导数的应用单调性

2024-07-17

导数的应用单调性(通用10篇)

篇1:导数的应用单调性

§1.3.1 利用导数判断函数的单调性

题型一 利用导数求单调区间 例

1、求下列函数的单调区间(1)f(x)3x22lnx(2)f(x)sinx(1cosx)(3)f(x)(xk)ex(4)f(x)x3

3ax1(a0)

(5)f(x)exexx[0,) 题型二 证明函数的单调性 例2 证明:函数f(x)

lnx

x

在区间(0,2)上是单调递增函数.练习1 证明:f(x)xlnx在其定义域上是增函数.求证函数yxsinxcosx在区间(32,5)内是增函数.题型三 利用导数证明不等式问题(思想方法:构造函数法)例3 已知x1,求证:xln(x1)练习3 证明不等式:lnx

2(x1)

x1

(x1)练习4 当x0时,证明:12xe2x.题型四 证明方程根的唯一性(方法同题型三)例4 求证:方程x12

sinx0只有一个跟.练习5 :证明方程2x376x2在区间(0,2)内有唯一实根.题型五 利用导数求值域

例5 求函数yx32x2x3,x[23,1]的值域.练习6 求函数f(x)4x27

2x

在[0,1]上的单调区间及值域.题型六 利用单调性求参数的范围或求参数的值.例6 已知函数f(x)2ax1

x2,x(0,1],若f(x)在(0,1]上是增函数,求a的取值范围.例7 已知函数f(x)ax3bx26x1的单调增区间为(2,3),求a、b的值.例8 已知a(x2,x1),b(1x,t),若函数f(x)ab在区间(1,1)上是增函数.求

实数t的取值范围.练习7 已知函数f(x)ax33x2x1在R上是减函数,求a的取值范围.练习8 若函数f(x)x3x2mx1是R上的单调函数.求实数m的取值范围.练习9 设函数(x)ex

f1ax,其中a为正实数,若f(x)为R上的单调函数.求a的取值范围.练习10 设函数f(x)1x31x22ax.若f(x)在(23

3,)上存在单调递增区间,求实数a的取值范围.

篇2:导数的应用单调性

情境引入

本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以在引入阶段,利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,第一次抽象:引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与曲线上升下降的联系;适当建系后,第二次抽象:将曲线看做是函数y=f(x)上的一段图象,那么切线斜率即为函数在该点处的导数,顺势猜想结论,感知导数正负与函数单调性之间的联系,从而轻松高效引入课题,成功激发学生的求知欲.合作探究

前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证已经学过的常见函数,从而深化对所得结论的理解.再从“形”回到 “数”,进一步引导学生经历从特殊到一般的过程,抓住导数和单调性的定义之间的联系来提炼一般性的结论,由学生自主探究、分组展示,互相点评,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.

典例应用

在典例演练,强化应用的过程中,例题1由“形”到“数”,规范了用导数研究单调性的书写,加深了对结论的理解;例题2在了解函数的性质基础上,要求学生画出三次函数的大致图象,经历由“数”到“形”的过程,并对导函数图象与原函数图象进行对比、深化理解,突显了利用导数研究函数单调性的优越性;例题3由三角函数图象很快能得出结论,解三角不等式时,学生可以画出导函数图象辅助解题,题目解完后数形结合再次画出原函数图象加以验证,并且突显了利用导数研究函数单调性的一般性.三道例题逐层推进,体现了导数法在研究函数单调性中的一般性和有效性,由形到数,由数到形,数形结合贯穿始终.

