电子测量总结

2024-07-14

电子测量总结(通用6篇)

篇1:电子测量总结

1.电子测量的内容:电能量测量,电信号特性测量,电路元器件参数测量,电子设备性能测量,非电量测量。

2.电子测量的方法:按过程:直接,间接,组合。按测量方式:偏差式,零位式,微差式。按测量的性质:时域,频域,数据域,随机。测量方法的选择原则:被测量本身的特性,所要求的测量准确度,测量环境,现有测量设备。

3.误差的来源:仪器,使用,人身,影响,方法 4.误差的分类:系统误差,随机,粗大

5.信号发生器的基本构成:振荡器(是信号发生器的核心部分),变换器(放大振荡器的输出信号,电压放大器,功率放大器,调制器,整形器),输出级(调节输出信号的电平和输出阻抗),指示器(监视输出信号),电源(提供各部分的工作电压)6.合成信号发生器的核心是频率合成器。

7.噪声信号发生器的核心是噪声源,提供一定频率范围内有足够高电平和噪声统计特性的噪声信号。

8.示波器的核心部件是示波管(阴极射线管)。

9.示波管的组成:电子枪(发射电子并形成很细的高速电子束),荧光屏(显示偏转电信号的波形),偏转系统(水平垂直偏转板构成,决定电子束怎样偏转)

10.为了在示波管上得到稳定的显示波形,要求每次扫描的锯齿波信号的起点,应对应于周期性被显示信号的同一点。

11.线性时基扫描方式:连续扫描,触发扫描

12.高速示波器:显示NS,PS级脉冲信号。他区别与普通示波器在于:示波管(要求Y轴放大器必须有更大的放大倍数),Y轴放大器(是宽带放大器)和时基发生器(扫描速度高)13.电子技术法测频率构成:由时间基准T产生电路(提供准确的计数时间T)计数脉冲形成电路(将被测的周期信号转换为可计数的窄脉冲)计数显示电路(计数被测周期信号重复次数,显示被测信号的频率)

14.电子测量的特点:测量频率范围宽,测量量程宽,测量准确度高,测量速度快,可以进行遥测,易于实现测试智能化和测试自动化,影响因素众多,误差处理复杂.15.测量仪器的分类:电平测量仪器,电路参数测量仪器,频率时间相位测量仪器,波形测量仪器,模拟电路特性测试仪器,数字电路特性试仪器,测试用信号源

16.测量仪器的主要性能指标:精度:(精密度,正确度,准确度),稳定性,输入阻抗,灵敏度,线性度,动态特性

17.消弱系统误差的方法:零示法,代替法,补偿法,对照法,微差法,交叉读书法

18.信号发生器的分类:按频率:超低频,低频,视频,高频,甚高频,超高频。按输出波形:正弦,非正弦。按性能:一般,标准

19.低频信号发生器的振荡器:RC振荡器,LC振荡器,差频式振荡器

20.射频信号发生器按频率产生方法分类:调谐(信号发生器的振荡器通常为LC振荡器,根据反馈方式,分为变压器反馈式、电感反馈式及电容反馈式)锁相信号发生器,合成信号发生器(区别在于振荡器,即产生高频正弦波的方法不同)。

21.双踪示波器也称双迹示波器。双线示波器采用双线示波管构成。

22.记忆示波器:又称模拟存储示波器,记忆功能由记忆示波管完成。将记忆信号存储于示波管的栅网上。

23.示波器的触发方式:常态,自动,高频

23.标准时频的传递:本地比较法,发送—接受标准电磁波法 24.测量频率范围的扩大:外差法扩频测量

25.减小测量周期误差:可以减小Tc,把Tx扩大m倍。26.提高频率测量的准确度:提高晶振频率的准确度和稳定度以减小闸门时间误差,扩大闸门时间T或倍频被测信号频率fx以减小±误差,被测信号频率较低时,采用测周期的方法 27.测量相位差的方法:用示波器测量(直接比较法,椭圆法);把相位差转换为时间间隔,先测量出时间间隔再换算为相位差(模拟式直读相位计,数字式相位计);把相位差转换为电压,先测量出电压再换算为相位差(差接式相位检波电路,平衡式相位检波电路);零示法测量等。27.椭圆法:为了消除系统固有误差,通常在一个通道前接移相器。

28.电压测量特点:频率范围宽;测量范围宽;不同波形的电压测量方法及对测量精度的影响有差异;被测电路的输出阻抗不同对测量精度有影响;测量精度,测量直流电压精度较高,交流电压精度较低;测量易受外界因素干扰。

29.测量交流电压的方法:检波法,热电转换法(根据AD转换器的类型)30.检波法分为:平均值检波,有效值检波,峰值检波。

31.模拟交流电压表的类型:检波—放大式,放大—检波式,调制式,外差式,热偶变换式 32.低频交流电压测量:一般采用放大—检波式。检波器多为平均值检波器,有效值检波器 33.有效值检波器:二极管平方律检波式,分段逼近检波式,模拟计算式

34.高频交流电压测量:检波—放大式,峰值检波器(串联式峰值检波器,双峰值检波器,并联式检波器,倍压式峰值检波器)

35.电压测量仪器按显示方式分为:模拟式电子电压表:准确度和分辨率不及数字式,结构简单,频率范围宽,价格便宜。数字式电子电压表:(直流数字电压,交流数字电压)测量准确度高,速度快,输入阻抗大,过载能力强,抗干扰能力和分辨率优于前者。36.DVM的类型:A/D转换器分:比较式(逐次比较)、积分式(抗干扰能力强,速度慢),复合式 37.电子电压表各部分的功能:FET源极跟随器:提高电压表输入阻抗;放大器:提高电压表灵敏度;R0,R1,R2,R3组成分压器.38.测量仪表一般具有:物理量的变换,信号的传输和测量结果的显示等三种最基本的功能 39.通常用频率特性,输出特性和调制特性(简称三大指标)来评价正弦信号发生器的性能 40.常用的频率标准有晶体振荡时石英钟

1.差频式振荡器作低频信号发生器振荡源的原理和优点是什么?

答:差频式振荡器的可变频率振荡器和固定频率振荡器分别产生可变频率的高频振荡f1和固定频率的高频振荡f2,经过混频器M产生两者差频信号f=f1–f2。缺点:电路复杂,频率准确度、稳定度较差,波形失真较大;优点:容易做到在整个低频段内频率可连续调节而不用更换波段,输出电平也较均匀,所以常用在扫频振荡器中。2.高频信号发生器各单元的主要作用?

答:振荡器产生高频等幅振荡信号,调频器产生高频调频信号,内调制信号振荡器产生低频等幅振荡信号,缓冲放大器放大高频等幅振荡信号或高频调频信号,同时还起缓冲隔离作用,调制度计显示调制度计的大小,电子电压表显示缓冲放大器输出电压的大小,步进衰减输出级衰减缓冲放大器输出电压使之满足输入电路对输入电压大小的要求,电源的作用是为高频信号发生器各单元电路提供合适的工作电压和电流。

3.说明函数信号发生器的工作原理和过程,欲产生正向锯齿波,图中二极管应如何联接? 答:原理:积分电路和触发电路产生三角波和方波,通过函数转换器将三角波整形成正弦波 过程:正向锯齿波充电电压增大的时间长,放电电压减少的时间短,在R两端并联的二极管左端为正,右端为负。t1>t2 为正向锯齿波。

4.时基发生器由几部分组成?各部分电路起什么作用?为什么线性时基信号能展开波形? 答:时基发生器由闸门电路、扫描发生器和释抑电路组成。作用:时基闸门电路:控制扫描电压发生器的工作,它是一个双稳态触发电路,当触发脉冲到来时,电路翻转,输出高电平,使扫描电压发生器开始工作。扫描发生器:产生高线性度的锯齿波电压。释抑电路:保证每次扫描都开始在同样的起始电平上。在水平偏转板上加一线性锯齿波扫描电压ux,该扫描电压将Y方向所加信号电压uy作用的电子束在屏幕上按时间沿水平方向展开。5.说明点频法和扫频法测量网络频率特性的原理和各自特点?

