浅谈大体积混凝土裂缝的施工防治

2024-08-23

浅谈大体积混凝土裂缝的施工防治(共12篇)

篇1:浅谈大体积混凝土裂缝的施工防治

1工程概况

芜湖奇瑞汽车公司第五轿车厂冲压车间长209m,宽178m,面积37434m²,根据使用功能,冲压车间可划分为模具堆放区和冲压地沟区。单个冲压地沟尺寸为48m长,15m宽,深度为6.0m,地沟四周采用钢筋混凝土浇筑墙体,墙体厚0.6m,墙体采用C30混凝土浇筑,单个地沟混凝土方量达454m³,属大体积混凝土施工。

2大体积混凝土裂缝产生的原因

按照裂缝的成因简单的分为两种:一种是由于荷载直接作用(或者由于结构次应力的叠加作用),混凝土超过极限拉应力而引起裂缝,也称作荷载裂缝或结构性裂缝,另一种是由于变形变化引起的裂缝,如结构由于温度、收缩和膨胀、不均匀沉降等因素而引起的裂缝,也称做变形裂缝,大多为非结构性裂缝。在实际施工中,因混凝土收缩和温度变化引起的裂缝是最常见的。对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。

篇2:浅谈大体积混凝土裂缝的施工防治

混凝土自身收缩的大小与水灰比、细掺料的活性、水泥细度等因素有关。用水量越大,水灰比越高,混凝土收缩越大;水泥细度越大,混凝土的收缩越大,且发生的收缩时间越长;因此选用大的骨料,并尽可能的多用骨料,则可以减小干缩,同时要严格控制粗细骨料的含泥量。

3.2选择适当的配合比①本工程采用5~31.5mm碎石,采取低水灰比,降低混凝土水化热。水泥标号越高水泥水化热也越高,采用32.5普通硅酸盐水泥可以满足强度要求。②选择最佳粗细骨料级配,增加混凝土密实度,减少收缩、徐变。

篇3:浅谈大体积混凝土裂缝的施工防治

芜湖奇瑞汽车公司第五轿车厂冲压车间长209m,宽178m,面积37434m2。根据使用功能,冲压车间可划分为模具堆放区和冲压地沟区。单个冲压地沟尺寸为48m长,15m宽,深度为6.0m,地沟四周采用钢筋混凝土浇筑墙体,墙体厚0.6m,墙体采用C30混凝土浇筑,单个地沟混凝土方量达454m3,属大体积混凝土施工。

2 大体积混凝土裂缝产生的原因

按照裂缝的成因简单的分为两种:一种是由于荷载直接作用(或者由于结构次应力的叠加作用),混凝土超过极限拉应力而引起裂缝,也称作荷载裂缝或结构性裂缝,另一种是由于变形变化引起的裂缝,如结构由于温度、收缩和膨胀、不均匀沉降等因素而引起的裂缝,也称做变形裂缝,大多为非结构性裂缝。在实际施工中,因混凝土收缩和温度变化引起的裂缝是最常见的。对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。

3 大体积混凝土裂缝的主要施工防治措施

3.1 选择合适的原材料

混凝土的收缩裂缝往往在施工的早期就产生了,其自身收缩是混凝土硬化过程中水泥与水发生水化反应生成新的化学物质,导致自身体积缩小。混凝土自身收缩的大小与水灰比、细掺料的活性、水泥细度等因素有关。用水量越大,水灰比越高,混凝土收缩越大;水泥细度越大,混凝土的收缩越大,且发生的收缩时间越长;因此选用大的骨料,并尽可能的多用骨料,则可以减小干缩,同时要严格控制粗细骨料的含泥量。

3.2 选择适当的配合比

(1)本工程采用5~31.5mm碎石,采取低水灰比,降低混凝土水化热。水泥标号越高水泥水化热也越高,采用32.5普通硅酸盐水泥可以满足强度要求。(2)选择最佳粗细骨料级配,增加混凝土密实度,减少收缩、徐变。

3.3 改进大体积混凝土的浇筑施工工艺

优化浇筑工艺,“斜面分层,薄层浇筑,连续推进;降低混凝土内外温差,“内排”并“外保”,一般要求混凝土内外温差不超过25℃,具体实施办法为:(1)降温冷却水管布设:在浇筑墙体混凝土前,钢筋绑扎好后立模前预先在混凝土内按1m的层距(距顶底面距离为0.50m)布设降温冷却水管(准30mm的薄壁钢管),混凝土浇注完成后,即可在该层水管内通水。通过水循环,带走砼内部的热量,使混凝土内部的温度降低到要求的限度。(2)搅拌工艺:采用二次投料的净浆裹石或砂浆裹石工艺,可以有效地防止水分聚集在水泥砂浆和石子的界面上,使硬化后界面过渡层结构致密、粘结力增大,从而节约水泥,并进一步减少水化热和裂缝。(3)振捣工艺:混凝土分层浇筑,分层振捣,适当控制入模厚度和振动技术,每层浇筑厚度为40cm,设置施工缝联结钢筋。待每薄层混凝土全断面布料振捣完毕,再从一头向另一头循环浇筑。

因墙体高达6.0m,下部2m部分的混凝土浇注需用溜槽、串筒入模。分层浇筑,每层灌注须在下层混凝土未初凝前完成,以防出现施工冷缝。混凝土振捣采用直径为50mm的插入式振捣器沿墙体浇筑的顺序方向振捣。振捣时插入下层混凝土5~10cm,振捣时间以混凝土表面翻浆出气泡为准。混凝土在浇筑振捣过程中会产生多少不等的泌水,需配备一定数量的工具如大铁勺等用以排出泌水。

对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。

3.4 后期养护及数据采集

混凝土养护主要是保持适当的温度和湿度条件。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。混凝土浇注完毕后即转入养护阶段。以下是在养护期间的几项体会:(1)采取严格的养护保护措施。本工程采用了三项养护措施:混凝土表面收光后立即覆盖一层塑料薄膜,以防止早期失水出现塑性裂缝;根据测温结果,适时在塑料薄膜上覆盖两层土工布保温,同时在混凝土中设置冷却水管降温;在塑料薄膜下适时补水,以保证水泥发挥补偿收缩作用的充分条件。(2)在埋设冷却水管时在混凝土中一起布设测温点,并在养护中通过测温点的温度测量指导降温、保温工作的进行,从而控制混凝土内外温差不大于25℃。测温点布置的原则应使不同施工区段、不同标高处的混凝土温升均能得到监控。在两条长边墙体各取三个具有代表性的点,该工程在墙体垂直方向的上、中、下三个位置布置6个测温孔,保证不同施工区段混凝土温升均可得到反映,从而及时指导温控工作。浇筑结束后安排专人对测点进行温度记录,及时调整循环水的温度,确保降温效果。冷却完毕后,水管口用与墙体强度等同的水泥浆封闭,水泥中应加入微膨胀剂。(3)在气温较高(尤其超过30℃)时,浇水养护是保证砼强度的关键。工地现场使用小型水泵浇水,并在砼浇筑12小时内对砼覆盖塑料薄膜养护。薄膜养护采用一次性材料,始终保持塑料薄膜内有凝结水,后续工序应尽量避免对塑料薄膜的破坏。避免了混凝土因干燥而产生干缩裂纹。养护一般在7天以上。