(二)教学中存在的不足

教师语言感染力度不够。一节课下来,语言起伏度较低,未能将重点知识通过起伏的语言方面传递出来。同时课堂评价语言单调,不能够起到鼓励学生的作用。作为一名新教师,教学基本功不够扎实,仍需多加练习,增加听课频率,多像优秀教师学习教学技能和技巧。

教学重难点内容的安排形式有待改善。本节重点知识在于为什么用导数研究函数的单调性,怎样用导数研究函数的单调性。怎样引导学生将导数的正负与函数单调性之间建立联系。实际上,这节课的重点,我觉得教师必须讲清楚函数在一个区间上的任一点出的导数为正时,在任一点处的切线斜率为正,函数在这个区间上的任一点处呈上升趋势,所以函数在整个区间上单调递增。但根据上课效果来看,学生并没有这样层次的理解,对于知识的认知还停留在表面,所以我提醒自己在今后的教学过程中应该加强数学知识本质的教学,让学生知其然,知其所以然。

小组讨论环节有待改善。本次课的小组讨论环节实际上是让班级学生分小组互相列举一些基本初等函数验证导数的正负和单调性的关系。但在实际教学中没有达到应该有的效果。每个学生自己单独完成了这个过程,并没有合作探究。课后我反思了这一过程,主要是和班级学生的熟悉程度不够,也是我在教学中引导过度不够自然,没有引起共鸣。通过这节课的教学,我有一个这样的疑惑,在数学教学中小组讨论,合作探究这个过程对学生的学习是否一定需要,是否一定会起到正面的效果,我觉得这是一个可以深入思考的问题。

板书设计有待改进。本节课板书不太理想,客观原因上课班级黑板不好使用,当然我对于本节课的板书设计确实准备不足,应该将情境引入部分整体思路理清楚,本节课的重点知识展示清晰。

篇3:导数与函数的单调性

一、导数与函数的单调性的关系

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性.下面以增函数为例作简单的分析,前提条件都是函数y=f (x)在某个区间内可导.

(一)f′(x)>0与f (x)为增函数的关系.

f′(x)>0能推出f (x)为增函数,反之则不一定.如函数f (x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,∴f′(x)>0是f (x)为增函数的充分不必要条件.

(二)f′(x)≠0时,f′(x)>0与f (x)为增函数的关系.

若将f′(x)=0的根作为分界点,因为规定f′(x)≠0,即抠去了分界点,此时f (x)为增函数,就一定有f′(x)>0.∴当f′(x)≠0时,f′(x)>0是f (x)为增函数的充分必要条件.

(三)f′(x)≥0与f (x)为增函数的关系.

f (x)为增函数,一定可以推出f′(x)≥0,反之则不一定,因为f′(x)≥0,即为f′(x)>0或f′(x)=0.当函数在某个区间内恒有f′(x)=0,则f (x)为常数,函数不具有单调性.∴f′(x)≥0是f (x)为增函数的必要不充分条件.

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性.因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题.但在实际应用中还会遇到端点的讨论问题,要谨慎处理.

对于f′(x)<0与函数单调递减关系,仿照上面的三点即可得到答案.

二、单调区间的求解过程

已知函数y=f (x),其单调区间的求解过程如下:

(1)分析函数y=f (x)的定义域;

(2)求函数y=f (x)的导数y′=f′(x);

(3)解不等式f′(x)>0,解集在定义域内的部分为增区间;

(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.

三、函数单调区间的合并

函数单调区间的合并主要依据是函数f (x)在(a, b)单调递增,在(b, c)(其中a

四、应用举例

例:求下列函数单调区间

注意:此题的单调递增区间不能表示为

(2) ∵∴当x≠0时都有y′>0,

令y′>0,解得x<-k或x>k;

篇4:如何利用导数研究函数的单调性

利用导数研究函数单调性,方法不一,选择恰当的方法,简洁明了;反之,虽然也可以进行到最后,但是需要大量的计算.本文将各类方法进行了总结,并点明了注意问题,分析了各方法的优点、缺点、适用范围.

一、 正用

例1求函数y=3x2-2lnx的单调递增区间.

解析:函数的定义域为(0,+∞)

∵ f′(x)=6x-2x=2(3x2-1)x

∴ 令f′(x)>0,结合x>0,得x>33

∴ f(x)的单调递增区间为33,+∞

【方法总结】用导数方法求函数单调区间:首先,求函数定义域、求导f′(x);然后令f′(x)>0得到函数的递增区间,令f′(x)<0得到函数的递减区间.

二、 逆用

例2已知函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,求m的取值范围.

