A1={120,121,122,123} A2={320,321,322} A3={520,521} A4={720} A5={920} A6={1120} 显然, 上述六个抽屉内的任意两个抽屉无公共元素, 且A1+A2+...+A6={1,2,3,...,12}.于是,由抽屉原理得,对于前12个自然数不论以何种方式从其中取出七个数,必定存在两个数同在上述六个抽屉的某一个抽屉内。设x、y是这两个数,因为A4、A5、A6都是单元素集,因此,x、y不可能同在这三个抽屉中的任何一个抽屉内。可见,x、y必同在A1、A2、A3的三个抽屉中的某一个之内,这样x和y两个数中,较大的数必是较小数的整数倍。例2 学校组织1993名学生参观天安门,人民大会堂和历史博物馆,规定每人必须去一处,最多去两处参观。那么至少有多少学生参观的地方完全相同?

分析:我们可以把某学生参观某处记作“1”,没有去参观记作“0”。并用有序数组{a,b,c}表示学生去参观天安门、人民大会堂和历史博物馆的不同情况。因为规定每人必须去一处,最多去两处,所以参观的方式,只有下列六种可能:

{1、1、0} {1、0、1} {0、1、1} {1、0、0} {0、1、0} {0、0、1} 把这六种情况作为六个抽屉,根据抽屉原理,在1993名学生中,至少有(1993)+1=333人参观的地方相同。63.2利用余数构造抽屉

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m1]表示。在研究与整除有关的问题时,常常用剩余类作为抽屉。

例3 对于任意的五个自然数,证明其中必有3 个数的和能被3 整除。

证明:任何数除以3 所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]

1、若这五个自然数除以3 后所得余数分别分布在这3 个抽屉中(即抽屉中分别为含有余数为0,1,2 的数),我们从这三个抽屉中各取1 个(如1到5中取3,4,5),其和(3+4+5=12)必能被3 整除。

2、若这5 个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3 个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3 个自然数之和是3 的倍数。

3、若这5 个余数分布在其中的一个抽屉中,很显然,必有3 个自然数之和能被3 整除。

3.3利用等分区间构造抽屉

所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子

1区间,它们之间的距离不大于这种构造法常用于处理一些不等式的证明。

n例4 已知11个数x1,x2,,x11,全满足0xi1 ,i=1, 2  ,11,证明必有两个xi,xj(ij)满足xixj1.101.由抽屉原理,10证明:如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就是10个等分区间,即10个抽屉),每一小段长为

1111个点(数)中至少有+1=2个点落在同一条小线段上,这两点相应的数之差

10的绝对值 1.100

图1 对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造方法来构造抽屉,正如上面的例子,在等分区间的基础上我们便很方便的构造了抽屉,从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受。

3.4利用几何元素构造抽屉

在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后用分割所得的小图形作抽屉。这种分割一般符合一个“分划”的定义,即抽屉间的元素既互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素。

例5 如果直径为5的圆内有10个点,求证其中有某两点的距离小于2。分析:把圆等分成9个扇形而构造出9个抽屉,是最先考虑到的,但显然是不行的(虽然有两个点在某一扇形内,但不能确认它们之间的距离小于2)。转而考虑先用一个与已知圆同心,半径为1 的不包含边界的小圆作为一个抽屉,然后把圆环部分等分成八个部分,如图二所示,这样就构成了9个抽屉。

证明:先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把已知的圆分成了9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区域内,只须证明每个区域中的两点的距离都小于2.显然,小圆内任两点间的距离小于2,又曲边扇形ABCD中,AB2,AD2,CD2,而任两点距离最大者AC,有

AC =OA2OC22OAOCcos45

=2.520.922.50.92=3.88<2.图2

3.5利用状态制构造抽屉

例6 设有六点,任意三点不共线,四点不共面,如果把这六个点两两用直线联系起来,并把这些直线涂以红色或者蓝色.求证:不论如何涂色,总可以找到三点,做成以它们为顶点的三角形,而这三角形三边涂有相同的颜色。

分析:设已知六点为A1,A2,A3,A4,A5,A6,由于任三点不共线,所以任三点均可作为某三角形的三个顶点。

证明:从六个点中任取一点A1,将A1与其余五点相连得到五条线段,线段如下所示: A1A2,A1A3,A1A4,A1A5,A1A6,这五条线段只有两种颜色即红色或者蓝色,由抽屉原理知,至少有三条涂有同一种颜色。颜色为抽屉,线段为元素,不妨设A1A2,A1A3,A1A4,涂有红色,这时我们考察△A2A3A4