4 结语

大体积混凝土的裂缝特别是表面裂缝,主要是由于内外温差过大产生的。对大体积混凝土这种拉应力较大,容易超过混凝土抗拉强度而产生裂缝。

篇4:浅谈大体积混凝土施工中裂缝防治

关键词:大体积混凝土 裂缝 防治

1 裂缝形成的原因

1.1 温度裂缝

在地下工程施工中采用的混凝土强度较高,水泥用量多,在混凝土硬化初期,水泥的水化热是结构温度迅速升高,在2-3d内混凝土内部温度可达50℃-80℃造成地下结构内外温差较大,使混凝土产生线性膨胀或收缩。当大体积混凝土内部温度与室外环境气温之差大于25℃左右时,混凝土就会出现肉眼可见的温度收缩裂缝。裂缝宽度在0.5mm左右,一般出现在地下工程的墙体和楼板表面。裂缝呈不规则发展,裂缝深入结构内部程度也不同,较深的裂缝对混凝土的强度有很大的影响。特别是在人防工程的使用中因结构裂缝造成混凝土防水失效的问题时有发生。

1.2 塑性裂缝

在浇筑的大体积混凝土中,骨料颗粒首先悬浮在一定稠度的浆体中,由于混凝土的浆体密度低于骨料,因而骨料在浆体中逐渐下沉。而浆体中水泥颗粒密度又大于混凝土外加剂的密度,是将体重的外加剂向上漂移而产生沉降、离析、泌水等现象。当下沉的固体颗粒遇到钢筋或受到模版的摩擦阻力时,就会在混凝土顶部表面和内部形成塑性沉降裂缝。混凝土坍落度越大,发生塑性沉降裂缝的可能性就越大。

1.3 干燥性收缩裂缝

混凝土在硬化后,内部的游离水会由表面和内部逐渐向外蒸发,导致混凝土表面产生干燥收缩。在约束条件下,当收缩力大于混凝土的抗拉强度时,混凝土就会出现干燥收缩裂缝。混凝土的干燥收缩是从停止养护时开始,早期的干燥裂缝比较细微,往往不引起人们的注意。随着时间推移,混凝土中水分的蒸发量逐渐增大,裂缝也逐渐明显起来,一般混凝土在90d干燥率最大。

1.4 施工裂缝

1.4.1 振捣不当引起的裂缝

在底下大体积混凝土浇筑过程中,因混凝土浇筑量大,结构局部由于振捣时间不足使混凝土比较疏松,拆模后易出现“蜂窝、麻面”,过振部位则会出现粗骨料下沉,表面泌浆、泌水现象,表面容易发生塑性裂缝和干燥裂缝。

1.4.2 养护不足引起的裂缝

大体积混凝土浇筑后不及时进行浇水养护,易产生塑性收缩裂缝和早期干燥裂缝,主要出现在连续墙体上。如地下连续墙体混凝土浇筑完毕后,未能及时采取措施进行表面覆盖,致使混凝土直接暴露在阳光下,使得混凝土表面水分迅速蒸发产生细微裂缝。

1.4.3 预埋管线部位的裂缝

在底下工程预埋管线施工中,特别是顶板部位上因多种设备的穿线管线都集中设在版面上,使楼板混凝土局

部浇筑薄弱,从而引起应力集中,容易造成板面裂缝的产

生。

1.4.4 施工荷载裂缝

在大体积地下混凝土楼板结构施工结束后,因工期较劲混凝土结构没有达到预定的养护时间,就忙着进行钢筋绑扎、材料吊运工作,特别是在混凝土顶板施工后进行大量的回填土施工。从而造成冲击荷载集中,使混凝土强度在不足的情况下引起不规则的裂缝。这些裂缝一旦形成,就难于愈合,造成永久性缺陷。

2 裂缝的防治措施

2.1 设计方面

①增配构造筋提高抗裂性能。配筋应采用小直径、小间距。全截面的配筋率应在0.3%-0.5%之间。

②避免结构突变产生应力集中,在易产生应力记者的薄弱环节采取加强措施,如增设吊筋等。

③在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

2.2 材料方面

严格控制混凝土原材料,降低水泥水化热。选用中热和低热的水泥品种控制混凝土温度升高,选择条件允许的情况下,尽量选择粒径较大、级配良好的粗骨料,掺加适量的外加剂,改善混凝土的性能,降低水化热。

2.3 施工方面

①控制混凝土的出机温度,对混凝土出机温度影响大的是石子与砂的温度,采用冷却、遮阳防晒、洒水降温等措施。在运输时,对运输车辆要进行遮阳防晒。掌握好混凝土浇筑时间,尽量避免在炎热天气露天浇筑混凝土,降低混凝土结构的内外温差。及时对混凝土进行降温、保湿养护工作,尽量减少混凝土的直接暴晒时间。

②掺入适量的微膨胀剂和掺合料,在水灰比不变的情况下,减少水泥用量,可有效改善混凝土的性能。增加混凝土密度,降低混凝土收缩。

③在模板、构件安装时,呆运上来的材料应做到尽量分散就位,不得集中堆放,以减少对楼面荷重和振动。

参考文献:

[1]GB50134-2004.人民防空工程施工及验收规范[S].

[2]GB50108-2001.地下工程防水技术规范[S].

篇5:浅谈大体积混凝土施工技术

大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝.因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证基础底板大体积混凝土顺利施工.文章介绍了位于内蒙古北方重工厂内的大体积混凝土施工技术要求和方法.

作 者:刘富强  作者单位:中冶京唐建设有限公司,河北,唐山,063030 刊 名:中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期): “”(16) 分类号:U445 关键词:大体积混凝土   施工技术   混凝土施工   配合比   养护  

篇6:大体积混凝土裂缝防治论文

一、摘要

二、前言

三、大体积混凝土裂缝产生原因及防裂措施概述3.1大体积混凝土裂缝形成的原因 3.2防止裂缝的措施 3.3采用合理的施工方法

四、小结

一、摘要

本文对大体积混凝土的施工进行了一次概述。重点对

大体积混凝土裂缝的产生与防治作出阐述。

关键词:

大体积混凝土

裂缝

防裂措施

施工方法

二、前言

近年来,随着国家经济的飞速发展和建筑技术的日新月异,建筑规模不断扩大,大型现代化建筑和构筑物不断增多,混凝土结构因其材料物美价廉、施工简便、承载力大、可饰性强的特点,得以被广泛应用,于是大体积混凝土也由此成为构成大型建筑或构筑物主体的重要组成部分。对于大体积混凝土,目前国内尚无一个确切的定义。日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80㎝以上,同时水化热引起混凝土内部的最

高温度与外界气温之差预计超过25°C的混凝土,称为大体积混凝土”。美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求采取措施解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。由此就引出了大体积混凝土开裂的问题,如果裂缝一旦形成,特别是基础贯穿裂缝出现在重要结构部位,将会降低结构的耐久性,削弱构件的承载力,同时可能危害到建筑物的安全使用。所以如何采取有效措施防止大体积混凝土的开裂,是一个值得研究的问题。

三、大体积混凝土裂缝产生原因及防裂措施概述

3.1 大体积混凝土裂缝形成的原因

产生裂缝的原因可分为两类:一是结构型裂缝,是由外荷载引起的,包括常规结构计算中的主要应力以及其他的结构次应力 4

造成的受力裂缝。二是材料型裂缝,是由非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的。本文主要探讨材料型裂缝。其中具体原因如下。