答:1点频法原理:逐点测量幅频特性或相频特性.特点:原理简单,需要的设备也不复杂.但由于要逐点测量,操作繁琐费时,并且由于频率离散而不连续,非常容易遗漏掉某些特性突变点,而这常常是我们在测试和分析电路性能时非常关注的问题.另外当我们试图改变电路的结构或元件参数时,任何改变都必然导致重新逐点测量.2扫频法原理:在测试过程中,使信号源输出信号的频率按特定规律自动连续并且周期性重复,利用检波器将输出包络检出送到示波器上显示,就得到了被测电路的幅频特性曲线.特点:①可实现网络频率特性的自动或半自动测量②不会出现由于点频法中的频率点离散而遗漏掉细节的问题③得到的是被测电路的动态频率特性,更符合被测电路的应用实际。

6.测量相位差的方法主要有哪些?简述它们各自的优缺点。答:主要有:用示波器测量;把相位差转换为时间间隔,先测量出时间间隔再换算为相位差;把相位差转换为电压,先测量出电压再换算为相位差;零示法测量等。

示波器测量相位差:优点:用一部示波器即可解决问题,不需要其他的专用设备。缺点是测量误差较大,测量操作也不方便。相位差转换为时间间隔测量:模拟式相位计的优点是电路间单,操作方便,缺点是不能测出两个信号的瞬时相位差,误差也比较大,约为±(1~3)%。数字式相位计的优点是可以测出两个信号的瞬时相位差,测量迅速,读数直观清晰。缺点是当被测信号的频率改变时,必需改变晶振标准频率,fc可调时准确度难以做高,只能用于测量低频信号的相位差,而且要求测量的精确度越高,能测量的频率越低。相位差转换为电压测量:优点是电路间单,可以直读。缺点是只适用于高频范围,指示电表刻度是非线性的,读数误差较大,误差约为±(1~3°)。零示法测量:优点是电路间单,操作方便,缺点是由于高精度的可调移相器难于制作,且刻度与频率有关,因此,测量的精确度不高,且仅适用与中频频率范围。

7.电子示波器由哪几个部分组成?各部分的作用是什么?

答:电子示波器由Y通道、X通道、Z通道、示波管、幅度校正器、扫描时间校正器、电源几部分组成。作用:Y通道:检测被观察的信号,并将它无失真或失真很小地传输到示波管的垂直偏转极板上。X通道:产生一个与时间呈线性关系的电压,并加到示波管的x偏转板上去,使电子射线沿水平方向线性地偏移,形成时间基线。Z通道:在时基发生器输出的正程时间内产生加亮信号加到示波管控制栅极上,使得示波管在扫描正程加亮光迹,在扫描回程使光迹消隐。示波管:将电信号转换成光信号,显示被测信号的波形。幅度校正器:用于校正Y通道灵敏度。扫描时间校正器:用于校正x轴时间标度,或用来检验扫描因数是否正确。电源:为示波器的各单元电路提供合适的工作电压和电流。(高压,低压整流器)8.双踪与双线示波器的区别是什么?优缺点? 答:双踪双线示波器可以在同一个荧光屏上同时显示两个波形,以便于对波形进行观测和比较。双踪示波器的示波管与普通示波器的示波管一样,只有一对XY偏转板,双踪示波器是在两个Y通道信号间加电子开关,对两个波形显示进行分时控制。而双线示波器的示波管内有两对XY偏转板,分别显示两个被测波形。优点:双踪示波器比普通示波器增加的部件不多,可以达到较高的指标。缺点:工作于交替方式时需两次扫描才能显示两个波形,因而无法观察两个快速的单次信号或短时间的非周期信号。双线示波器的两个通道完全独立,可以弥补上述不足,并且两个偏转系统可以用不同的时基发生器,使仪器更为灵活,但由于示波管性能的限制,双线示波器的技术指标较低。

9.简述电桥法,谐振法,f-v转换测频率的原理,它们各适用于什么频率范围?这三种测频方法的测频误差分别决定于什么? 答:1.电桥法:利用电桥的平衡条件和被测信号频率有关这一特性来测频;仅适用于10khz以下的音频范围;精度取决于电桥中各元件的精确度,判断电桥平衡的准确度和被测信号的频谱纯度.2.谐振法:利用电感,电容,电阻串并联谐振回路的谐振特性来实现测频.一般被测频率为最低谐振频率或几个谐振指示点中电表指示的最大频率.误差决定于频率计算,谐振点,各元件的精度,读数的误差.3.频率电压转换测量频率:先把频率转换为电压或电流,然后用表盘刻度有频率的电压表或电流表指示来测频率.其最高测量频率为几兆赫.测量误差主要决定于um,t的稳定度以及电压表的误差.10.简述两类模拟交流电压表的工作过程?

答:检波-放大式:采用超高频检波二极管,对高频信号ux检波,经过分压器分压得到直流信号,在经过放大测量,适用于高频交流电压测量。放大-检波:被测电压过低时,先将其放大再检波和推动直流电压表显示,适用于低频交流电压测量。11.调制式直流放大器的工作过程及其抑制直流漂移的原理?

答:过程:调制器将微弱的电压信号用开关控制,经电容C滤波得到交流信号,再经交流放大器进行放大,解调器中将放大的交流信号用C隔掉直流成分,再经滤波器得到放大后的直流信号。原理:因为解调器中的C隔直流作用,使放大器的零点漂移被阻断,不会传输到后面的直流电压表表头。

12.解释下列术语:频率合成,相干式频率合成,非相干式频率合成。

答:频率合成是把一个(或少数几个)高稳定度频率源fs经过加、减、乘、除及其组合运算,以产生在一定频率范围内,按一定的频率间隔(或称频率跳步)的一系列离散频率的信号。相干式频率合成器:只用一个石英晶体产生基准频率,然后通过分频、倍频等,加入混频器的频率之间是相关的。非相干式直接合成器:用多个石英晶体产生基准频率,产生混频的两个基准频率之间相互独立。

13.说明电子枪的结构由几部分组成,各部分的主要用途是什么?

答:电子枪由灯丝(h)、阴极(K)、栅极(G1)、前加速极(G2)、第一阳极(A1)和第二阳极(A2)组成。灯丝h用于对阴极K加热,加热后的阴极发射电子。栅极G1电位比阴极K低,对电子形成排斥力,使电子朝轴向运动,形成交叉点F1,调节栅极G1的电位可控制射向荧光屏的电子流密度,从而改变荧光屏亮点的辉度。G2、A1、A2构成一个对电子束的控制系统。这三个极板上都加有较高的正电位,并且G2与A2相连。穿过栅极交叉点F1的电子束,由于电子间的相互排斥作用又散开。进入G2、A1、A2构成的静电场后,一方面受到阳极正电压的作用加速向荧光屏运动,另一方面由于A1与G2、A1与A2形成的电子透镜的作用向轴线聚拢,形成很细的电子束。

14.为什么瞬时式数字相位差计只适用测量固定频率的相位差?如何扩展测量的频率范围? 答:因为用“瞬时”式数字相位差计测量两信号的相位差时,晶振标准频率,所以,“瞬时”式数字相位差计只适用于测量固定频率的相位差。可以采用外差法把被测信号转换为某一固定的低频信号,然后再进行测量。

15.取样示波器的非实时取样过程为什么能将高频信号变为低频信号?取样示波器能否观测单次性高频信号?

答:非实时取样过程对于输入信号进行跨周期采样,通过若干周期对波形的不同点的采样,经过保持延长后就将高频信号变成了低频信号。取样示波器不能观测单次性高频信号,因为不能对其进行跨周期采样。取样示波器是一种非实时取样过程,它只能观测重复信号,对非重复的高频信号或单次信号,只能用高速示波器进行测量.16.如果要达到稳定现实重复波形的目的,扫描锯齿波与被测信号间应具有怎样的时间和时序关系? 答:扫描锯齿波的周期应是被测信号周期的整数n时,才能达到稳定显示重复波形的目的.