【方法一】若函数f(x)在区间(a,b)上单调递增,则f′(x)≥0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的;若函数f(x)在区间(a,b)上单调递减,则f′(x)≤0在x∈(a,b)上恒成立,且f′(x)=0的点是孤立的.恒成立问题可以转化成求最值问题.

解析:∵ 函数f(x)=x2+mx(常数m∈R)在x∈[2,+∞)上单调递增,

∴ f′(x)=2x3-mx2≥0在x∈[2,+∞)上恒成立

∴ m≤2x3在x∈[2,+∞)上恒成立

∴ m≤(2x3)min,x∈[2,+∞)

∵ 当x∈[2,+∞)时,y=2x3是增函数

∴ (2x3)min=16∴ m≤16

当m=16时,f′(x)≥0且f′(x)=0的点是孤立的(只有f′(2)=0),∴ m=16合题

∴ m的取值范围为(-∞,16]

适用性分析:这是解决“逆用”问题的基本方法.注意检验f′(x)=0的点是否孤立.

例如:(1) 已知函数g(x)=ax+1在[1,2]上是减函数,则a的取值范围是a>0(a=0时,经检验不合题).

(2) 若函数f(x)=cosx+px+q在x∈R上是减函数,则p的取值范围是p≤-1(p=-1时,f′(x)=0的点有无数个,但这些点是孤立的,故p=-1合题)

【方法二】首先用m表示出f(x)的单调递增区间(a,b),然后根据关系[2,+m)(a,b)得出m的取值范围.

解析:f(x)的定义域为{x|x≠0}

∵ f′(x)=2x3-mx2,令f′(x)>0,得x>3m2

∴ f(x)的单调递增区间为(3m2,+∞)

∵ f(x)在x∈[2,+∞)时单调递增

∴ 3m2≤2解得m≤16

∴ m的取值范围为(-∞,16]

适用性分析:该法思路清晰、简单明了,但有时涉及解无理不等式,需要分类讨论,运算量大.例如(例3):已知函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减,求m的取值范围.利用该法需要解不等式组-a-a2-33≤-23

-a+a2-33≥-13,诸多不便.

那么,象上面的例3,该怎样解决呢?

【方法三】二次函数法,结合二次函数性质,寻求使得导数恒≥0(或恒≤0)成立的充要条件.

解析:∵ 函数f(x)=x3+mx2+x+1(a2>3)在-23,-13上单调递减

∴ f′(x)=3x2+2mx+1≤0在x∈-23,-13上恒成立

∴ f′-23≤0

f′-13≤0即73-4m3≤0

43-2m3≤0解得m≥2

∴ m的取值范围是[2,+∞)

适用性分析:(1) 适用面窄,只有当f(x)是三次函数(此时,其导数为二次函数)时,才可用该法;(2) 列出的条件容易不充分(少条件)或不必要(多条件),需要进行严谨的分析.一般的解决二次函数问题可以从以下四个方面入手:① 开口方向② 对称轴③ 判别式④ 端点处函数值.

篇5:导数的应用单调性

教学目标:

1、知识与技能目标:通过实例,借助图形直观探索并了解导数与函数单调性的关系,理解并掌握利用导数研究函数的单调性以及求解函数单调区间;

2、过程与方法目标:会用导数研究函数单调性,并会用导数求解函数单调区间;

3、情感态度与价值观目标:探究导数与函数单调性关系的过程中培养学生数形结合思想和从特殊到一般的数学思想,以及发现问题、解决问题的能力。教学重点:利用导数研究函数的单调性,求函数的单调区间; 教学难点:发现和揭示导数值的符号与函数单调性的关系; 教学方法与手段:探究式教学模式;利用多媒体现代设备教学 教学过程:

一、复习回顾:

我们知道平均变化率可以刻画函数的变化趋势,大家还记得 问题1:函数yfx在区间x1,x2上平均变化率的数学表达式吗?

fx2fx1生1:(教师板书),x2x1师:那你能给出这个二次函数fxx4x3在x1,x2上的平均变化率吗?

2问题2:导数的概念和它的几何意义?