(1)若△A2A3A4中有一条红色边,如A2A3,则△A1A2A3为三边同红的三角形;

(2)若△A2A3A4中无一条红色边,则△A2A3A4就是三边均为蓝色的三角形。4.抽屉原理的应用

4.1抽屉原理在高等数学中的应用

高等数学中一些问题抽象,复杂,解答比较困难,如果一些问题巧妙地运用抽屉原理会收到很好的效果,下列举例介绍抽屉原理在高等数学中的巧妙应用。

例7 设A为n阶方阵,证明:存在1in,使秩(Ai)=秩(Ai1)=秩(Ai2)

证明:因为n阶方阵的秩只能是0,1 , 2,  ,n这n+1个一,由抽屉原理可知,存在k,l满EA0,A,A2,,An,An1,E的个数多于秩的个数,足1k

秩(Ak)= 秩(Al), 但

秩(Ak)秩(Ak1)„秩(Al), 所以

秩(Ak)=秩(Ak1), 利用此式与秩的性质得

秩(ABC)秩(AB)+秩(BC)-秩(B), 这里的A,B,C是任意三个可乘矩阵,用数学归纳法可证

秩(Akm)=秩(Akm1).其中m为非负整数,故命题的结论成立。

4.2抽屉原理在初等数论中的应用

例8(中国剩余定理)令m和n为两个互素的正整数,并令a和b为整数,且0am1以及0bn1,则存在一个正整数x,使得x 除以m 的余数是a,并且x 除以n 的余数为b,即x可以写成xpma的同时又可以写成xqnb的形式,这里p 和q 是整数。

(n1)ma,证明: 为了证明这个结论考虑n 个整数a,ma,2ma,„,这些整数中的每一个除以m都余a.设其中的两个除以n 有相同的余数r. 令这两个数为ima 和jma,其中存在两整数qi和qj,使得imaqinr及jmaqjnr,0ijn1.因此,这两个方程相减可得(ji)m(qjqi)n.于是n是(ji)m的一个因子. 由于n和m没有除1 之外的公因子,因此n是ji的因子. 然而,0ijn1意味着,0jin1,也就是说n 不可能是ji的因子. 该矛盾产生于我们的假设: n个整数a,ma,2ma,...,(n1)ma中有两个除以n会有相同的余数。

因此这n个数中的每一个数除以n 都有不同的余数。

根据抽屉原理,n个数0,1,„,n1 中的每一个作为余数都要出现,特别地,数b也是如此。令p 为整数,满足0pn1,且使数xpma 除以n余数为b. 则对于某个适当的q,有xqnb.

因此,xpma且xqnb,从而x具有所要求的性质。

5.结束语

本文对抽屉原理的常见形式及其应用结合实例做了一些探讨,为数学解题提供了一种简便的方法.应用抽屉原理解题的难点在于如何恰当的构造抽屉,而制造抽屉的办法是灵活多变的, 不能生搬硬套某个模式, 需要灵活运用。

参考文献

[1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6 [2]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173 [3]钟颖.关于抽屉原理[J].成都教育学院学报,2003,17(7):75.[4]朱华伟,符开广.抽屉原理[J].数学通讯,2006,19(17):37.[5]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66 [6]刘否南.华夏文集.太原:高校联合出版社,1995.88-90 [7]魏鸿增等.抽屉原理在高等数学中的应用.数学通报,1995,2.3-4 [8]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11

The Principle And Application Of The Drawer

篇3:抽屉原理的应用

定理:如果将n+1个物体放进n个抽屉, 那么至少有一个抽屉中包含两个或更多的物体.

证明:如果这n个盒子中的每一个至多包含有一个物体, 那么物体的总数最多是n, 既然我们有n+1个物体, 于是某个盒子中就必然包含至少两个物体.

2.抽屉原理应用举例

例1:给定m个整数a1, a2, …, am, 存在0≤k

解:为了深入这个问题, 考虑m个和

a1, a1+a2, a1+a2+a3, …, a1+a2+a3+…+am

如果这些和当中的任意一个可被m整除, 那么结论就成立.因此, 我们可以设这些和中的每一个除以m都有一个非零余数, 余数等于1, 2, …, m-1.由于存在m个和而只有m-1个余数, 则必然有两个和数除以m有相同的余数.因此, 存在整数k和l, k

a1+a2+…+ak=bm+r, a1+a2+…+al=cm+r

二式相减, 我们发现ak+1+…+al= (c-b) m, 从而ak+1+…+al能够被m整除.