篇2:电子测量总结

第一章 电子测量的基本知识

1.电子测量的分类(测量手段、测量性质)

1)按测量手段分类有直接测量、间接测量和组合测量三种。

直接测量: 用测量仪器直接测得被测量的量值的方法。

间接测量:利用直接测量的量与被测的量之间已知的函数关系,得到被测量量值的测量方法。

组合测量将被测量和另外几个量组成联立方程,通过直接测量这几个量最后求解联立方程,从而得到被测量的大小。组合测量是兼用直接测量与间接测量的一种测量方法。

2)按测量性质分类有时域测量、频域测量、数据域测量等。

时域测量:测量被测量随时间变化的特性。

频域测量:测量被测量随频率变化的特性。

数据域测量:对数字系统逻辑特性进行的测量。

2.干扰的来源、干扰抑制常用的方法

干扰的来源:可分为自然干扰和人为干扰两大类。

干扰路径有四种 :公共阻抗,电场耦合,磁场耦合,电磁场辐射

干扰的抑制常用的方法是屏蔽、接地和滤波。

3.电子测量仪器的放置

⑴ 在摆放仪器时,尽量使仪器的指示电表或显示器与操作者的视线平行,以减少视差;对那些在测量中需要频繁操作的仪器,其位置的安排应便于操作者的使用。⑵ 在测量中,当需要两台或多台仪器重叠放置时,应把重量轻、体积小的仪器放在上层;对散热量较大的仪器还要注意它自身散热及对相邻仪器的影响。

4.电子测量仪器的接地(安全接地、技术接地)

以保障操作者人身安全为目的的安全接地和以保证电子测量仪器正常工作为目的的技术接地。

安全接地即将机壳和大地连接。这里所说的“地”是指真正的大地。

⑴ 在实验室的地面上铺设绝缘胶。

⑵ 仪器的电源插头应采用“三星”插头,其中“一星”为接地端(另一端连接在仪器的外壳上)。

⑶ 电子实验室的总地线可用大块金属板或金属棒深埋在附近的地下,并撒些食盐以减少接触电阻,再用粗导线引入实验室。通过接地线,泄漏电流就流入大地这个巨大的导体。

技术接地是一种防止外界信号串扰的方法。这里所说的“地”,并非大地,而是指等电位点,即测量仪器及被测电路的基准电位点。技术接地一般有一点接地和多点接地两种方式。

一点接地应用:在进行电子测量时,往往需要同时使用多台电子测量仪器,测量过程中一定要注意各电子仪器的“共地”连接,即各台仪器、被测电路的地端,应可靠的连接在一起。

第二章 误差分析和数据处理

1.常用测量术语(真值、示值、等精度测量、测量准确度、测量精度)

真值是指被测量本身具有的真实量值,一般用A0表示。真值不可知。在实际测量中常把高一级或更高级的基准或测量仪器测得的实际值作为真值使用,可作为“约定真值”。用A表示。

示值也称为测量值,是指测量器具的读数装置所指示出来的被测量的数值,一般用X 表示。

等精度测量是指保持测量条件不变,进行的多次测量。

测量准确度是指测量结果与被测真值之间一致的程度。

测量精度是对测量值重复性程度的描述。

2.测量误差的来源?

常见的误差的来源有以下几个方面:

1.仪器误差

2.方法误差(理论误差)

3.人身误差

4.环境误差

5.使用误差(操作误差)

3.绝对误差、修正值、实际相对误差、示值相对误差、满度相对误差、仪表的准确度

等级

4.误差的分类

5.随机误差、系统误差、的特点

6.判断有误系统误差、粗大误差

7.误差的合成与分配

8.测量数据的整理(误差位对齐法、有效数字表示法)

第三章 电流电压的测量

1.直流电流、交流电流的测量方案

2.热电式电流表的工作原理

3.电子电压表的检波器(峰值、均值、有效值检波器的刻度特性)

4.计算式有效值电压表原理图

5.数字电压表的性能指标(显示位数、分辨率、固有误差)

6.电平的计算、电平表

第四章 电路元件参数测量

1.电解电容的极性的判断

2.二极管的极性判断

3.三极管的管型、极性判断

4.电阻的测量(色环法、伏安法、电桥法)

5.晶体管图示仪的原理框图

第五章 电子示波器及测量技术

1.示波管(CRT)的组成、各部分的主要作用

2.扫描概念、扫描电压实际波形、同步的条件

3.上升时间与带宽的关系

4.触发极性与触发电平

5.示波器的基本测量方法

电压的测量

时间和频率的测量

相位的测量

李沙育图形测频率

第六章 时间与频率测量技术

1.电子计数器测频和测周的原理框图

2.测频法和测周法的误差分析

3.中界频率

第七章 电路频率特性的测量技术

1.点频法、扫频法的原理

2.扫频仪原理框图(测试波形)

3.频标电路原理框图

4.频谱和频谱分析的概念

第八章 信号发生器

1.差频式振荡电路原理框图、频率覆盖系数

2.锁相环的原理框图和原理

3.合成信号发生器(间接合成法)

第九章 数据信号的测量技术

1.逻辑分析仪的数据捕获部分由哪几部分组成?数据的捕获方式有哪两种?(会画

图)

2.逻辑分析仪的触发方式

篇3:电子测量中电磁兼容问题研究

随着科学技术的不断发展, 越来越多技术先进的电子产品流行于当今的市场以及虚拟市场中, 让广大人们体验到了电子产品为生活和工作带来的极大便利。但是在这些电子产品的电子测量过程中电磁兼容的问题一直困扰着测量结果的准确性, 因此近几年来电磁兼容的问题受到越来越广泛的关注, 如今电子产品在生产完成后都要经过严格的、多层次的电子测量, 基于功能方面的测量是难度相对比较低的, 在电子测量中容易产生误差的就是电磁兼容的问题, 然而电磁兼容性又是电子产品在电子测量过程中一项重要的指标。电子产品的电子兼容问题会导致在不同环境下电子产品的应用性能出现差异。电磁兼容指的是测量的电子产品在不同的设备、装置下, 不会由于电磁环境的改变而影响测量产品的性能。然而在给一款电子产品做电子测量的时候最容易被忽视的就是电磁兼容问题, 因为被测量的电子产品与电子测量所用的设备、装置之间就存在着电磁干扰, 检测出电子产品的性能没有达到预期的指标, 但是在这种情况下往往不会意识到是因为检测和被检测设备之间存在电磁兼容性比较差的问题, 而是直接的定位于被检测产品的性能问题。因此在进行电子检测的过程中要重视电子设备的电磁兼容性, 需要利用产生不同的电磁感应的设备和装置进行反复的测量, 并且采取有效的屏蔽干扰的方式来抑制干扰, 提高测量结果的精确度。

2 电磁的干扰来源

在电子测量中遇到电磁兼容问题是不可避免的, 但是针对于不同类型的电子设备所产生的电磁环境是不一样的, 而且每一种电子设备不能兼容的电磁干扰也是有明显区别的。但是常见的干扰包括以下几种:电磁干扰、光干扰、热干扰, 以及机械干扰等。以上干扰最难以控制的就是电磁干扰, 因为电磁环境是很难以掌握的, 而且不是人类可以感应到的, 而光干扰、热干扰和机械都是可以进行人工控制的。因此电磁兼容问题是电子测量中较为重视的, 所以要检测出被检测电子设备不能兼容的电磁环境, 并且分析电磁干扰的来源。电磁干扰的主要来源就是电噪声影响了设备运行中有效的信号, 影响信号的传输。电噪声来源于内部噪声干扰和外部噪声干扰。内部噪声指的是被检测设备本身在检测的过程中产生的热噪声、交流噪声、感应噪声以及反射噪声等。外部噪声就是指自然界存在的一些自然干扰, 包括:气噪声、光噪声以及辐射噪声等等自然界中存在的干扰。以上噪声干扰会经过一定的耦合影响电子设备信号的传输。

3 提高电子测量中的电磁兼容性

电子设备的电磁兼容检测分为两方面, 一方面是被检测设备在其他电子设备产生的电磁信号中是否可以正常运行, 性能是否达到指标;另一方面就是被检测设备在正常运行的情况下所产生的电磁干扰不影响其他设备的正常使用和性能。为了有效的避免电磁的干扰就要提高电子设备的信噪比, 保证电子设备可以正常的传输信号, 提高设备的电磁兼容性。排除干扰的方式有多重, 但是针对于不同的电子设备, 以及不同的干扰源要有针对性的选择排除干扰的方法, 提高电子测量的准确度, 进而有效的提高电子设备的电磁兼容性。

