平面向量基本定理教案

2024-09-01

平面向量基本定理教案(精选6篇)

篇1:平面向量基本定理教案

一、教学目标:

1.知识与技能:

了解平面向量基本定理及其意义, 理解平面里的任何一个向量都可以用两个不共线的向量来表示;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示。

2.过程与方法:

让学生经历平面向量基本定理的探索与发现的形成过程,体会由特殊到一般和数形结合的数学思想,初步掌握应用平面向量基本定理分解向量的方法,培养学生分析问题与解决问题的能力。

3.情感、态度和价值观

通过对平面向量基本定理的学习,激发学生的学习兴趣,调动学习积极性,增强学生向量的应用意识,并培养学生合作交流的意识及积极探索勇于发现的学习品质.二、教学重点:平面向量基本定理.三、教学难点:平面向量基本定理的理解与应用.四、教学方法:探究发现、讲练结合五、授课类型:新授课

六、教 具:电子白板、黑板和课件

七、教学过程:

(一)情境引课,板书课题

由导弹的发射情境,引出物理中矢量的分解,进而探究我们数学中的向量是不是也可以沿两个不同方向的向量进行分解呢?

(二)复习铺路,渐进新课

在共线向量定理的复习中,自然地、渐进地融入到平面向量基本定理的师生互动合作的探究与发现中去,感受着从特殊到一般、分类讨论和数形结合的数学思想碰撞的火花,体验着学习的快乐。

(三)归纳总结,形成定理

让学生在发现学习的过程中归纳总结出平面向量基本定理,并给出基底的定义。

(四)反思定理,解读要点

反思平面向量基本定理的实质即向量分解,思考基底的不共线、不惟一和非零性及实数对的存在性和唯一性。

(五)跟踪练习,反馈测试

及时跟踪练习,反馈测试定理的理解程度。

(六)讲练结合,巩固理解

即讲即练定理的应用,讲练结合,进一步巩固理解平面向量基本定理。

(七)夹角概念,顺势得出

不共线向量的不同方向的位置关系怎么表示,夹角概念顺势得出。然后数形结合,讲清本质:夹角共起点。再结合例题巩固加深。

(八)课堂小结,画龙点睛

回顾本节的学习过程,小结学习要点及数学思想方法,老师的“教 ”与学生的“学”浑然一体,一气呵成。

(九)作业布置,回味思考。

布置课后作业,检验教学效果。回味思考,更加理解定理的实质。

七、板书设计:

1.平面向量基本定理:如果

是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

.2.基底:

(1)不共线向量

叫做表示这一平面内所有向量的一组基底;

(2)基底:不共线,不唯一,非零

(3)基底给定,分解形式唯一,实数对

存在且唯一;

(4)基底不同,分解形式不唯一,实数对

可同可异。

例1 例2

3.夹角

(1)两向量共起点;

(2)夹角范围:

例3

4.小结

5.作业

篇2:平面向量基本定理教案

教学设计

平面向量基本定理教学设计

一、教材分析

本节课是在学习了共线向量基本定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。所以,本节在本章中起到承上启下的作用。

平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。平面向量基本定理提供了一种重要的数学思想—转化思想。

二、教学目标

知识与技能: 理解平面向量基本定理,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习习近平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习习近平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。

教学重点:平面向量基本定理的应用; 教学难点:平面向量基本定理的理解.三、教学教法

1.学情分析: 学生已经学习了向量的基本知识,并且对向量的物理背景有了初步的了解.2.教学方法:采用“问题导学—讨论探究—展示演练”的教学方法,完成教学目标.3.教学手段:有效使用多媒体和视频辅助教学,直观形象.四、学法指导

1.导学:设置问题情境,激发学生学习的求知欲,引发思考.2.探究:引导学生合作探究,解决问题,注重知识的形成过程.3.应用:在解决问题中培养学生的应用意识与学以致用的能力.五、教学过程

针对以上情况,结合我校“学本课堂”模式,我设计了如下教学过程,分为六个环节。第一环节:问题导学 自主学习

首先是课前预习,预习学案分为问题导学、典例精析、巩固拓展三大部分。通过预习学案,可以帮助学生完成课前预习。设计意图:通过预习学案让学生预习新知识,发现问题,使学习更具针对性,培养学生的自学与探索能力.第二环节:创设情境 导入课题