生2:x2x1时,fx2fx1fx1(教师板书)

x2x1师:这个导数又有什么几何意义?

生2:曲线yfx在点x1,fx1处切线的斜率

师:这个二次函数fxx4x3,它对应的fx1又是什么?

2生3:fx12x14

师:今天我们一起来学习导数在研究函数中的应用,导数作为函数变化率比较精确地刻画了函数的变化趋势,(板书“导数在研究函数 中的应用”)

二、建构数学 师:观察二次函数fxx24x3图象,请大家给出在对称轴左右两侧函数的变化趋势 生:对称轴x2左边下降趋势,对称轴x2右边上升趋势,师:也就是在,2为减函数,在2,为增函数,这也是函数的单调性 师:你是怎样判断函数单调性的? 生:图象法(教师板书)

师:我们曾经还学习过判断函数单调性还有什么方法? 生:定义法(教师板书)问题3:那函数单调性定义又是什么?

生:函数yfx的定义域为A,区间IA,任取x1,x2I,当x1x2时,fx1fx2,则yfx在区间I上是单调增函数; fx1fx2,则yfx在区间I上是单调减函数。

师:回答的非常好!请大家用定义法证明二次函数fxx4x3在2, 为增函数

2生: x1,x22,,不妨设x1x2,则fx2fx1x2x1x1x240,所以fx1fx2,所以函数在2,为增函数。

问题4:大家注意观察,从形式上你发现定义法和平均变化率对应的两式之间有关系吗?

f(x2)f(x1)x1x24,f(x2)f(x1)x2x1x1x24

x2x1生:有关系

师:说的很好!我们发现平均变化率与定义法之间存在某种密切的关系

问题5:当自变量的改变量无限趋近于0时平均变化率无限趋近于导数,而定义法可以判断函数的单调性,大家发现了什么?

生:导数与单调性之间可能也有关系

师:说的太好了!同学们发现了导数与函数单调性之间可能也有着某种密切的关系,这个问题的发现是很非常了不起的,那今天我们就来学习导数在研究函数的单调性中的应用。(教师补全课题)

问题6:导数与单调性之间究竟什么关系?

师:请大家结合切线斜率来观察这个二次函数fxx4x3在对称轴左右两侧导数值有

2什么不同特点?切线在对称轴左侧移动时,观察导数值特点并记录你所观察到的结果,切线在对称轴右侧移动时,同样也观察导数值特点并记录你的观察结果。

yfxx24x3x

生: 在区间,2上,fx0函数在该区间为减函数;

在区间2,上,fx0函数在该区间为增函数。(教师板书)师:我们通过图形直观观察得出结论,请大家回到导数定义中来,o2fx2fx1不妨假设x1x2,x2x1时,fx12x14

x2x1问题7:你能从“数”的角度解释为什么在2,上,fx0得到在该区间为增函数?

生:小组交流讨论 教师点评归纳:

不妨设x1x2,当x2x1时,fx2fx1x1x24fx12x14,x2x1fx2fx10,所以 fx2fx1,x2x1若fx10,得到x12,x1x240,得到在2,为增函数。

师:对于这个二次函数我们体会到平均变化率、定义法、导数、单调性四者密切相关,通过这四者之间的关系,我们从图形直观观察得到结论,又结合导数定义从“数”的角度解释了结论,做到了数形的完美结合。更一般地,我们也可以用导数值的符号来判断函数的单调性,你能归纳出一个一般性的结论吗? 生:对于函数yfx,在某个区间上fx0函数在该区间上为增函数; 在某个区间上fx0函数在该区间上为减函数

师:归纳的很好!这样大家便有了一种研究函数单调性新的方法——导数法。尤其对于那些很难作出图象,或者用定义法也很难判断单调性的函数,我们就可以选择导数法(板书)。

三、数学运用:

例1:用导数法确定函数fxx2x3在哪个区间上是增函数,在哪个区间上是减函数?