3.1 屏蔽外部干扰源

在电子测量的过程中由于不能完全排除外界存在对设备的干扰, 所以要对外部的干扰源进行屏蔽, 抑制电子设备受到外界电磁的干扰, 保证电子测量结果的准确性。针对来源于其他设备的电磁干扰可以采取屏蔽外界设备来抑制干扰, 而针对于自然界一些不可避免的干扰可以采取屏蔽被检测设备的方式屏蔽干扰源, 来提高测量的准确度, 譬如光干扰、辐射干扰等外界干扰源。然而针对于被检测设备自身存在的干扰是不可以采用屏蔽的方式来控制的, 只能有针对性的采取其他方式来避免干扰。

3.2 过滤干扰电磁波

过滤电磁波的方式是抑制干扰影响信号传输的有效措施, 当今的滤波技术也在不断的提升, 因此可以将滤波技术应用于不同的方面来抑制干扰。首先可以抑制干扰源发出干扰信号, 其次可以解除噪声的耦合抑制干扰, 同时还可以提高电子设备自身的抗干扰能力。由于在电子测量的过程中电磁波的干扰源有很多种, 而且不一定所有的电磁波都会对电子测量产生明显的影响, 因此利用滤波技术来抑制干扰要有针对性的采取滤波措施。电子设备大都是依靠交流电源进行工作的, 而噪音耦合会通过交流电传导入电路中, 这样就会产生噪声干扰, 所以对交流电源进行滤波技术可以有效的抑制噪声干扰。

3.3 合理的连接线路

电子测量的设备中有很多的连接线路, 电子设备具有的功能越强大可能使用的连接线越复杂, 然而这些线路也会对电子测量形成一定的干扰, 所以要谨慎的使用连接线。通常在电子测量中要对设备进行接地, 使设备与大地形成一个闭合的电路, 这样在电子测量的过程中避免了电荷的堆积, 同时将设备接地形成了一个低阻抗的连接, 抑制高频电压对电子测量形成干扰。同时在电子测量设备中正确的布置连接线路可以抑制高频电磁感应对设备产生的干扰, 也要限制使用引用连接线, 减少耦合, 并且要尽量使用屏蔽类的连接线, 连接线的粗细程度的选择也要合理, 因为这些引用连接线也会产生一定的干扰。在布置连接线路的时候要将不同类型、不同功能的连接线进行分类, 避免不同分类的连接线排列的过近, 并且尽量不要大量的平行布置这些连接线, 以最大程度的降低连接线路带来的干扰。

4 结语

电子测量的过程中难免会遇到各种各样的电磁兼容的问题, 这就需要进行认真的分析干扰来源, 并且有针对性的采用抑制干扰的措施, 来降低测量过程中的干扰, 尽量提高电子测量结果测准确性, 保证电子设备达到预期的各项指标。

参考文献

[1]高忠民.电磁兼容是不可忽视的电子测量问题[J].中国计量.2001 (05) :123-125.

[2]逯贵祯, 关亚林.电磁兼容中的混波室测量技术[J].北京广播学院学报 (自然科学版) .2005 (03) :142-144.

[3]代阳, 李钢, 陈欣, 赵俊伟.电子测量技术的应用及发展[J].计量与测试技术.2010 (08) :230-233.

篇4:浅谈电子仪表测量

【关键词】仪表;测量;电路;干扰;误差

一、前言

仪器在日常生活中随处可见。过去,我们使用最多的是机械仪器,它具有一些缺点,例如,不易测量,精度不高,而且很容易造成误差。而基于电子仪表一般都具有方便快捷,精密度高,以及量程范围比较广等的特点,因此,在社会的各行各业中,电子仪表的使用范围比较广,需要量也比较大。所以,对我们来说,要尤其重视学习先进仪表的使用方法及其技术,为日常生活中的应用做好准备。

二、电子仪表的特点

电子仪表具有容易测量,而且能够节省大量的人力、财力等优点。此外,它还具有比机械式仪表更高的精度,例如做实验称量东西时用的天平,天平的种类很多,以前用的最多的是遵循左物右码的法则的老式天平,误差较大,测量结果往往不准确。而现如今用的最多的是电子天平,它具有更高的精确度。

三、电子仪表使用注意事项

仪表的使用说明书对仪表来说非常重要,因此在使用电子仪表之前,除了要好好研究使用说明书外,还需要注意以下几点:

1.了解技术指标在日常生活中,我们遇到过各种各样的电子仪器,其中每一台电子仪器都有其固定的技术指标,因此技术指标占有非常重要的位置。以行车电子秤中称重仪表为例,其技术指标一般包括以下几个方面:第一、基本规格。第二、称量精度等级。第三、大屏幕显示:字高为多少。第四、额定超载能力。第五、安全系数。只有了解清楚这些技术指标,才能避免不必要的麻烦。有时候,用不同的仪表测定数据时会得到不同的结果。因此根据不同的技术指标选择合适的电子仪表对测量结果的准确性有很大的帮助。

2.熟悉电子仪表的使用方法在使用电子仪器时,我们首先要清楚一些规则和要求,也就是必须知道电子仪表的正确的使用方法。如果我们不注意这些问题,则会出现一系列的麻烦,例如,测量结果存在错误,以及造成仪表的毁坏。例如生活中常会遇到的错误有,该接地的没有接地,再比如说使用直流电源时,必须先调整好输出电压才能接入电路,否则会是电路中的仪表超过其量程而出现故障,甚至损坏。

3.了解仪表的结构原理以及各控制装置的作用为了避免不必要的问题及麻烦,以及确保测量结果的精确性。在使用仪表之前,首先我们要清楚仪表的使用原理,以及各个部件的操作方法、功能及作用。这样在遇到问题时,我们才会知道从哪方面入手去应对困难,及时找到应对措施。

4.正确的选择仪表的功能与量程每一个电子仪表都会有一个量程要求,例如天平,电压表等。为了防止仪表的损坏,在使用仪器之前,要清楚其量程的范围,使用时注意不要超过最大量程。一般来说,测量结果与仪表量程范围的选择有关,范围越小,结果越精确。因此,为了实验的顺利进行,应该在正确的量程范围内使用仪器。

四、电子仪表的误差分析

在实际的工程应用中,测量工具带来的误差是不可避免的。综合分析,造成误差的分析主要由以下几种:第一,测量方法不正确。第二,测量设备没有矫正或有偏差。第三,测量人员操作不熟练。第四,测量过程中有干扰源存在。这些误差有些事由于测量系统引起的,有些是偶然因素引起。下面就造成误差的原因作出简要介绍。

1.仪表本身误差

仪表本身的机械性能或电器结构不完善往往会造成仪表本身的误差。例如在使用仪表之前,没有进行校正,因为有的仪表由于长时间没有使用,零点会发生偏移,刻度的划分不清晰等。这些误差的消除办法主要是通过在使用之前对其校正进行修正。其次,我们还可以通过部分设备的更换,同一试验的多次测量求平均值等方法避免。

2.仪表使用误差

使用误差是指在使用过程中由试验人员操作不当造成的。在安装时,对仪表放置,调节,或者是安装都要符合仪器的使用规范。不当的操作会对测量产生不定方向的偏差。例如分光光度计在使用之前要预热半个小时,如果没有预热的话可能会导致误差的形成。这种误差避免或者降低的方法是向有经验的使用者进行咨询;仔细阅读仪表的使用说明书和工作原理图纸,弄清楚仪表的型号,结构,在详细地了解使用方法之后再使用。

3.仪表人为误差

人为误差通常是由于测量者本身造成的。这种误差往往能够避免,大多数都是由于操作者的粗心大意而引起的,或者是操作不当引起的。例如,没有按照正确的方向读数,使用时姿势不正确等。要避免此种误差,需要对测量者事先进行技能培训,提高其测量素质和责任心,增强测量结果的准确性。

4.仪表环境误差

环境对测量结果的影响是很明显的,尤其是对一些高精度的仪表。外界环境通常包括有温度、湿度、电场、磁场、电磁波等。不同的测量仪器对应的敏感因素不相同。例如某些测定仪在使用过程中,一定要保证环境在较干燥的环境中,环境湿度太大或者波动会对测量结果产生较大的影响。所以在使用前,必需要先仔细阅读说明书,操作过程中尽量避免因受到外界条件干扰产生误差。