进入新课,引入课题采用问题情境的办法。通过导弹的飞行方向和力的分解两个实例,将问题类比,引入本节问题-向量的分解。为了帮助学生理解,提供了两段直观的视频,直观形象。设计意图:借助实际与物理问题设置情境,引发学生思考与想象,将问题类比,引入本节课题。

第三环节:分组讨论 合作探究

提出问题,进入探究阶段。采用分组讨论,合作探究的方法,先让学生回顾知识-向量加法的平行四边形法则。进入小组讨论,共同讨论两个问题。

问题1:向量a与向量e1,e2共起点,向量a是同一平面内任一向量,e1与e2不共线,探究向量a与e1,e2之间的关系.问题2:向量e1与e2是同一平面内不共线的两个向量,向量a是同一平面内任一向量,探究向量a与e1,e2之间的关系.设计意图:各小组成员讨论交流,合作学习,共同探讨问题,寻求结果,展示结果.第四环节:成果展示 归纳总结

小组讨论完毕,由几个小组展示研究成果。结合小组展示成果,借助多媒体展示,由师生共同探究向量的分解。展示过程中,要重点强调平移共起点,借助平行四边形法则解说分解过程,加深学生的直观映像,完成向量的分解。通过向量的分解,由学生小组讨论,共同归纳本节的核心知识—平面向量基本定理。在定理中重点补充强调以下几点说明:(1)基底e1,e2不共线,零向量不能做基底;(2)定理中向量a是任一向量,实数1,2唯一;(3)1e1e2叫做向量a关于基底e1,e2的分解式.第五环节:问题解决 巩固训练

引入定理后,应用定理解决学案例题与练习。例题1重在考查基底的概念,引导学生思考向量作为基底的条件,将问题转化为两个向量的共线问题。讲解完例题1之后,通过一个练习,巩固所学。通过两个问题,让学生认识理解基底的概念,把握基底的本质,突出重点——平面向量基本定理的应用。在例题2中继续强化对基底概念的理解,采用分组讨论,合作探究的教学方法,共同探讨解法,并由小组板演解题过程,最后强调解题步骤;此后,给出例2的一个变式题,让学生进一步深刻理解基底,体会基底的重要作用。解决本节难点——平面向量基本定理的理解,通过例题3对平面向量基本定理综合应用,解决三点共线问题。采用先启发引导后学生探究的方法,解决学生的困惑。例题讲解完毕后,对本题结论适当拓展,得到“当t11,点P是AB的中点,OP=(OAOB)”的重要结论。通过探究22本题,可以使学生深化对平面向量基本定理的理解,培养学生综合运用知识的能力.为了加强对定理的应用,在学案中设计了几个巩固练习,在课堂上当场完成,并及时纠错,巩固本节所学。

第六环节:拓展演练 反馈检测

为了攻克难点,检测效果,最后设计了几道课后习题进行拓展延伸,培养学生的综合能力。通过这些设计,可以增强教学的针对性,提高教学效果。在本节尾声,让学生回顾本节主要内容,完成小结,并在小结中强调转化的数学思想及方法。最后是布置课后作业及时间分配与板书设计。

六、评价感悟

本节教学设计在“学本课堂”的教学模式下,采用“问题导学—讨论探究—展示演练”的教学方法,引导学生自主学习,发现问题,小组讨论,合作探究,解决问题。在教学过程中,学生处于主体地位,教师充分发挥学生的积极性,力求打造高效课堂。

篇3:关于平面向量基本定理推论的思考

一、通过拼凑使向量前系数满足 λ + μ = 1

例1 在△ABC中, , P是BN上的一点, 若, 则实数m的值为多少?

如果此题用平面向量基本定理的推论去考虑, 就会省去大部分运算.

解延长CA到D, 使DA = AC,

平面向量基本定理的推论, 知O, E, B三点共线, 且当CE⊥DB时, 最小值为.

二、延长或缩短某条线段, 将问题转化为三点共线

例3 OM与BC平行, 点P在由射线OM, 线段OB及AB的延长线围成的阴影区域内 ( 不含边界) , 且, 则实数 ( x, y) 的关系为_____.

解延长OP交AB延长线于D, 则

例4 已知△ABC, D为BC的中点, O为平面上任意一点, 存在一点P, 满足, 求△PAC得面积与△ABC的面积之比.