3.1.1 温度应力引起裂缝(温度裂缝)

目前温度裂缝产生主要原因是由温差造成的。温差可分为以下三种:混凝土浇注初期会产生大量的水化热,由于混凝土是热的不良导体,水化热积聚在混凝土内部不易散发,常使混凝土内部温度上升,而混凝土表面温度为室外环境温度,这就形成了内外温差,这种内外温差在混凝土凝结初期产生的拉应力一旦超过混凝土抗压强度时,就会导致混凝土裂缝;另外,在拆模前后,表面温度降低很快,造成了温度骤降,也会导致产生裂缝;当混凝土内部达到最高温度后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值就是内部温差;这三种温差都会产生温度裂缝。在这三种温差中,较为主要是由水化热引起的内外温差。

3.1.2 收缩引起裂缝

收缩有很多种,包括干燥收缩、塑性收缩、自身收缩、碳化收缩等等。这里主要介绍塑性收缩。3.1.3 塑性收缩

在水泥活性大、混凝土温度较高,或在水灰比较低的条件下会加剧引起开裂。因为这时混凝土的泌水明显减少,表面蒸发的水分又不能得到及时补充,此时混凝土尚处于塑性状态,仅仅受到一点拉力,混凝土的表面就会出现不均匀的裂缝,出现裂缝以后,将进一步加大混凝土体内的水分蒸发,于是裂缝进一步扩展。3.2 防止裂缝的措施

由以上分析,材料型裂缝主要是由温差和收缩引起,所以为防止裂缝的产生,必须最大限度的降低温差和减小混凝土的收缩,具体措施如下。3.2.1优选原材料

一.水泥

由于温差主要是由水化热产生的,所以为了减小温差要尽量采用早期水化热低的水泥,在满足强度和耐久性等要求的前提下,宜选用低热或中热的矿渣水泥、火山灰水泥(发热量270~290kJ/kg)、严禁使用安定性不合格的水泥。另外,在不影响水泥活性的情况下,要尽量使水泥的细度适当减小,此外水泥的细度将会影响水化热的放热速率,试验表明比表面积每增加100cm2/g,1d的水化热增加17J/g~21 J/g,7d和20d均增加4 J/g~12 J/g。

二.掺加粉煤灰

为了减少水泥用量,降低水化热并提高和易性,可以掺部分粉煤灰,掺入粉煤灰主要有以下作用:①由于粉煤灰中含有大量的硅、铝氧化物,其中二氧化硅含量40%~60%,三氧化二铝含量17%~35%,这些硅铝氧化物能够与水泥的水化产物进行二次反应,是其活性的来源,可以取代部分水泥,从而减少水泥用量,降低混凝土的热胀;②由于粉煤灰颗粒较细,能够参加二次反应的界面相应增加,在混凝土中分散更加均匀;③同时,粉煤灰的火山灰反应进一步改善了混凝土内部的孔结构,使混凝土

中总的孔隙率降低,使硬化后的混凝土更加致密,相应收缩值也减少。但粉煤灰的掺量不宜过多,在工程中应根据具体情况确定粉煤灰的掺量。

三.骨料(1)

粗骨料

由于粗骨料级配越好,孔隙率越小,总表面积越小,每立方米的用水泥砂浆量和水泥用量也越小,水化热就随之降低,有利于防止裂缝的产生。所以应尽量扩大粗骨料的粒径且粗骨料含泥量≤1%.(2)

细骨料

宜采用级配良好的中砂和中粗砂,最好用中粗砂,因为其孔隙率小,总表面积小,可减少混凝土的用水量和水泥用量,降低水化热,减少裂缝,但要控制砂子的含泥量,含泥量越大,收缩变形就越大,裂缝就越严重,因此细骨料尽量用含泥量≤3%中粗砂。

四.加入外加剂

加入外加剂后能减小混凝土收缩开裂,外加剂对混凝土收缩开裂性能有以下影响:

(1)减水剂对混凝土开裂的影响

减水剂主要用来改善混凝土的和易性,降低水灰比,提高混凝土强度或在保持混凝土一定强度时减少水泥用量,有利于防止开裂。

(2)缓凝剂对混凝土开裂的影响

缓凝剂的作用一是延缓混凝土放热峰值出现的时间,由于混凝土的强度随龄期增长而增大,当放热峰值出现时,混凝土强度也增大了,从而减小裂缝出现的机率,二是改善和易性,减少运输过程中塌落度损失。

(3)引气剂对混凝土开裂的影响

引气剂的应用对改善混凝土的和易性、可泵性、提高混凝土耐久性能十分有利。在一定程度上增大混凝土抗裂性能。但需注意的是:外加剂不能掺量过大,否则会产生负面影响。3.3 采用合理的施工方法 3.3.1 混凝土的拌制

(1)在混凝土拌制过程中,要严格控制原材料计量,同时严格控制混凝土出机塌落度。

(2)要尽量降低混凝土拌合物出机口温度,拌合物可采取以下两种降温措施:一是送冷风对拌和物进行冷却,二是加冰拌合。

(3)搅拌后的混凝土,应及时运至浇筑地点,入模浇筑。在运送过程中,要防止混凝土离析、灰浆流失、坍落度变化等现象,如发生离析现象,必须进行人工二次拌合后方可入模。

3.3.2 混凝土浇注、拆模

(1)混凝土浇注过程质量控制

浇注过程中应采用机械振捣。振捣棒的操作,要做到“快插慢拔”,在振捣过程中,宜将振动棒上下略有抽动,以使一下振动均匀。每点振捣时间一般以20~30s为宜,但还应视混凝土表面呈水平不再显著下沉、不再出现气泡、表面泛出灰浆为准。间距均匀,以振捣力波及范围重叠二分之一为宜,浇注完毕后,表面要压实、抹平,以防止表面裂缝。另外,浇注混凝土时要求分层浇注(分层的时间间隔做到有利于散热),分层流水振捣,同时要保证上层混凝土在下层初凝前结合紧密。避免纵向施工缝、提高结构整体性和抗剪性能。(2)浇注时间控制

尽量避开气温较高的时间浇注,若由于工程需要在夏季施工,则尽量避开正午高温时段,浇注尽量安排夜间进行。(3)混凝土拆模时间控制

混凝土在实际温度养护的条件下,强度达到设计强度的75%以上,混凝土中心与表面最低温度差控制在25℃以内,预计拆模后混凝土表面温降不超过9℃以上允许拆模。3.3.3 做好表面隔热保护

大体积混凝土的温度裂缝,主要是由内外温差过大引起的。混凝土浇注后,如果此时受到冷空气的袭击,或者过份通风散热,使表面温度降温过大将很容易产生裂缝,所以在混凝土在拆模后,特别是低温季节,需立即采取表面保护。防止表面降温过大,引起裂缝。另外,当日平均气温在2~3d内连续下降不小于6~8℃时,28d龄期内混凝土表面必须进行表面保护。3.3.4 养护

混凝土浇注完毕后,应及时洒水养护以保持混凝土表面经常湿润,这样可防止干缩裂缝,促进混凝土强度的稳定增长。一般在浇注完毕后12~18h内立即开始养护,具体要求是:普通硅酸盐水泥拌制的混凝土不得少于14天;矿渣水泥,火山灰质水泥、大坝水泥、矿渣大坝水泥拌制的混凝土不得少于21天。