5.仪表理论误差

理论误差是仪表在设计时是根据理论上简化过的近似公式来设计的,这种不科学的仪表本身就带有一定的误差,即便是完全按照上述四项进行操作,其结果也不正确。修正误差的方法是加强仪表的理论学习,用更加科学严谨的理论进行仪表设计。

五、电子仪表的抗干扰技术

1.屏蔽屏蔽通俗意义上讲就是隔离,一般是把干扰信号源屏蔽起来,有时候也需要将使用的仪表隔离,屏蔽一般分为三种类型:静电屏蔽,磁屏蔽,电磁屏蔽。屏蔽方法的选择根据实际操作中遇到的具体问题而定,这样能最大程度地降低干扰作用。在一些特殊的测量中,我们可以通过双层屏蔽来降低干扰,以确保测量的准确性。

2.换线所用信号线同电网馈线的位置与产生的静电耦均有着很大的关联,双绞线的使用比平行线的抗干扰效果更好。有一种电缆线具有屏蔽层,使用这种线也能够有效地减少外界对仪表的干扰。

3.滤波滤波是抑制干扰的有效手段之一。一般使用的滤波器是由电容,电阻,电感等元件制成的。滤波器的作用是降低或者是衰减输入端的干扰信号,以减少作业环境中非人为因素的干扰。使用滤波器有一定的要求,通常情况下要求将收到的干扰信号衰减100倍甚至更高。

六、结束语

随着科学的进步,仪表已经成为了各个领域里工业检测不可或缺的工具。作为一种精密仪器,使用过程中我们要尽可能地规范操作,在保证检测目的的基础上减少对仪表的伤害。现实的使用中,我们要做到具体问题具体分析,以保证测量工作的顺利进行。

参考文献

[1]吴唯质,成胜昌,袁文重,肖凌涛.妈湾发电总厂4号机组DCS系统模拟量信号大范围波动分析处理[J].热力发电,2002(01)

[2]余道松.自动化系统的防干扰接地[J].基础自动化,1996(05)

作者简介

篇5:电子测量技术课程总结

班别:信息122

学号:1213232222 姓名:冯健

任课老师:康实

在第一章中我们可以学习到:

测量是无处不在的,日常生活、工农业发展、高新技术和国防现代化建设都离不

开测量,科学的发展与进步更离不开测量。

俄国科学家门捷列(л.ц.Менделеев)

在论述测量的意义时曾说过:“没有测量,就没有科学”,“测量是认识自然界的主要工具”。

电子测量是泛指以电子技术为基础手段的一种测量技术,除了对各种电量、电信

号以及电路元器件的特性和参数进行测量外、它还可以对各类非电量进行测量。

按照测量的性质不同,可以将电子测量分为时域测量、频域测量、数据域测量和

随机量测量四种类型;按照测量方法的不同,电子测量又可以分为直接测量、间

接测量和组合测量三类。

电子测量要实现测量过程,必须借助一定的测量设备。电子测量仪器种类很多,一般分为专用仪器和通用仪器两大类。根据被测参量的不同特性,通用电子测量

仪器有可以分为信号发生器、电压测量以前、示波器、频率测量仪器、电子元器

件测试仪、逻辑分析仪、频谱分析仪等。高新技术的发展带动了电子测量仪器的发展,目前以软件技术为核心的虚拟仪器也得到了广泛应用。

它是测量学和电子学相互结合的产物。电子测量除具体运用电子科学的原理、方

法和设备对各种电量、电信号及电路元器件的特性和参数进行测量外,还可以通

过各种敏感器件和传感装置对非电量进行测量,这种测量方法往往更加方便、快

捷、准确,有时是用用其他测量方法不可替代的。因此,电子测量不仅用于电学

这专业,也广泛用于物理学,化学,机械学,材料学,生物学,医学等科学领域

及生产、国防、交通、通信、商业贸易、生态环境保护乃至日常生活的各个方面。

近几十年来计算机技术和微电子技术的迅猛发展为电子测量和测量仪器增添了

巨大活力。电子计算机尤其是尤其是微型计算机与电子测量仪器相结合,构成了

一代崭新的仪器和测试系统,即人们通常所说的“智能仪器”和“自动测试系

统”,它们能够对若干电参数进行自动测量,自动量程选择,数据记录和处理,数据传输,误差修正,自检自校,故障诊断及在线测试等,不仅改变了若干传统

测量的概念,更对整个电子技术和其他科学技术产生了巨大的推动作用。现在,电子测量技术(包括测量理论、测量方法、测量仪器装置等)已成为电子科学领

域重要且发展迅速的分支学科。

在第二章我们讨论了测量误差和数据出来的基本知识。

测量误差是在所难免的,测量误差的表示方法有绝对误差和相对误差。绝对误差

表明测量结果的准偏离实际值的情况,是一个既有大小又有符号和量纲的量。相

对误差能够确切地反映测量结果的准确程度,其只有大小和符号,不带量纲。可

以最大引用相对误差确定电子测量仪表的准确度等级。

根据性质和特点不同,可将测量误差分为系统误差、随机误差和粗大误差三类。

系统误差的主要特点是:只要测量条件不变,误差即为确切的数值,用多次测量

取平均值的办法不能改变或消除系差,而当条件改变时,误差也随之遵循某种确

定的规律而变化,具有可重复性。随机误差的特点是:① 有界性;② 对称性;

③ 抵偿性。粗差的主要特点是:测得值明显地偏离实际。

用数字方式表示测量结果的时候,应该根据要求确定有效数字。不可以随意改变

测量结果的有效数字位数。在对多余数字删略的时候,必须“四舍五入,逢五凑

偶”的舍入规则。对数据进行近似也应该遵循相应的规则。

万用表是电子测量的最基本最常用的测量仪表之一,按照工作原理不同,可将其

分为模拟式万用表和数字式万用表2大类。

第三章我们从直插式和贴片式2方面认识了电子元器件的基本知识。

标称值和允许误差是电阻、电容、电感等常用被动元件的两个参数。按照导电能

力的不同可以将材料分为导体、半导体嗯哼绝缘体三大类,半导体材料是制作晶

体管、集成电路、电力电子元器件。光电子元器件的基本材料。常用的电阻、电

容、电感、二极管等电子元器件都有贴片封装。

第四章我们学习了常用信号发生器的基本知识。信号发生器可以分为专用信号发生器和通用信号发生器两大类,通用信号发生器

又可以分为低频信号发生器,高频信号发生器、任意波形发生器和任意函数发生

器等类型。频率特性。输出特性和调制特性是信号发生器的三大特性。

直接式频率合成技术频率转换速度快,能够产生任意笑的频率增量,具有较好的近载频相位噪声性能。但是输出端的谐波、噪声和寄生频率难以抑制。间接频率

合成技术又称为锁相式频率合成技术,具有频谱纯度高,一遇得到大量离散频率的优点,但是其频率切换时间相对比较长,相位噪声也比较大。直接数字频率合成技术从相位概念出发直接合成所需波形,其优点是频率分辨率高,相对带宽宽,具有任意波形输出能力和数字调制功能,但是输出信号杂散抑制差。

典型的锁相环系统主要由鉴相器。环路滤波器和压控振荡器三部分组成。典型

锁相环一般只能输出一个频率,为了能够输出一系列频率,通常在反馈环路中插

入频率运算功能,即可改变输出频率。有倍频、分频和混频三种频率运算方式。

频率范围、频率分辨率、频率转换时间、频率准确度与稳定度是通用锁相环频率

合成器的主要性能指标。

第五章我们学习了模拟示波器和数字示波器的基本知识。

示波器是一种图形显示设备它能够将人眼看不到的电信号描绘成可见的图形曲

线。按照对信号处理方式的不同,可将示波器分为模拟式和数字式两种类型。模

拟示波器又可以分为通用示波器、多束示波器、采样示波器、记忆示波器和专用

示波器等类型。数字示波器又可以分为数字存储示波器、数字荧光示波器和数字

采样示波器三种类型。

示波器的主要性能参数有带宽、采样速率、信息数量和内存深度等。这些也是决

定不同型号的示波器价格的主要因素。数字示波器的性能指标主要包括频带宽度、最高采样速率、存储带宽、波形刷新率以及读出速度等几方面。

通用示波器主要由Y系统、X系统、主机系统三大部分组成。Y系统是被测信号的输入通道,它对被测信号进行衰减,放大并产生内触发信号。X信号系统的作用是产生和放大扫描锯齿波信号,它是由触发电路、扫描发生器和水平放大器