这种做法比较混乱, 更多的靠运气. 要跳出这个式子, 站在更高的位置整体看待它.

利用平面向量基本定理的推论

∴ 由平面向量基本定理的推论知, P, D, C三点共线, 且

篇4:平面向量基本定理探讨

一、定理再现

如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,存在一对实数,使。

二、定理的认识

平面向量基本定理是向量理论中最重要的定理,是向量得以用数量进行计算的桥梁和纽带,是向量理论中的里程碑和标志性定理。

三、问题的提出

定理肯定了基底的存在性,并没有指明如何选择基底。在实际证明中,选择基底时,如果选择不当,可能导致证明过程过于冗长;如果选择恰当,将会使证明过程大大缩短。那么一般情况下如何选择恰当的基底呢?

四、选择基底的几条原则

1.起点重合。选择两个起点重合的向量作为基底,是选择基底的大原则。这样选择基底,可方便表示两个向量的和与差。

例1.的三边长满足,且BE、CF分别為AC、AB边上的中线,求证:。

证明:取,为一组基底,

并设,

2.便于表示。所取的基底必须便于表示所求向量。一般选取起点重合,且有已知点的两个向量作为一组基底。

例2.如图所示,正三角形ABC中,D、E分别是AB、BC上的一个三等分点,且AE、CD交于点P,求证:BPCD.

证明:取为一组基底,

设即

………………….(1)

又设

………………….(2)

比较(1) (2)两式,得:

从而

=0

故:

3.联系密切。所取的基底必须于所求向量联系密切,这样便于表示所求向量。

例3.如图所示,一直线交 的三边 所在直线分别于点R、S、T.

求证:.

证明:取为一组基底

从而:

篇5:平面向量基本定理教案

一、复习引入:1.平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量

二、讲解新课:

1.平面向量的坐标运算

思考1:已知:a(x1,y1),b(x2,y2),你能得出ab、ab、a的坐标吗?设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2)(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2)两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.(2)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y)

实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。

思考2:已知A(x1,y1),B(x2,y2),怎样求AB的坐标?

(3)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1

AB=OBOA=(x2,y2)(x1,y1)=(x2 x1,y2 y1)一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.思考3:你能标出坐标为(x2 x1,y2 y1)的P点吗?

向量AB的坐标与以原点为始点、点P为终点的向量的坐标是相同的。

三、讲解范例:

例1 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例2 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC得D1=(2,2)当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0)例3已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0 得:(3,4)+(2,5)+(x,y)=(0,0)即:32x0x5 ∴ ∴F3(5,1)45y0y

1四、课堂练习:

1.若M(3,-2)N(-5,-1)且 MP1MN,求P点的坐标 22.若A(0,1),B(1,2),C(3,4),则AB2BC=.3.已知:四点A(5,1),B(3,4),C(1,3),D(5,-3),求证:四边形ABCD是梯形.五、小结:平面向量的坐标运算;

篇6:平面向量基本定理教案

【教材分析】

向量坐标化使平面向的学习代数化,难度降低了很多。但学生对平面向量基本定理的应用还是不太熟练,特别是由变量求范围问题,更是一头雾水。所以专门安排了这一节课来突破这个难点。

【学生分析】

经过了一轮复习的高三学生,对于向量的坐标运算、平面向量基本定理、和线性规划这些知识点的单独学习已经掌握得不错,但对于解决有范围或求最值时的平面向量基本定理的应用还是比较棘手,所以需要老师能够由浅人深地讲解突破。难度很高。

【学习目标】

理解平行四边形法则和线性规划

掌握平向量基本定理的应用

【教学策略】

特殊和一般的类比学习,线性规划解决最值范围问题的策略渗透

【教学过程】

【引题】

【例题】1.

2.已知点

,平面区域D是由所有的满足

的`点P(x,y)组成的区域,若区域D的面积为 8,则4a+b的最小值为 。

【练习】

1.已知向量

,设

。求动点P轨迹形成的图形的面积?

已知

中,AB=3,BC=4,AC=5,I是

的内心,P是

内部(不含边界)的动点,若

,则

的范围是 。

教学反思

总体来说本节课成功地完成了教学任务,突破了难点,学习了重点,教学效果良好。

上一篇:港口信息化案例分析-新加坡港务集团PSA的实践下一篇:悄悄话的作文150字