3.3.5 通水冷却

若在高温季节施工,则要在初期采用通冷水来降温,但注意,通水时间不能过长,因为时间过长会造成降温幅度过大而引起较大的温度应力。

四、小结

大体积混凝土结构裂缝预防和控制是一项系统工程,须从材料、设计、施工和维护四个方面综合解决。要积极采用先进技术,配合成熟的技术措施,在理论上提出可行的控制措施,在实践操作中采用切实可行、经济合理的技术。材料配置、施工组织方面,要科学组织、合理安排,严格按照施工规范,操作规程操作,不断改进操作工艺,加强养护,以预防和减少裂缝的产生,将工程裂缝损害控制在最小程度。

[参考文献]

[1] 龚召熊:《水工混凝土的温控与防裂》 北京:中国水利水电出版社,1999 [2] 戴镇潮:《大体积混凝土的防裂》 混凝土,2001,[3] 覃维祖:《混凝土的收缩、开裂及其评价与防治》

混凝土,2001 [4] 迟陪云:《大体积混凝土开裂的起因及防裂措施》

混凝土,2001,[5] 康方中:《浅谈现浇商品混凝土楼板变形裂缝的成因和防治》

混凝土,2003,[6] 段 峥:《现浇大体积混凝土裂缝的成因与防治》

混凝土,2003,[7] 尤启俊:《外加剂对混凝土收缩抗裂性能的影响》

篇7:浅谈大体积混凝土裂缝的施工防治

公路桥梁工程中大体积混凝土裂缝的原因与防治

本文通过时本市大型钢筋混凝土结构桥梁梅东大桥的`现场施工管理,从设计,施工的角度,分析了造成桥粱结构中大体积混凝土裂缝的原因,并提出如何预防,检查和处理大体积混凝土裂缝的主要的技术措施.

作 者:黄孝玉 作者单位:揭阳市公路勘察设计院,广东,揭阳,522031刊 名:科技信息英文刊名:SCIENCE & TECHNOLOGY INFORMATION年,卷(期):“”(7)分类号:U4关键词:桥梁工程 大体积混凝土 裂缝 原因 预防 检查 控制 处理

篇8:浅谈大体积混凝土裂缝的施工防治

随着我国基础设施建设的加大已涌现出很多尺寸较大的建筑物。这些建筑物由于建筑和结构整体性方面的要求,结构伸缩缝间距远远超过我国规范的限定值,结构设计中不采取有效的抗裂及裂缝控制措施,建筑物将会出现大面积开裂,严重影响建筑物的使用,因此,混凝土收缩引起的裂缝成为工程技术人员十分关注的问题。

1 裂缝产生的原因

1.1 裂缝产生的外因

结构设计的不合理、原材料质量的不合格、模板的变形、基础的不均匀沉降等这些由外荷载(静、动荷载)引起的裂缝和次应力引起的裂缝[1]的因素,是裂缝产生的外因。

1.2 裂缝产生的内因

因温度湿度变化、收缩、膨胀、不均匀沉降等原因造成的混凝土中产生裂缝属于内因产生的裂缝,被认为是不可避免或很难避免的。而内因引起的裂缝主要是收缩裂,收缩裂缝与水泥水化热引起的内外温差和干燥引起的内外湿差,温度变化也是引起大体积混凝土开裂的一个重要原因,设计时要考虑的主要是季节温差。

影响混凝土内外温差的主要因素有混凝土厚度泥用量、水泥品种、浇筑入模温度及环境温度等。混凝土越厚,水泥用量越大;水化热越高的水泥,其内部度变形越大,形成的温度应力越大,产生裂缝的可能性越大。因此,防止大体积凝土出现裂缝最根本的措施是控制混凝土内部表面的温度差,降温速率要比升温速率高,裂缝的产生可能发生在升温阶段,也可能出现在冷却阶段,升温阶段多为混凝土表层出现不规则裂缝,而在冷却阶段,则常由于外界条件的约束致使混凝土内部出现贯穿性的长裂缝。

混凝土浇筑后,水泥水化产生大量的热,引起混凝土内部升温较快。气温的降低也会在混凝土表面引起很大的拉应力。混凝土达到最高温度后,随着热量的散发又开始降温,直到与环境温度相同。在升温结束后的散热阶段,由于内外混凝土散热条件不同,造成外部混凝土温度低于内部混凝土温度。这样,在升温和降温阶段,混凝土结构内外都形成同一方向的温度梯度,导致其变形不一致,从而使混凝土内部受压、外部受拉。当混凝土的抗拉强度小于温度拉应力时,就会产生裂缝。

温度和湿度的变化、混凝土的脆性和不均匀性以及结构不合理、原材料不合格(如碱骨料反应)、模板变形、基础不均匀沉降运输和浇筑过程中的离析现象等。在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。混凝土硬化期间水泥放出大量水化热内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝土的约束又会在混凝土内部出现拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝;许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。

2 防治裂缝产生的技术措施

2.1 改善约束条件,降低温度应力对基础较长、厚度较大的工程,合理安排施工顺序,采取分层分块浇筑;选择良好的材料,控制其含泥量不超标;加强混凝土振捣,提高混凝土密实度和抗拉强度。

采取二次投料法、二次振捣法;浇灌后应及时排除表面泌水,再用木抹子在混凝土表面反复搓压直至混凝土初凝,表面泛白为止,防止表面裂缝产生,以提高表面混凝土抗拉强度。在基础内设置必要的温度配筋,如在基础截面突然变化、转折部位增加构造筋,以改善应力集中。加强混凝土早期养护,提高早期的抗拉强度和弹性模量。合理地设置水平或垂直施工缝、后浇带,以放松约束程度,减少每次浇灌长度和蓄热量,增加散热面,防止水化热的过大积聚,减小温度应力。

当混凝土性能、浇捣入模温度、约束条件已定情况下,控制温差减小温度应力,防止裂缝产生最有效。所以应做好混凝土表面保温保湿养护,确保混凝土缓慢降温,充分发挥混凝土徐变特性,减小温度应力。采取长时间养护,制订合理拆模时间,延缓降温时间和速度使混凝土温度梯度不至过大,充分发挥混凝土的“应力松驰效应”。加强测温,控制混凝土表面温度与中心处温度差在25℃内。由于气候(温度、湿度)变化,混凝土结构的热胀冷缩、干燥收缩以及水泥水化热所产生的温度应力都很大,如何控制因冷缩和干缩产生的拉应力造成的结构开裂符合混凝土结构工程施工质量验收规范(GB50204-2002)规定,混凝土的浇筑温度不宜超过28℃。

2.2 控制混凝土原材料的质量和技术指标

选用低收缩原材料,如较高的水泥,较低含泥量的砂石以及合理的砂石集配。高减水的外加剂,降低用水量和水泥用量,配置出收缩较小的混凝土。

水化热控制,水泥水化热造成温升,这样固化后的混凝土在降温过程中会产生较大的冷缩和温差拉应力,而混凝土抗拉强度低、变形能力小,很容易开裂。在混凝土中掺入膨胀剂,使其产生适度膨胀,用以抵消混凝土结构的部分冷缩,从而可以减轻或避免温差裂缝的出现。在混凝土中掺入适量的缓凝减水剂可以延迟水泥水化热的释放速度,同时降低热峰。而且此类减水剂还可提高混凝土的流动性,有利于运输和泵送;同时能够避免连续浇筑混凝土过程中的冷接缝问题,降低渗漏隐患;另一方面,减水剂作用可以节约水泥用量,从而降低造价,且水泥用量越少,水化热就越低,温差裂缝就越少。掺入粉煤灰或矿渣等活性混合材料,取代部分水泥,降低水泥水化的发热量,减少温度应力,减轻裂缝的出现。