组成。主机系统由示波管、电源、显示电路、Z轴电路、校准信号发生器等组成。

示波管是示波器中常用的显示器件,它是由电子枪、偏转系统和荧光屏三部分组

成。

为了在同一个屏幕上同时观察多个信号波形或同一信号波形的不同部分,需要进

行多波形显示。双踪示波器是较常用类型,具有交替和断续两种显示方式。

第六章我们学习了交流电压和电子电压表的基本知识。

电压测量具有频率范围宽、输入阻抗高、悲惨波形多样、抗干扰能力强等特点。

峰值、平均值、有效值以及相应的波峰因数和波形因数是交流电压幅度特性的电

压表征量。

检波器是实现AD/DC转换的核心部件。

电平是指两个功率或电压之比的对数,单位为贝尔(B)。

数字式电压表利用A/D转换技术将被测电压量转换为数字量,并将测量结果以十

进制形式显示出来。

第七章我们学习了频域测量的基本知识。

信号的频域测量和频谱分析是以电信号的频率f作为横轴来测量分析信号的变

化,即在频域内对信号进行观察和测量的。频域测量与分析的对象和目的各不相

同,通常包括频率特性测量、选频测量、频谱分析、调制度分析和谐波失真度测

量等。

频率特性的测量有静态测量法和动态测量法两种基本方法。点频测量法属于静态

测量法;扫频测量法属于动态测量法。扫频仪基于扫频原理构成,能在示波管荧

光屏上直接观测到各种电路频率特性曲线。它主要由扫频信号发生器、扫描电路。

频标电路以及示波管等部分组成。

频谱分析以频谱分布图的形式来表示被测信号中所包含的频率成分,可对电信号

或电路网络的频率、电平调制度、调制失真、频偏、互调失真、带宽、窄带噪声、增益、衰减等参数进行测量。频谱分析仪还可以分为模拟式、数字式、和模拟/

数字混合式三类。根据信号处理的实时性,频谱分析仪还可以分为实时频谱分析

仪和非实时频谱分析仪两类。

失真度是指原始信号进过传输设备以后所得的输出信号与原始信号的比值。失真的结果是使得输出信号产生了原始信号中没有的谐波分量。失真度测量方法可以

分为频谱分析法和基波抑制法。失真度分析仪也相应地分为基波抑制式和频谱分

篇6:电子测量实验报告

课程名称:姓 名:系:专 业:年 级:学 号:指导教师:职 称:信息工程类

实验报告

电子测量技术

电子信息工程系 电子信息工程

年月 日

实验项目列表

福建农林大学计算机与信息学院信息工程类实验报告

系: 电子信息工程系 专业: 电子信息工程 年级: 姓名: 学号: 实验课程: 电子测量技术基础 实验室号:_田406 实验设备号: 实验时间: 指导教师签字: 成绩:

实验一:示波器、信号发生器的使用 1.实验目的和要求 1)了解示波器的结构。2)掌握波形显示的基本原理、扫描及同步的概念。3)了解电子示波器的分类及主要技术性能指标。4)掌握通用示波器的基本组成及各部分的作用。5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。2.实验原理

在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。

电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的x偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。

若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条

垂直的直线。因此,只有当x偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。

一般说来,y偏转板上所加的待观测信号的周期与x偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。近代电子示波器通常是采用等待触发扫描的工作方式来实现同步的。只要选择不同的触发电平和极性,扫描便可稳定在待观测信号的某一相应相位点开始,从而使显示波形稳定、清晰。

在现代电子示波器中,为了便于同时观测两个信号(如比较两个信号的相位关系),采用了双踪显示的办法,即在荧光屏上可以同时有两条光迹出现,这样,两个待测的信号便可同时显示在荧光屏上,双踪显示时,有交替、断续两种工作方式。交替、断续工作时,扫描电压均为一种,只是把显示时间进行了相应的划分而已。

由于双踪显示时两个通道都有信号输入,因此还可以工作于叠加方式,这时是将两个信号逐点相加起来后送到y偏转板的。这种工作方式可模拟谐波叠加,波形失真等问题。同时,如果改变其中一个的极性,也可以实现相减的显示功能。这相当于两个函数的相加减。示波器除了用于观测信号的时间波形外,还可将两个相同或不同的信号分别加于垂直和水平系统,以观测两信号在x?y平面上正交叠加所组成的图形,如李沙育图形,它可用于观测两个信号之间的幅度、相位和频率关系。3.主要仪器设备(实验用的软硬件环境)1)函数信号发生器,型号yb1634,指标:0.2hz-2mhz,数量2台; 2)双踪示波器,型号yb4320a,指标:20mhz,数量1台。3)其它实验室常用工具。4.操作方法与实验步骤 4.1操作方法 1)作好使用示波器前的调亮、聚焦、校正等准备工作。2)用示波器测量方波的上升时间和下降时间。3)用示波器显示、测量正弦波的重复周期及电压峰—峰值。4)用示波器显示、测量三角波的波形对称度。4.2实验步骤 1)作好使用示波器前的调亮、聚焦和校正等准备工作(1)打开示波器的电源开关后,先将示波器的两个通道的耦合方式置为地,然后分别通过调节示波器的辉度按钮“rw1”来改变荧光屏亮点的辉度即荧光屏的亮度,调节聚焦按钮“rw2”和辅助聚焦按钮“rw3”来使得电子束具有较细的截面,射到荧光屏上,以便在荧光屏上显示出清晰的聚焦很好的波形曲线。

(2)分别对示波器的两个通道进行调零,然后调节示波器的ch1的“位移”旋钮及ch2的“位移”旋钮,分别将通道1的扫描线及通道2的扫描线调至中心位置,以便更好的观察波形。

(3)调节“扫描微调”旋钮至校准位,将校准信号接入通道1,观测显示是否正确(其中示波器提供的是标准的1khz)。

(4)按下“ch2”按钮,显示通道2的扫描线,调节“触发电平”旋钮至锁定位置。2)各种波形参数测量(1)方波

①上升时间tr测量

对示波器进行调零完之后,再用同轴电缆将示波器和信号发生器连接 起来,在波形选择档选择方波的波形,当得到所要的方波波形之后,调节示波器的时基旋钮将波形展开,使波形放大,接着按下扫描因数³5的扩展键,调篇二:电子测量实验报告

电气工程学院

电子测量课程 实验报告

名:

蜗牛的染色体

号: 同 组 人:

指导教师: 曾国宏 实验日期: 2012年10月28日

示波器波形参数测量 实验成绩评定表

指导教师签字:

年 月 日

示波器波形参数测量 实验报告

姓名: 学号 指导教师:曾国宏 实验台号: 17

一、实验目的本实验利用示波器测量波形的参数,进一步巩固和加强示波器的基础知识,熟练掌握示波器的使用方法和测量技巧。具体包括三个内容: 1.熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。2.熟练掌握用示波器测量电压信号周期及频率。

3.熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。

二、实验预习

在做此实验前,预习工作主要由以下几个方面:

1、在做实验以前,熟悉了整个实验的内容以及实验过程中应该注意的注意事项有哪些;

2、认真查阅了示波器的型号以及其功能,凭借以往的经验,对示波器有了更深一步的认识;

3、学习示波器,对示波器的校准和各个键位功能进行进一步确定,了解怎样用示波器测定峰峰值以及确定其直流分量,另外确定波形的周期继频率;

4、了解单踪示波器和双踪示波器的差别,其次了解怎样用单踪方法和双踪方法分别测定相位差。

三、实验仪器与设备

1、ss7802a型示波器 a、主要参数: ss-7802模拟示波器²具有能够选择场方式、线路的tv/视频同步功能²附有光标和读出功能²5位数计数器 规格及性能²显像管:6英寸、方型8³10p(1p=10mm)约16kv²垂直灵敏度:2mv/p~5v/p(1-2-5档)(通道