2解:fx2x2,令fx0,解得x1,即在区间,1上为增函数

令fx0,解得x1,即在区间1,上为减函数(教师板书)师:结合这道例题,你能归纳出利用导数求解函数单调区间的主要步骤吗? 生:回答 教师点评步骤:

(1)求导数fx;(2)解fx0和fx0;(3)写出单调区间。最后不忘函数定义域

四、课堂练习:

例2:用导数法确定函数fx2x6x7在哪些区间上是增函数?在哪个区间上是减函数?

32(请学生板演)

解:fx6x12x6x(x2)2令fx0,解得x0或x2,令fx0,解得0x2,因此函数在,0和2,上为增函数,在0,2上为减函数

教师追问:你能根据函数单调性在演练纸上作出反映三次函数fx2x36x27单调性变化趋势的简图吗?(实物投影学生演练纸)

生:解释怎样做出函数简图:(1)找导函数零点;(2)分区间;(3)由单调性作图

师:我们利用导数值的符号来研究了函数的单调性,体会到导数法可以作为研究函数单调性的一般方法,那对于这个结论请大家思考:

问题8:若函数fx在某个区间单调递增,那么在该区间上必有fx0吗?大家请结合函数fxx3来思考

生:fx3x2,发现 f00

师:由此看来若函数fx在某个区间单调递增,那么在该区间上不一定有fx0。师:通过这节课的学习,你学习了哪些知识?体会了哪些数学思想?

五、回顾小结:

生1: 学习到利用导数值的符号来判断函数的单调性,及利用导数求解函数的单调区间; 生2:在探究导数与函数单调性之间的关系时,通过图形直观观察,体会到了数形结合的数学思想和特殊到一般的数学思想。

师总结归纳:平均变化率、定义法、导数、单调性四者密切相关,通过四者关系我们得到了一个结论,学习了判断函数单调性新的方法—导数法,在探究这个结论的过程中,以一个二次函数为例,先从图形直观观察得出结论,然后结合导数定义从“数”的角度解释结论,最后将结论一般化,渗透了两种思想:数形结合、研究问题从特殊到一般,利用导数求解函数单调区间时把握三个主要步骤“一求,二解,三写”最后不忘定义域,利用导数研究函数单调性是非常重要的,为后面用导数研究函数的极值、最值打下基础,对后续学习非常重要。

六、课外作业:

1、课本29页第1题(必做题)

篇6:《函数的单调性与导数》评课稿

恩平一中谭青华

本节课郑凯老师运用多种教学手段,创设了丰富、生动的教学情境,设计了新颖、活泼的学生活动。成功的地激发了学生的学习兴趣。下面我谈谈我的几点看法:

一、教学目标

本节课的教学目标简明扼要、具体,便于实施,便于检测,注重数学思想、能力的培养、兼顾情感态度与价值观的教育。广度和深度都符合数学课程标准和教材的要求,符合学生的实际情况。教师准备的也比较充分,清楚的知道学生应该理解什么、掌握什么、学会什么。本堂课很好的完成了预定的教学目标。

二、教学内容

执教者因材施教,充分考虑到该班学生的实际情况,把本节课分为两个课时进行。教学内容紧紧围绕教学目标展开。准确的确定了本节课的教学重、难点:探究函数的单调性与导数的关系,并在处理时,分为三个层次进行,层层递进,化难为易。学生易于理解、掌握。很好的处理了新旧知识的结合点,抓住知识的生长点,讲授具有启发性,层次详略得当。对于课后作业的布置分必做题、选做题、思考题。很好的照顾到了不同知识水平的学生,鼓励学生不断努力、挑战自我,体现了分层教学思想。

三、教学方法

教师本堂课主要采用启发式、探究式的教学方法,并对学生进行学法的指导。使学生积极思维、主动学习、自主学习,从而达到会学的目的。让学生参与尝试、猜想、试验、探索与发展的过程,培养学生良好的思维习惯与思维品质。充分发挥教师的主导作用,学生的体作用。最大限度地提高了课堂效率。主要体现在以下几个方面:

1、情境引入:引发学生对函数的单调性与导数关系的思考。

2、探究关系:引导学生从图像、切线、定义三个不同的角度去探究。

3、规律总结、课堂总结:都先是学生思考回答,老师再补充完善,体现教师主导、学生的主体作用。

四、教学基本功

教师的教态自然、评议清晰富有启发性,在语言表达方面还可以简练些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。板书设计合理;组织教学,驾驭课堂的能力较强。

五、教学效果

本堂课在规定的时间内完成了教学任务,知识的传授、能力的培养、思想与道德教育等方面都实现了教学目标的要求;从学生的情况来看学生注意力集中、积极参与本堂课的学习,课堂气氛非常活跃。教学效果良好。

篇7:导数的应用单调性

1、学生对函数的单调性有所遗忘,不会求单调区间。

2、学生对导数的几何意义不能深入理解。

3、学生对求导公式掌握不够熟练,求导出现错误。

4、教师所设计的问题难度偏大,练习题目过少。

5、学生的讨论与参与不够主动。补救措施:

篇8:利用导数解决函数的单调性问题

热点题型一:直接利用导数研究函数的单调性

【例1】设函数f (x) =ln (2x+3) +x2, 求f (x) 的单调区间.

思维拓展:已知函数f (x) =ln (2x+3) +x2, 求f (x) 在上的极值与最值.

热点题型二:利用导数求含参函数的单调性

【例2】已知函数f (x) =ax-lnx, x∈ (0, e], 判断函数f (x) 的单调性.

热点题型三:已知函数的单调性, 求参数的范围

【例3】已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在区间 (-1, 1) 上是增函数, 求r的取值范围.

解析:f (x) =x2 (1-x) +t (1+x) =-x3+x2+tx+t, 则f′ (x) =-3x2+2x+t.

若函数f (x) =a·b在区间 (-1, 1) 上是增函数, 则f′ (x) ≥0在区间 (-1, 1) 上恒成立, 即t≥3x2-2x在区间 (-1, 1) 上恒成立.记g (x) =3x2-2x, 则t≥g (x) 在区间 (-1, 1) 上恒成立, 等价于t≥g (x) max成立.由于二次函数g (x) =3x2-2x的对称轴是x=31, 所以g (x) 在区间[-1, 1]上的最大值为g (-1) =5, 因此t≥5.

思维拓展1:已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在区间 (-1, 1) 上是单调函数, 求t的取值范围.

解析:f (x) =a·b在区间 (-1, 1) 上是单调函数, 则f′ (x) ≥0或f′ (x) ≤0恒成立.

点评:已知函数在某区间上单调, 即f′ (0) ≥0或f′ (x) ≤0恒成立, 其中f′ (x) 不恒为0.

思维拓展2:已知向量a= (x2, x+1) , b= (1-x, t) , 若f (x) =a·b在R上存在单调递增区间, 求t的取值范围.

解析:f (x) =a·b在R上存在单调递增区间, 转化为f′ (x) >0在R上有解, 即-3x2+2x+t>0在R上有解, 即t>3x2-2x有解.

篇9:导数的应用单调性

【关键词】参数;单调性;分类讨论;二次函数;判别式;方程的根

导数是研究函数的重要工具,而利用导数来判断函数的单调性也是高考重点考查的内容之一。用导数来判断函数的单调性,其一般步骤为:

1.确定函数y=f(x)的定义域;

2.求导函数f'(x);

3.在函数f(x)的定义域的范围内解不等式f'(x)>0或f'(x)<0;

4.根据3的结果确定函数f(x)的单调区间。

例1:求函数 的单调区间。

解:函数f(x)的定义域为R,f'(x)=x2-2x-3,解不等式f'(x)<0,得-1<x<3;解不等式f'(x)>0,得x<-1或x>3。所以f(x)的单调递减区间为(-1,3),单调递增区间为(-∞,-1)(3,+∞)。当我们遇到含参数函数时,基本上也要按照这个步骤进行。

例2:求函数的单调减区间。

解:函数f(x)的定义域为R, f'(x)=x2-(2a+1)x+2a,解方程f'(x)=0,得x1=1,x2=2a,只需解不等式f'(x)<0即可,但需要对x1,x2之间的大小关系进行讨论。