以上多因素都可以导致混凝土结构自身的抗拉强度低于外施加给它的拉应力,从而导致结构物开裂。因此,外部引起的裂缝是可以避免的。只要通过合理的设计、正确的施工和有效的保养,就可以避免此类裂缝的产生。

2.3 提高结构设计的合理性

合理的设计能够减少由外因引起的裂缝。例如,由结构设计没有考虑好而造成结构变形协调、刚度协调问题,就可能出现裂缝。因此,设计人员应该注重结构设计,确定膨胀加强带的位置,加强带两侧用免拆模板网拦起,并采用钢筋绑扎牢固。在配筋时考虑钢筋的大小和粗细问题,尽量多用细而密的配筋,少用粗而少的配筋。加强对基础的处理和合理选择混凝土材料。

2.4 采取正确的施工方法

在混凝土生产前,施工人员和监理工程师必须检查原材料质量是否符合有关标准。仔细校核计量装置,检查搅拌机器设备和现场泵管布置,确保混凝土生产和泵送时设备能够正常运转。派专人负责投料,并符合计量要求。水泥、砂、石、外加剂、膨胀剂、粉煤灰、矿渣粉和水都必须经过计量后才能投入搅拌机,计量误差应符合规范要求。膨胀剂不得少掺,也不得多掺,及时测定砂、石的含水率,以便及时调整混凝土拌合用水量,严禁随意增加用水量及搅拌时间,确保混凝土搅和均匀。

混凝土浇注前的准备:模板按设计图纸安装,必须固定牢固,清理干净模板及钢筋间的所有杂物并在表面涂上脱模剂,模板缝应严密,不得漏浆,将加强带两侧的免拆模板网绑扎牢固,并用竖筋加固,以免密孔铁丝网被混凝土压垮。每块混凝土连续浇注时,必须保证软接茬以防止产生冷缝,造成防水隐患。混凝土的振捣必须密实,不能漏振、欠振、过振。振捣时间宜为20~30S,以混凝土开始泛浆和不冒气泡为准。振捣时快插慢拔,振点布置要均匀。在施工缝、预埋件处需加强振捣,以免振捣不实,造成渗水通道。振捣时应尽量不触及模板、钢筋、止水带,以防止其位移、变形。每个浇注带的宽度应根据现场混凝土的方量、结构物的尺寸、供料速度、泵送工艺等情况预先计算好,避免冷缝的出现。为避免因混凝土输送泵故障而产生长时间混凝土浇注停工,工地现场应有备用混凝土输送泵,养护器材要预先准备充足,主要是塑料薄膜和无纺布。

2.5 加强混凝土的保湿保温养护

从养护方面着手,在尽量减少混凝土内部温升的前提下,提高混凝土的表面温度,应加强对大体积混凝土的养护,以保持适宜的温度和湿度条件,减少混凝土表面的热扩散,减少内外温差。由于混凝土中形成的膨胀结晶钙矾石需要大量的水,否则就影响膨胀效能,因此在每一块混凝土浇注、抹面完成后,为防止混凝土在硬化工程中出现表面龟裂现象,要及时进行二次抹面处理。在混凝土初凝以后,终凝之前,先人工用木抹拍打,使混凝土的浆液渗出;然后再用力进行抹压,直至抹压平整;混凝土浇筑完毕后不宜立即浇水,以免降低混凝土表面温度而加大混凝土内外温差,引起早期收缩裂缝,当混凝土浇筑完后的3~5d内,可用一至二层塑料薄膜覆盖,按计算的厚度覆盖保温材料,水化热高峰期过后即应浇水保温保湿养护,时间不少于两周,养护工作要派专人负责。

3 结语

影响大体积混凝土裂缝的主要原因是温度应力,施工中应了解混凝土内部温度的变化规律,合理选择原材料,正确采用施工方法,实时监测,加强养护,从而可控制和防治大体积混凝土裂缝的开裂。

摘要:通过分析大体积混凝土温度变化机理导致产生结构裂缝,对大体积混凝土的温度监测、施工措施、原材料质量要求等方面进行了探讨,阐述了在大体积混凝土施工中如何有效防治裂缝产生的具体技术及工程管理措施。

关键词:大体积混凝土,裂缝控制,施工质量

参考文献

[1]CB50010-2002钢筋混凝土设计规范[S].

[2]叶琳昌,沈义.大体积混凝土施工[M].北京:中国建筑工业出版社,1987:35-68.

篇9:浅谈大体积混凝土裂缝的施工防治

【摘 要】混凝土裂缝的产生在钢筋混凝土构件施工过程中一个普遍存在的质量问题,本文分析工程施工中遇到的因温度变化导致钢筋混凝土产生裂缝的原因,并针对性的提出控制裂缝产生的预防措施。

【关键词】钢筋混凝土;温度裂缝;施工;防治措施

0.前言

钢筋混凝土构件具有原材料丰富、造价低、可浇筑成多种断面形状、良好的耐久性及承载力等优势而被普遍应用于建筑工程中。因混凝土抗拉性差,钢筋混凝土构件极易出现裂缝。据调查资料显示,工程构件裂缝产生的原因中约20%为荷载不合理,约80%为自身变化变形引起的[1]。温度变化是最主要的变化变形因素,特别对大体积钢筋混凝土结构而言,因水泥产生大量的水化热,造成混凝土的温度应力与内部温度剧烈变化,致使混凝土出现裂缝,对结构的耐久性与整体性造成严重影响。本文探讨混凝土温度裂缝形成的因素,并提出控制温度裂缝的措施。

1.产生温度裂缝的原因

1.1混凝土的水化热

大体积钢筋混凝土构件浇筑后,水泥与水发生反应释放出数量巨大的水化热,导致混凝土构件的内部温度快速升高,一般在3至5天内升至最高值。因温度变化引起体积胀缩,特别是降温过程中,随混凝土的龄期不断增长、强度与弹性模量的提高,其约束混凝土降温收缩的作用力逐渐增大,产生拉应力较大,导致混凝土出现裂缝。最初阶段时微量裂缝可使应力集中,裂缝存在逐渐变大的可能性。因混凝土不是热的良导体,散热缓慢,浇筑之后,大体积钢筋混凝土的内部温度大大超出表面温度,出现内胀外缩,构件外表形成很大的拉应力导致混凝土发生开裂。

1.2外界的气温变化

外界的气温变化直接影响混凝土的浇筑温度与内外温差控制。在高温季节施工,外界气温越高,浇筑的温度越高,大体积钢筋混凝土结构内部温度通常高达60至80°C[2]。低温季节施工时也会极大提高混凝土构件内外温差。混凝土内外温度不均衡极易形成温度应力,温差越大生产的温度应力越大,越容易引起混凝土发生开裂。