1、通道2)精度:±2%²频率范围:20mhz²时间轴扫描a²100ns/p~500ms/p²tv/视频同步:能够选择场方式、能够选择odd、even、both、扫描线路²

b、主要功能描述

示波器操作板如图所示: ? 包括如下五个操作控制区域: 水平控制区

【?position?】:将【?position?】向右旋转,波形右移。fine 指示灯亮时,旋转【?position?】可作微调。mag³10 :扫描速率提高10 倍,波形将基于中心位置向左右放大。alt chop :选择alt(交替,两个或多个信号交替扫描)或chop(断续,两个或多个信号交替扫描)。? 垂直控制区

input :输入连接器(ch1、ch2),连接输入信号。ext input :用外触发信号做触发源。外信号通过前面板的ext input 接入。

【volts/div】 :调节【volts/div】选择偏转因数。按下【volts/div】;偏转因数显示“?”符号。在该屏幕下,可执行微调程序。

【▲position▼】 :垂直位移,向右旋转,波形上移。ch1、ch2 :通道选择,按下 ch1 或ch2 选择通道显示或不显示。gnd :按下 gnd 打开接地开关。

dc/ac: 选择直流(dc)或交流(ac)耦合。add、inv :显示(ch1+ch2)(相加〈add〉)或(ch1-ch2)(相减〈inv〉)。? 触发及扫描控制区

【time/div】 :选择扫描速率。【trig level】 :调整触发电平。slope :选择触发沿(+、―)。source :选择触发来源(ch1、ch2、line、ext、vert)。coupl :选择触发耦合方式(ac、dc、hf rej 或lf rej)。tv :视频信号触发选择(both、odd、even、或tv-h)。trig’d 指示灯 :当触发脉冲产生时灯亮着。ready 指示灯 :等待触发信号时灯亮着。auto、norm :选择重复扫描。sgl/rst :选择单次扫描。? 功能选择及控制区

【function】 :可用此旋钮设定延迟时间、光标位置等。旋转时做为微调使用。如需粗调时,可单次或连续按下此钮,而光标移动方向为之前此钮旋转的方向。

→光标←: △v-△t-off :选择△t(时间变化测量),选择△v(电压变化测量),或off。tck/c2 :选择光标移动形式(c2 或tracking)。holdoff :选择释抑时间。? 整体控制区 power:用于开启电源(on)或进入预备(stby)状态 屏幕灰度等的调整 校准信号及接地端口

cal 连接器:输出校准电压信号,此信号用于本仪器之操作检查及调整探头波形

屏幕显示分为以下三个区域: ? 触发及扫描信息显示区

在显示屏的上方,依次为:扫描速度、触发源、触发极性、触发耦合方式、触发电平、释抑时间等项目。? 波形显示区

显示信号波形。

? 信号源状态、测量结果显示区

位于屏幕的下方。

四、实验内容及步骤:

1、测量1khz的三角波信号的峰峰值及其直流分量: 步骤: a、打开示波器,并对示波器进行校准; b、将探头一段接到ch1另一端接到cal连接器,其扫描模式设置为acto,然后经过一系列操作,使示波器显示如下图的波形:篇三:电子测量技术 实验报告

《电子测量技术》实验报告

姓 名:xxxxxxx 学 号:xxxxxxxxxxx 班 级:电气xxxxx班

员:xxxxxxxxxxx

指导教师:xxxxxxxx 实验日期:xxxxxxxxxxxx 实验一 示波器波形参数测量

一 实验目的通过示波器的波形参数测量,进一步巩固加强示波器的波形显示原理的掌握,熟悉示波器的使用技巧。1.熟练掌握用示波器测量电压信号峰峰值,有效值及其直流分量。2.熟练掌握用示波器测量电压信号周期及频率。3.熟练掌握用示波器在单踪方式和双踪方式下测量两信号的相位差。

二 实验设备

1.信号发生器, 示波器 2.电阻、电容等

三 实验步骤

1.测量1khz的三角波信号的峰峰值及其直流分量。2.测量1khz的三角波经下图阻容移相平波后的信号的峰峰值及其直流分量。3.测量1khz的三角波的周期及频率。4.用单踪方式测量三角波、两信号间的相位差。5.用双踪方式测量三角波、两信号间的相位差。

6.信号改为100hz,重复上述步骤1~5。

四 实验数据

1.本实验所用rc移相平波电路中,2.1khz三角波测量结果数据记录表 100hz三角波测量结果数据记录表 3.数据处理与分析(1)幅值

解:由于输出信号幅值基本保持不变,下面以幅值衰减倍数

为变量进行比较:

输入信号为1khz三角波时,幅值衰减倍数 作

输入信号为100hz三角波时,幅值衰减倍数

该移相平波电路对100hz三角波的衰减较小,推广到一般,rc移相平波

电路对低频信号的衰减较小(2)直流分量:

解:由于输出信号直流分量基本保持不变,可直接对输出信号的直流分量

进行比较,输入信号为1khz三角波时,输入信号为100hz三角波时,该移相平波电路对三角波的直流分量的阻隔作用近乎没有。推广到一般,rc移相平波电路对信号的直流分量没有阻隔作用。(3)相位差:

°

解:输入信号为1khz三角波时,采用单踪方式:

采用双踪方式:

输入信号为100hz三角波时,采用单踪方式:

采用双踪方式:

单踪方式较双踪方式准确

比较两项的相位差可知,该移相平波电路对1khz三角波的移相作用较明 显,推广到一般,rc移相平波电路对高频信号的移相作用较大

五 实验结论 1.rc移相平波电路对于100hz三角波信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于1khz三角波信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。推广到一般,rc移相平波电路对于低频信号,幅值衰减较小,直流分量阻隔作用较大,相位移动较小;对于高频信号,幅值衰减较大,直流阻隔分量较小,相位移动较大。2.对于示波器测量,单踪方式较双踪方式更为准确,且适用范围较广,因为双踪方式不可用于不相干信号的测量,否则会导致波形不稳定。

六 实验问题讨论 1.测量相位差时,你认为双踪、单踪测量哪种方式更准确?为什么? 解:单踪测量更准确。

选用双踪方式时,使用两个输入通道,双踪方式的扫描分为交替方式(alt)和断续方式(chop)两种,均会产生更大系统误差,因而导致

双踪工作方式的准确度略低于单踪工作方式。2.你认为在实验过程中,双踪示波器的扫描是工作在交替、还是断续方式?为什么? 解:当输入信号为1khz三角波时,示波器工作在交替方式;

当输入信号为100hz三角波时,示波器工作在断续方式;

交替扫描方式为非实时扫描,开关速度低,适用于高频信号,而断续、扫描方式为实时扫描,开关速度高,适用于低频信号。3.对于同一组移相电路,1khz和100hz三角波经过移相变换后,其相位、幅值有何不同?为什么

解:对于同一组移相电路,输入信号形式相同但频率不同时,会产生不同输 出信号。下面先进行理论分析: 根据基尔霍夫定律,得:篇四:电子测量实验报告7 电子测量实验报告

学 院: 姓 名: 学 号: 班 级: 指导老师:

完成时间: 2011-12-06 实验六 fft频谱分析实验

一、实验目的 1 通过实验加深对快速傅立叶变换(fft)的认识; 2 了解fft点数与频谱分辨率的关系;

熟悉掌握实验中所需设备及仪器的使用方法; 4 掌握常见波形的频谱特点。

二、实验器材

1、信号发生器 1台

2、dso-2902/512k型测试仪 1台

3、实验箱 1台

4、单管、多级、负反馈电路实验板 1块

三、实验原理

对于一个电信号,可以用它随时间的变化情况(即波形)来表示,也可以用信号所含的各种频率分量(即频谱分布)来表示。用示波器实现的波形测试方法称为时域分析法,用频谱分析仪观察信号频谱的方法称为频域分析法。频谱是指对信号中各种频率成分的幅度按频率顺序排列起来构成的图形。对于任意电信号的频谱所进行的研究,称为频谱分析。

一个周期信号,由基波和各次谐波组成。其频谱如图6-1所示。图中每一根纵线的长短代表一种正弦分量幅值的大小,并且只取正值。这些纵线称为“谱线”。

既然上述时域和频域两种分析方法都可表示同一信号的特性,那么它们之间必然是可以转换的。时域分析是研究信号的瞬时幅度u与时间t的关系,而频域分析是研究信号中各频率分量的幅值a与频率f的关系,它们分析的角度不同,各有适用场合。频域分析多用于测量各种信号的电平、频率响应、频谱纯度及谐波失真等。

时域与频域的关系可以用数学方法——付里叶级数和付里叶变换来表征。例如:一个周期为t的方波可用下列数学式表达 ?1?? f(t)?? ??1?? nt?t?nt?(nt? t2 t2)?t?(n?1)t(n=0,1,2,?)