若x1>x2,即时,f'(x)<0的解集为:(2a,1);

若x1<x2,即时,f'(x)>0的解集为:(1,2a)。

所以,当时,f(x)的单调递减区间为(2a,1); 当时,f(x)的单调递减区间为(1,2a)。

通过例2可以发现,含参数函数问题,往往需要分类讨论,而且有的时候,含参数类问题的讨论并不仅仅像例2那样,只是对两个根之间大小关系的讨论,其讨论的过程会更加复杂,运算会更加繁琐。不少同学解答起来会感觉很混乱,无从下手。下面,就对上述问题进行一些探讨和研究。看看如何才能在这个混乱的“局面”中找到解题的思路,做到“乱中有序”。

先看一个例题:

例3:设函数f(x)=mx2-ln(x+1),其中m∈R,求f(x)的单调区间。

分析:函数f(x)的定义域为(-1,+∞),

这里通过通分的方法,得到,这样做的好处是显而易见的,因为x+1>0,所以只需判断好2mx2+2mx-1的符号。不妨设,则,不等式f'(x)>0等价于 ,不等式f'(x)<0等价于,看来问题可以得到解决了,但是在解决的过程中,有一些确是不容回避的:

1.是否为二次函数?这需要通过对m=0或m≠0来加以讨论;

2.若 为二次函数,则是否恒为正(负)?这一点,可以通过判别式△来判断。

3.若△>0,则方程=0的两个解x1,x2之间的大小关系是否确定?x1,x2是否在定义域(-1,+∞)内?如不确定需要分类讨论,这也直接关系到不等式 或 的解集。

看来这个问题涵盖了三个层次的分类讨论,当它们叠加在一起的时候,需要我们有很好的分析问题和解决问题的能力,同时还需要有一定的耐心。具体解答如下:

解:函数f(x)的定义域为(-1,+∞),

设=2mx2+2mx-1,①m=0时, ,此时 ,

∴f(x)在区间(-1,+∞)单调递减,②m≠0时,=2mx2+2mx

-1为二次函数,其中△=4m2+8m。

1.若△≤0,即-2≤m<0时,函数=2mx2+2mx-1的图像是开口向下的抛物线,故≤0恒成立,此时在定义域x∈(-1,+∞)上也恒成立。

∴f(x)在区间(-1,+∞)单调递减

2.若△>0,即m>0或m<-2时,=0的两个根分别为

,。

①当m>0时,,故在

上 <0,此时;在上 <0,此时。

∴f(x)在区间 单调递减,在区间(,+∞)上单调递增。

②当m<-2时,由于m<-2,

,所以-1<x2<-,故在区间(,)上 >

0,此时f'(x)>0,在区间上<0,此时f'(x)<0,∴f(x)在区间 单调递增,在区间

上单调递减。

综上可得:当m<-2时,f(x)的单调递增区间为: ,单调递减区间为: ;当-2≤m≤0时,f(x)的单调递减区间为(-1,+∞),无单调递增区间;当m>0时,f(x)的单调递增区间为: ,单调递减区间为:(-1, )。

通过解答的过程,我们可以发现,像这样的,导函数f'(x)可以转化成二次函数的题型,其解答的一般步骤为:

1.确定函数f(x)的定义域,求导函数f'(x),并将f'(x)转化成用二次函数,(可设为 )来表示;要注意两点:①若f'(x)本身就是二次函数,则无需转化;②若 的二次项系数不确定,需再加一步讨论。

2.先讨论二次函数的判别式△,一般是分△≤0和△>0。因为当△≤0时,往往 恒为正(负),此时,f'(x)的符号就可以较为容易的判断出来,先将这一部分问题解决后,再解决△>0时的部分;

3.当△>0时,对应方程=0有两个不同的根,需要进一步讨论x1,x2。这一块主要讨论两点:①x1,x2之间的大小关系;②x1,x2是否在定义域或题目条件指定的区域中。这一部分运算往往比较繁琐,讨论容易出现混乱,解答时思路要清晰,还要有耐心。