1.3混凝土的收缩变形

理论上,混凝土构件浇筑时水泥的水灰比约为0.38,但施工过程中,为了提高混凝土的和易性,水灰比常常高达0.40~0. 45,剩余的水分会在后期蒸发,导致混凝土干缩变形,使混凝土出现开裂。

1.4约束条件

结构发生变形时必定受到不同程度的抑制,即约束。约束类型有:外约束,即不同结构间的约束;内约束,即结构内部的各个质点间相互约束。约束的存在阻碍结构自由变形导致应力产生,如护栏混凝土、顶板混凝土及箱梁等。大体积的混凝土构件常受到外约束,当混凝土构件浇筑完成后,因发生各种变形,处于约束状态下不同结构相互产生应力,形成混凝土裂缝。

2.温度应力分析

2.1温度应力形成时期

早期:混凝土开始浇筑至水泥热量基本释放结束,通常约30天。该阶段的特征:一是水泥大量释放水化热,二是混凝土的弹性模量发生急剧变化。受弹性模量变化影响,混凝土内可产生残余应力;中期:水泥放热结束至混凝土温度下降到一稳定值为止,该时期的温度应力是由混凝土冷却与外界的气温变化造成的,该应力与早期的残余应力叠加,混凝土弹性模量的变化较小。晚期:混凝土冷却之后的运转阶段。温度应力由外界的气温变化引起,并与前两种应力的残余部分相叠加。

2.2温度应力类型

依温度应力形成原因将其分为:(1)约束应力:部分或全部边界存在外界约束的结构,无法自由变形从而产生应力。如护栏混凝土、顶板混凝土等。这两类温度应力常与混凝土干缩产生的应力共同起作用。(2)自生应力:完全静止或边界无任何约束的结构,若内部温度分布呈非线性状,因结构内部各质点相互约束而产生温度应力。如桥梁墩身,具有较大的结构尺寸,混凝土在冷却阶段表面的温度低,内部的温度高,结构表面表现拉应力,结构内部表现为压应力。

3.施工中温度控制与裂缝的预防措施

3.1裂缝产生的防治措施

3.1.1控制温度的措施

(1)采取优化骨料级配,掺入混合料,使用干硬型混凝土等措施降低混凝土拌和物中水泥用量。

(2)高温期进行混凝土浇筑时浇筑厚度宜薄些,利用表面进行散热。

(3)混凝土拌合时加入冰块或用水冷却碎石以使混凝土浇筑时的温度大大降低。

(4)寒冷季节施工时,对长时间暴露的结构表面或者薄壁结构宜采取相应的保温措施。

(5)合理安排拆模时间,外界温度骤降时采取相应保温措施,防止混凝土表层形成急剧温度梯度。

3.1.2裂缝形成的控制措施

(1)防止基础上表面的横截面或者高差过大。

(2)对混凝土进行合理的分块分缝。

(3)对施工工序进行合理安排,防止大高差存在长期暴露现象。

混凝土浇筑后,因水化热的释放,表面产生的拉应力较大,表面温度远高于气温,此时将模板拆除,表面温度会骤降,产生温度梯度,使表面产生另一拉应力,与前一应力迭加,再因混凝土的干缩影响,可导致裂缝产生,但若模板拆除后立即用轻型的保温材料覆盖表面,有效避免混凝土表面形成过大拉应力。对于大体积混凝土,加筋对其温度应力的影响较小,因为其含筋率十分低。加筋只对常规钢筋混凝土构件有影响。在温度较低与应力小于屈服极限前提下,钢筋各项性能不受时间、温度及应力状态影响。钢筋的线胀系数大小接近混凝土的,当温度波动时两者间仅产生极小的应力[3]。因钢筋的弹性模量是混凝土的7至15倍,当内部混凝土的应力超过抗拉强度产生裂缝时,钢筋应力低于100~200kg/cm2。故加筋无法有效预防混凝土形成细小的裂缝。

3.1.3合理运用外加剂

大部分外加剂均具提高和易性、缓凝、改良塑性等功能,在工程中应在实验室进行多方面的外加剂配比试验,以找出最优的配比方案。工程实践中,外加剂主要作用有:

(1)水泥用量直接影响混凝土收缩,在保证混凝土强度基础上,混凝土中掺入减水防裂剂可使水泥用量降低15%,并用骨料补充其体积[4]。

(2)水灰比对混凝土收缩有重要影响,采用减水防裂剂能够使用水量降低25%。

(3)减水防裂剂具有改良水泥浆稠度,降低混凝土的泌水量,控制沉缩变形。

(4)外加剂可增加混凝土的密实性,增强混凝土抗碳化性,降低碳化收缩。

(5)增强水泥浆粘结骨料的牢固性,增加混凝土的抗裂性能。

3.2混凝土的养护

保温措施应满足以下要求:

(1)避免混凝土过冷,应采取相应措施使混凝土在施工阶段的最低温度高于使用阶段的稳定温度。

(2)避免混凝土构件表面梯度与混凝土的内外温度过度失衡,预防产生表面裂缝。

(3)防止成型混凝土温度过低,以降低新浇筑混凝土与成型混凝土的相互约束。对混凝土进行早期养护,是为了保持适度的温湿状况,以实现两个目标,一是最大限度降低不利湿、温度变形对混凝土的侵袭,避免有害的干缩与冷缩。二是使水泥的水化过程顺利展开,以实现设计的抗裂能力与强度。混凝土的温湿度是相互作用的,保温措施通常也会有保湿的功能。理论上,新浇筑的混凝土构件所含水分满足了水泥水化过程对水的需求且有剩余。但因蒸发等因素影响常造成水分损失,妨碍或者推迟水泥水化反应,该不利因素可直接影响表层的混凝土。故混凝土结构浇筑后的早期养护尤为关键,应予以重视。

4.结束语

钢筋混凝土构件因温度变化引起构件产生裂缝是一种较为常见的现象,裂缝不仅降低构件的抗渗性能,影响其使用功能,而且易造成钢筋锈蚀,使材料耐久性降低,缩短结构的使用寿命。因此需仔细分析温度裂缝的形成原因,并采取有效的措施防止裂缝的发生、发展。只要充分考虑设计、材料选用、施工工艺及后期养护等方面存在的各种影响因素,还是可以有效的避免结构开裂。 [科]

【参考文献】

[1]刘洋.浅谈混凝土施工温度裂缝的原因及预防措施[J].科技资讯,2011,(02):102.

[2]张红帅,鲍安红,陈明龙.混凝土温度裂缝研究与控制[J].山西建筑,2009,35(33):139-140.

[3]徐秋林.大体积混凝土温度裂缝成因分析及控制方法[J].路基工程,2009,(03):181-182.