函数表达式尽管很简单,但不连续。可以用付里叶级数写成正弦函数表达 f(t)? 4 ? ? ?2k?1sin(2k?1)?t k?0 1 任何周期函数都可以展开成付里叶级数,级数的每一项在频谱上都可以画

成一条直线,代表信号的一种成分。而且每一项的频率都是信号频率的整数倍,所以频谱图上各个谱线是依次等间距排列的。

四、实验步骤 1 频谱分析仪的使用

用信号发生器输出100hz、1vp-p的正弦波加到dso-2902/512k型测试仪的ch-a1通道,适当设置“电压/每格”、“时间/每格”的值,点“go”,再打开“fft”窗口,按表6-1进行实验。

信号频谱测量(1)正弦波的频谱测量

用信号发生器输出100hz、1vp-p的正弦波加到dso-2902/512k型测试仪的ch-a1通道,适当设置“电压/每格”“时间/每格”、的值,点“go”,再打开“fft”窗口,频谱类型选“magnitude”,窗口类型选“hanning”,存储点数选“1024”,缩放选“³1”,读取谱线对应的频率和幅值,填表6-2,并以信号源指示的幅度和频率为准,计算测量的相对误差。

(2)方波的频谱测量

用信号发生器输出100hz、1vp-p的方波加到dso-2902/512k型测试仪的ch-a1通道,适当设置“电压/每格”“、时间/每格”的值,点“go”,再打开“fft”窗口,频谱类型选“magnitude”,窗口类型选“hanning”,存储点数选“1024”,缩放选“³1”,读取谱线对应的频率和幅值,填表6-2,并以信号源指示的幅度和频率为准,计算测量的相对误差。

(3)三角波的频谱测量

用信号发生器输出100hz、1vp-p的三角波加到dso-2902/512k型测试仪的ch-a1通道,适当设置“电压/每格”“时间/每格”、的值,点“go”,再打开“fft”窗口,频谱类型选“magnitude”,窗口类型选“hanning”,存储点数选“1024”,缩放选“³1”,读取谱线对应的频率和幅值,填表6-2,并以信号源指示的幅度和频率为准,计算测量的相对误差。3 频谱分析法测量放大器的最大不失真输出

实验板集成功放电路接+5v电源,用信号发生器输出频率为100hz、10mv的正弦波加到放大器输入端,放大器输出信号加到dso-2902/512k型测试仪的ch-a1通道,适当设置“电压/每格”、“时间/每格”的值,点“go”,再打开“fft”

窗口,频谱类型选“magnitude”,窗口类型选“hanning”,存储点数选“1024”,缩放选“³1”,读取谱线对应的频率和幅值。在输出波形无失真情况下读取输入信号和输出信号的波形高度,填表6-3,计算集成功放电路电压放大倍数。

五、实验数据

六、预习与思考题

1、dso-2902/512k型示波器如何设置“电压/格”的值?

答:显示通道对话框,在要设置的通道一栏下点开“v/div”下拉表,来设

置相应的“电压/格”的值。在选择模拟通道时,用每分区多少电压(v/div)来控制信号的垂直分辨率因数,要得到最好的输入信号表示法,设置每格电压时尽量在满屏上显示最大振幅,这样信号的幅值将得到最大的信号分辨率。

2、dso-2902/512k型示波器如何选择电压衰减比例?

答:显示通道对话框,在要设置的通道一栏下点开“probe”下拉表, 由探

头输入比例控制电压衰减,输入电压应与探头比例匹配, 1:1x, 1:10x,1:100x 或 1:1000x,当输入信号在10v以内时,用1:1x或1:10v比例都行,如果输入信号在10v以外时,使用1:10x探头设置在,注意用1:10x探头设置,当输入信号在10v以内时,由于较小的电压通过数字转换,将提供更好的频率响应。

3、dso-2902/512k型示波器中,不用“测量显示框“时,如何从波形准确读取信号周期?

答:若不用测量显示框,可通过设置游标条a和b来读取信号周期,在设置示

波器各参数使待测波形完整清晰的显示在屏幕上后,拖动游标条a到波形上的某一点,同时拖动游标b到波形下一周期的同一水平点,此时在软件左侧“a-b”一栏显示的数据就是要图区的信号周期。

七、实验心得:

通过本次实验,我们加深对快速傅立叶变换(fft)的认识和理解; 了解fft点数与频谱分辨率的关系;熟悉掌握实验中所需设备及仪器的使用方法; 同时我们也掌握常见波形的频谱特点。在实验的同时我们也增加了自己不少的动手能力和一些操作技巧,对我们增加了不少在生活中没有的细致和谨慎。也让我们更加熟悉了这门课程。篇五:电子测量实验报告2 电子测量综合实验报告

——直流可调稳压电源的设计

报告人: 学 号: 专 业: 指导老师: 2010年 12 月 25 日

摘要:

本稳定电源输出电压可以在2~12v范围调节,额定输出电流为300ma,当电网交 流电压在198v~242v范围变化时,输出电压稳定度<1.5%,当负载电流从0升到 300ma时,稳压电源内阻<0.5欧姆;当负载电流>500ma时,保护电路动作,自动限 制输出电流。关键词:

变压器;整流;滤波器;稳压管。

目录

实验目的 2实验任务与要求 3设计方案论证 4整体电路设计和分析计算 5电路仿真分析 6电路安装与调试 7实验结果和误差分析 8实验总结

9附录:元器件清单

一、实验目的

通过集成直流稳压电源的设计、安装和调试,要求学会:

(1)学习基本理论在实践中综合运用的初步经验,掌握模拟电路。培养综合分析与调试能力;

(2)学会直流稳压殿宇的分析方法和性能指标测试方法。(3)培养实践技能,提高分析和解决实际问题的能力。

二、实验任务与要求 1.集成稳压电源的主要技术指标

(1)输出1~25v的电压,输出电流不超过1a。(2)输出纹波电压小于5mv,稳压系数小于5³10-3 ;输出内阻小于0.1欧姆。2.设计要求

(1)电源变压器只做理论设计。

(2)合理选择集成稳压器及扩流三极管。

(3)完成全电路理论的设计、安装调试、绘制电路图,自制印制板。(4)撰写设计报告。

三、设计方案论证

直流稳压电源由电源变压器、整流电路、滤波电路、和稳压电路四个部分组成,如下

图:

(a)电源硬件组成部分 1.电源变压器

电源变压器的作用是将来自电网的220v交流电压u1变换为整流电路所需要的交流电压u2。

电源变压器的效率为:

其中: 2 p 是变压器副边的功率,1 p 是变压器原边的功率。一般小型变压器的效率如表1所示:

表1 小型变压器的效率

因此,当算出了副边功率 2 p 后,就可以根据上表算出原边功率 1 p。2.整流和滤波电路

在稳压电源中一般用四个二极管组成桥式整流电路,整流电路的作用是将交流电压 u2 变换成脉动的直流电压 u3。滤波电路一般由电容组成,其作用是把脉动直流电压 u3中的大

部分纹波加以滤除,以得到较平滑的直流电压ui。ui与交流电压u2的有效值 u2的关系为:

在整流电路中,每只二极管所承受的最大反向电压为: 流过每只二极管的平均电流为:

其中:r为整流滤波电路的负载电阻,它为电容 c提供放电通路,放电时间常数rc应 满足:

其中:t = 20ms是50hz 交流电压的周期。3.稳压电路

上一篇:关于写作与口语交际教学下一篇:幼儿小班数学说课稿:我给动物排排队