解答这类问题时,要严格按照上面的步骤和要求,有序进行,解答的过程才能更加全面和彻底,不会有遗漏。

仿照例3,按上述的步骤和要求,再来训练一个题目。

例4:已知函数f(x)=x2-(2a+1)x+alnx,求函数f(x)在区间[1,e]上的最小值。

分析:需要确定函数f(x)在区间[1,e]上的单调性,按步骤进行。

解:第一步:确定函数f(x)的定义域,求导函数f'(x),并将f'(x)转化成用二次函数来表示。

函数f(x)的定义域为(0,+∞), ,

设=2x2-(2a+1)x+a,则 ,

第二步:讨论二次函数 的判别式△。

因为这里的△=(2a+1)2-8a=4a2-4a+1=(2a-1)2恒大于等于0,所以不需要再讨论,直接求出方程 =2x2-(2a+1)x+a=(2x-1)

(x-a)=0的根: 。

第三步:讨论x1,x2之间的大小关系,x1,x2是否在区间[1,e]上。

=(2x-1)(x-a),x∈[1,e]时,

1.当a≤1时, =(2x-1)(x-a)≥0对任意x∈[1,e]恒成立,此时 ≥0对任意x∈[1,e]也恒成立,

∴f(x)在区间[1,e]上单调递增,∴f(x)min=f(1)=-2a

2.当1<a<e时,

若x∈[1,a]时,则 =(2x-1)(x-a)<0,此时 <0

若x∈[a,e]时,则 =(2x-1)(x-a)>0,此时 >0

∴f(x)在区间[1,a]上单调递减,在区间[a,e]上单调递增,

∴f(x)min=f(a)=a(lna-a-1)

3.当a≥e时,=(2x-1)(x-a)≤0对任意x∈[1,e]恒成立,此时 ≤0对任意x∈[1,e]也恒成立,

∴f(x)在区间[1,e]上单调递减,∴f(x)min=f(e)=e2-e(2a+1)+a

综上可得:a≤1时,f(x)min=f(1)=-2a;

1<a<e时,f(x)min=f(a)=a(lna-a-1)

a≥e时,f(x)min=f(e)=e2-e(2a+1)+a

第三步可以通过绘制草图或列表格来辅助完成。

篇10:函数的单调性

(学生朗读.)

师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.

师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

(通过教师的情绪感染学生,激发学生学习数学的兴趣.)

师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.

(指图说明.)

师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.

(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)

生:较大的函数值的函数.

师:那么减函数呢?

生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.

(学生可能回答得不完整,教师应指导他说完整.)

师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

(学生思索.)

学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

生:不能.因为此时函数值是一个数.

师:对.函数在某一点,由于它的`函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.

(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)

师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明函数的单调性是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

师:还有没有其他的关键词语?

生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.

师:你答的很对.能解释一下为什么吗?

(学生不一定能答全,教师应给予必要的提示.)

师:“属于”是什么意思?

生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.

师:如果是闭区间的话,能否取自区间端点?

生:可以.

师:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

师:能不能构造一个反例来说明“任意”呢?

(让学生思考片刻.)

生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.

师:那么如何来说明“都有”呢?

生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.

师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.

(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

三、概念的应用

例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

(用投影幻灯给出图象.)

生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,

(增或减).反之不然.

例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

师:从函数图象上观察函数的单调性固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

(指出用定义证明的必要性.)

师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)

师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a―b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

所以f(x)是增函数.

师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以

小.

(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

调函数吗?并用定义证明你的结论.

师:你的结论是什么呢?

上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

上是减函数.

(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

(1)分式问题化简方法一般是通分.

(2)要说明三个代数式的符号:k,x1・x2,x2-x1.

要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

四、课堂小结

师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.

五、作业

1.课本P53练习第1,2,3,4题.

数.

=a(x1-x2)(x1+x2)+b(x1-x2)

=(x1-x2)[a(x1+x2)+b].(*)

+b>0.由此可知(*)式小于0,即f(x1)<f(x2).

课堂教学设计说明

函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.

上一篇:企业办公室励志口号_激励员工标语下一篇:小学支教体会