篇10:浅谈大体积混凝土裂缝的施工防治

摘要:分析了大体积混凝土施工中产生裂缝的原因,并从混凝土材料组成、环境条件、施工工艺、外部荷载等方面,提出了针对性的防治措施,以有效解决混凝土裂缝问题,进而保证工程的施工质量。

关键词:大体积;混凝土;裂缝;措施

当前,建筑工程中一个绕不开的重要话题就是大体积混凝土施工,其主要特征就是体积大、水泥释放大量水化热,表面系数不高且内部温度上升快。要是混凝土内外温差变化急剧,混凝土就会出现裂缝,威胁建筑结构的安全,不利于工程施工的顺利开展。因此,研究大体积混凝土裂缝问题并进行有效地质量控制十分必要。

1.大体积混凝土施工特点

大体积混凝土体积相对较大,一次性完成浇筑。在施工过程中,由于超负荷的温度应力的存在,常常会出现裂缝。裂缝根据大小的不同可以分为宏^裂缝和微观裂缝两种。其中,宏观裂缝可以用肉眼直接观察到,对建筑物的施工质量有很大威胁;微观裂缝一般不会影响工程的施工质量,但是,微观裂缝可能会在某些因素的作用下发展成宏观裂缝,从而影响施工质量。因此,在大体积混凝+32程的施工过程中,控制裂缝的产生和发展就成为质量控制的关键所在。想要控制裂缝的产生及发展就要找出在大体积混凝土施工过程中裂缝的成因及发展规律,从而降低裂缝出现的概率;对于已经出现的裂缝要及时的进行处理,从而保证大体积混凝土的施工质量。

2.大体积混凝土施工过程中裂缝的成因

导致大体积混凝土施工过程中裂缝产生的主要原因是由于混凝土的温度应力和收缩应力的存在。而温度应力和收缩应力产生的主要原因可以归纳为以下四个方面。

2.1混凝土的材料组成

大体积混凝土工程在混凝土浇筑初期容易产生较高的水化热,水化热在混凝土内部积聚使混凝土内部温度远大于表面温度,内外温差的存在会产生温度应力,使混凝土内部受压外部受拉,而当拉应力超过混凝土抗压强度时,就会导致裂缝的产生。

水化热的程度与水泥种类及其用量密切相关,不同的.混合比、骨料级配等也会不同程度的影响水化热程度。

从微观上分析,可以将大体积混凝土看作由粗骨料和硬化水泥砂浆两种主要材料构成。水泥在水化作用之后逐渐凝结、硬化,在这个过程中,水泥浆失水收缩变形远大于粗骨料的收缩变形,收缩变形差的存在会使粗骨料受压,砂浆受拉,应力分布图见图1,以致骨料界面产生微裂缝,继而在某些因素的作用下发展成宏观裂缝。混凝土中水泥用量越大,收缩变形量越大;骨料粒径、含量越大,则收缩变形量越小。

配置混凝土时使用的各种添加剂也会不同程度的影响收缩量。因此,在大体积混凝土工程中,混凝土材料的选择会直接影响到裂缝的产生。另外,不合格的建筑材料在使用过程中极易发生性能劣化,从而影响混凝土的施工质量。

2.2环境条件

环境温度和湿度的变化会在混凝土内部形成变化不均匀的温度场和湿度场,促使内部微裂缝的发展,进而形成表面的宏观裂缝。大体积混凝土工程施工时,如果遇到连续的低温天气,混凝土浇筑后就会因为内外温差过大而产生混凝土裂缝。连续阴雨天气下,过多的雨水会渗入混凝土内部,影响混凝土的凝固,造成微小裂缝的扩展。混凝土浇筑之后及时完善的养护可以减小收缩变形。

2.3施工工艺

在大体积混凝土的施工过程中,混凝土的浇筑、振捣和后期养护都与裂缝的产生息息相关。一般大体积混凝土分层浇筑时,不同层面的混凝土由于温度、荷载的不同而容易产生深层裂缝,不正确的振捣方式也会造成混凝土分层开裂。

2.4外部荷载

大体积混凝土需要充分的时间凝固。在混凝土没有完全凝固之前,要避免在混凝土模板上堆放重物,防止混凝土板面局部受力过大而产生裂缝,如图2所示。同时,如果混凝土没有完全凝固就过早拆模,混凝土板面就会因为受到内部膨胀力的作用而产生裂缝。

3.大体积混凝土施工中的裂缝防治措施

通过以上分析可知,大体积混凝土的裂缝控制需要从消除温度应力和收缩应力方面人手,而温度应力与收缩应力和建筑材料的选择及施工工艺有着直接的联系。因此,想要解决大体积混凝土施工中的裂缝问题,进行良好的质量控制,就要从合理选择建筑材料和坚持科学的施工工艺两方面做起。

3.1合理选择建筑材料

混凝土建筑材料的合理选择主要包括水泥、骨料级配、外加剂、掺合料等方面:

(1)水泥的水化热作用是大体积混凝土产生裂缝的主要原因之一。因此,在施工过程中应尽量选用低水化热的水泥来进行混凝土的配置。其次,在满足混凝土强度的前提下,尽量降低水泥的用量。

(2)选择合适的骨料级配以降低水泥用量,提高混凝土和易性,降低水化热释放的速度,控制混凝土的升温。为控制裂缝产生,粗骨料可以采用粒径范围5mm-20mm的碎石,含泥量不超过1%;细骨料则采用粒径范围在0.15mm~Smm级配良好的中砂,含泥量不超过2%。

(3)随着科技的发展,作为混凝土重要组分的外加剂应用不断增加。合理利用外加剂也可以很好地控制裂缝发展。因此,在满足强度的要求下,应优化混凝土配合比,利用外加剂提高混凝土的抗裂性能。例如在大体积混凝土中适当添加膨胀剂,混凝土内部产生膨胀应力可以抵消部分收缩应力,提高混凝土的抗裂强度。

(4)混凝土中加入粉煤灰、矿渣粉等掺合料可以减少水泥和水的用量,从而改善混凝土抗裂性能。因而,在大体积混凝土中可以采用粉煤灰代替部分水泥的方式,降低水泥的水化热,提高抗渗抗裂能力。

(5)在混凝土中掺入一定数量的分散的短纤维所形成的纤维混凝土可以增强混凝土抵抗裂缝开展的能力。建筑材料是减少大体积混凝土裂缝问题的关键所在,施工企业要严格按照相关规定选择建筑材料,做好材料验收工作,坚决不能采用劣质材料。建筑材料在存储期间也要重视选择合适的存储环境,防治存储不当而造成的材料质量下降问题。还要定期检查材料,一旦发现材料过期或性能不达标就要坚决弃用。

3.2坚持科学的施工工艺

大体积混凝土中,建筑材料的特性决定了结构是否容易产生裂缝,施工工艺则是裂缝问题的主要人为因素:

(1)根据工程的具体情况,通过计算温度应力来确定混凝土浇筑方式。可以选取夜间进行浇筑工作,从而减小温差应力,减少裂缝的产生。浇筑时据混凝土泵送产生的坡度,在混凝土卸点和坡角处布置振捣点,确保混凝土振实。因混凝土的流动性很大,泵送混凝土浇筑完毕之后,为消除混凝土表面裂缝,要在混凝土初凝之后、终凝之前进行二次振捣,提高混凝土防水性能。充分的振捣可以有效减少结构性裂缝。混凝土浇筑、振捣之后产生的泌水和浮浆要及时清除。

(2)在整个施工过程中要做好对温度的测量、控制工作。采用先进的测温装置做好温度记录,可以全面、准确的掌握大体积混凝土内部的实时温度变化,技术人员可以利用测量结果制定、实施相应的温控措施。