为了解释上面的论断, 令m=7, 并令整数为2, 4, 6, 3, 5, 5, 6.计算上面的和得到2, 6, 12, 15, 20, 25, 31, 其中当被7除时余数分别为2, 6, 5, 1, 6, 4, 3.有两个等于6的余数, 这意味着结论:6+3+5=14可被7整除.

例2:一位国际象棋大师有11周的时间备战一场锦标赛, 他决定每天至少下一盘棋, 但为了不使自己过于疲劳他还决定在每周不能下棋超过12盘.证明:存在连续若干天, 期间这位大师恰好下了21盘棋.

解:令a1是在第一天所下的盘数, a2是在第一天和第二天所下的总盘数, 而a3是在第一天、第二天和第三天所下的总盘数, 等等.由于每天至少要下一盘棋, 故数值序列a1, a2, …, a77是一个严格递增序列.此外, a1≥1, 而且由于每周下棋最多是12盘, a77≤12×11=132.

因此, 我们有

1≤a1

序列a1+21, a2+21, …, a77+21也是一个严格递增序列:

22≤a1+21

于是, 这154个数

a1, a2, …, a77, a1+21, a2+21, …, a77+21

中的每一个都是1到153之间的一个整数.由此可知, 它们中间有两个是相等的.既然a1, a2, …, a77中没有相等的数, 并且a1+21, a2+21, …, a77+21中也没有相等的数, 因此必然存在一个i和一个j使得ai=aj+21.从而, 这位国际象棋大师在第j+1, j+2, …, j+i天总共下了21盘棋.

例3:从整数1, 2, …, 200中, 我们选择101个整数.证明:在所选的这些整数之间存在两个这样的整数, 其中的一个可被另一个整除.

通过分解出尽可能多的2因子, 我们看到, 任一整数都可以写成2^k×a的形式, 其中k≥0并且a是奇数.对于1到200之间的一个整数, a是100个数1, 3, 5, …, 199中的一个.因此, 在所选的101个整数中存在两个整数, 当写成上述形式时这两个数具有相同的a值.令这两个数是2^r×a和2^s×a.如果rs, 那么第一个数就能被第二个数整除.

注意, 例3在这种意义下是最好的可能:从1, 2, …, 200中可以选择这样的100个数, 其中没有一个能被另一个整除, 比如, 101, 102, …, 199, 200就是这样的整数.

我们以另外的, 来自数论中的应用来结束本段.首先我们回忆, 如果两个正整数m和n的最大公约数为1, 我们就称它们为互数.

于是, 12和35互数, 而12和15则否, 因为3是12和15的公因子.

3.问题的总结

通过上述三个例题, 我们看到, 利用抽屉原理能够解决看起来很复杂的问题, 而得出解决问题的关键是为后面巧妙地构造抽屉.

参考文献

[1]Richard.Brualdi著.罗平等译.组合数学.北京:机械工业出版社, 2005.2.

篇4:抽屉原理的简单应用

一、抽屉原理

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则至少有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

原理2也可以变为:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至多要有k个元素。其中k=〔m/n〕,这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。

二、应用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

利用上述原理容易证明:

“任意7个整数中,至少有3个数的两两之差是3的倍数。”

因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

三、应用抽屉原理解题例举:

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意

再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种;

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定

有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这

50個同学看作苹果50÷9=5……5

由抽屉原理2k=[m/n]+1可得,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。

解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=

46(人)抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

1958年6/7月号的《美国数学月刊》上有这样一道题目:

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题可以用如下方法简单明了地证出:在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。

篇5:抽屉原理的教学设计

1.理解最简单的抽屉原理及抽屉原理的一般形式。

2.引导学生采用操作的方法进行枚举及假设法探究。

【过程方法】

经历抽屉原理的探究过程,初步了解抽屉原理。

【情感态度价值观】

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。

【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学过程】

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思?(一定有)

(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?

学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

篇6:抽屉原理的教学设计

教学理念:

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

教学目标:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重难点:

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)

二、通过操作,探究新知

(一)探究例1

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)

(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)

(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)

(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。

这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

(二)探究例2

1、研究把5本书放进2个抽屉。

(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)

(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

(4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

5、做一做:

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?

(先让学生独立思考,在小组里讨论,再全班反馈)

三、迁移与拓展

下面我们一起来放松一下,做个小游戏。

我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

四、总结全课

上一篇:社团申请下一篇:光伏电站并网安全性评价标准