(3)重视大体积混凝土的养护工作,即混凝土的保温和保湿工作。技术人员应保证养护工作的连续性。

施工环节中,施工人员应严格按施工要求做好每个环节的工作:均匀搅拌混凝土并控制搅拌时间,混凝土浇筑工作应选择专业的施工人员,把握好每道工序之间的间隔时间,保证浇筑质量,按照规定的时间进行拆模工作。微小裂缝虽然不会对建筑的受力造成影响,但是对建筑的整体性和耐久性会产生一定的影响,是隐藏的安全隐患。施工人员在施工的各个环节要尽可能的控制裂缝的发展。

4.结语

篇11:浅谈大体积混凝土裂缝的施工防治

广州珠江黄埔大桥北汊斜拉桥主墩承台

大体积混凝土施工防裂缝措施

(一分公司珠江黄埔大桥项目部

刘向阳)

摘要

作为一个成功范例,本文介绍了珠江黄埔大桥北汊斜拉桥主墩承台大体积混凝土施工防裂缝措施,测温数据可作为分析借鉴用。

关键词

斜拉桥主墩承台

大体积砼

施工

防裂缝

措施

一、工程概况

广州市珠江黄埔大桥是同

三、京珠国道主干线绕广州公路东环段上的一座特大桥,北汊主桥为单塔双索面钢箱梁斜拉桥,跨径为705m,门型主塔,主塔墩哑铃形承台尺寸为2×(19m×19m×6m)+(31m×8m×6m),C30混凝土共计5820m3,承台分两层浇筑,其中第一层浇筑厚度为2.2m,砼量为1339.8m3;第二层浇筑厚度为3.8m,砼量为2314.2m3。

二、大体积混凝土施工防裂缝措施

1、大体积混凝土裂缝成因分析

⑴、大体积混凝土在硬化期间,水泥水化后释放大量的热量,使混凝土中心区域温度升高,而混凝土表面和边界由于受气温影响温度较低,从而在断面上形成较大的温差,使混凝土的内部产生压应力,表面产生拉应力,由于初期的混凝土强度很低,表面可能出现拉应力超过允许应力而开裂的情况。

⑵、当混凝土水化热发展到3-7d达到温度最高点,由于散热产生降温收缩,且由于水分的散失,使收缩加剧,这种收缩在受到约束后产生拉应力,可能引起混凝土断面产生贯穿性裂缝。

⑶、混凝土结构热的扩散与其最小尺寸的平方成反比,大尺寸结构对热的扩散十分缓慢,造成较大的温差,从而引起产生裂缝的体积变化。

2、针对大体积混凝土裂缝成因而采取的防开裂措施

防止混凝土早期热开裂主要考虑三方面因素:在浇筑的混凝土结构中温度的发展;刚浇筑的混凝土的力学性能;基础或邻接结构对混凝土结构的约束程度。

采取适当措施控制混凝土温度升高和温度变化速度在一定范围内,使温度变化产生的应力小于混凝土的抗拉强度,控制混凝土内部与表面温差小于25℃~30℃,避免出现裂缝,80 施工技术通讯——施工篇

具体措施如下:

⑴、降低混凝土发热量

①、采用低水化热水泥和降低水泥用量。采用广州水泥厂的“金羊”牌42.5R P.O水泥,水泥用量为每方275kg。

②、采用双掺技术。掺入粉煤灰和KJ-45L高效缓凝减水剂,粉煤灰采用超量代换法,掺入量为95kg/m3,占胶凝材料的25.6%,采用高效缓凝减水剂,可减少用水量和减少水泥用量,同时延缓混凝土早期的强度发展。

③、应用颗粒形状好和级配好的骨料。级配好的骨料可减少所需的胶凝材料,避免用砂量过多,控制骨料(砂、石)的含泥量,以减少混凝土的收缩,提高极限拉伸。

④、用低流动性混凝土。只要方便施工,尽可能应用低坍落度混凝土;低坍落度混凝土用水量少,有利于降低温度,减少收缩。

⑤、用后期强度。利用后期强度可减少水泥用量,大体积混凝土结构在浇筑完毕后往往要有较长一段时间才承受荷载,因此可用60天或90天的混凝土强度。

⑵、降低混凝土浇筑温度

外界气温愈高,混凝土的浇筑温度也愈高,混凝土温度提高将加速水泥的水化反应,混凝土达到最高温度的时间也缩短了,因而减少了可利用的散热时间,不利于降低混凝土的最高温度;混凝土浇筑温度增高会降低其和易性,为达到同样的和易性要增加用水量,降低混凝土浇筑时的入模温度,可以减少混凝土内部热量的总量,本工程承台浇筑时间为9、10月份,大气平均气温较高,不利于大体积混凝土施工,因此降低混凝土浇筑温度尤为重要。

①、降低材料温度。刚出厂的散装水泥温度可高达70℃以上,应予以避免,采用多个水泥储罐,将所需水泥备足,避免散装水泥刚出厂就用于施工,集料应避免阳光直射,或者喷水冷却集料。

②、降低拌和用水温度。温度升高1℃水吸收的热量差不多是水泥和集料的4.5倍,所以采用冷却水拌和可以有效地降低混凝土温度。本工程采用冷却机冷却拌和用水,使拌和用水控制在10℃以下,有效地控制了混凝土的入模温度,入模温度全部控制在30℃以下。

⑶、分块分层浇筑混凝土

结构水平尺寸愈大约束愈大,大体积混凝土结构往往根据搅拌能力和浇筑能力划分

81 施工技术通讯——施工篇

为若干块浇筑混凝土,本工程承台共分两层浇筑,第一层浇筑厚度为2.2m,第二层浇筑厚度为3.8m。

⑷、埋设冷却水管

埋设水管用连续流动的冷水可以降低混凝土温度,也可以将混凝土块体冷却到稳定的体积;承台第一层埋设2层冷却管,间距为1m,下层距底0.7m,上层距顶0.5m,同层冷却管间距为1.5m,冷却管直径为2.5cm,管厚为1.5mm的钢管。第二层埋设3层冷却管,间距为1.2m,下层距底为0.7m,上层距顶为0.7m,同层冷却管间距为1.5m,每层冷却管配2台潜水泵,在混凝土盖过冷却管时由专人负责往冷却管内注入凉水降温,冷却水流量大于0.9m3/小时。冷却水采用珠江水,持续养生7天,通过冷却水带走混凝土体内的热量,为了避免使混凝土开裂的太陡的温度梯度,冷却速度以每天温度下降0.6℃左右为宜。

⑸、加强混凝土浇筑时的控制

浇筑混凝土时,采用薄层浇筑,控制混凝土在浇筑过程中均匀上升,避免混凝土拌和物堆积过大高差,混凝土的分层厚度控制在20cm-30cm。采用插入式振捣器,加强振捣,以期获得密实的混凝土,提高密实度和抗拉强度,浇筑后及时排除表面积水,进行二次抹面,防止早期裂缝的出现。

⑹、表面保温与保持湿润

防止开裂的一个重要原则是尽可能保持新混凝土不失去水分,温度降低在一定范围内。混凝土在初凝后,内部热量散失慢,而外表面与大气接触,表面热量散失较快,如果不采取保温措施,当内外温差较大时就容易引起裂缝产生。如果不能保持混凝土表面湿润可防止水分蒸发,那么最终会发生表面干燥,出现收缩裂缝。

在混凝土浇筑后,在混凝土表面用土工布覆盖一层,再用麻袋覆盖两层,并用冷却管的出水洒水养生。尽量晚拆模,并在拆模后立即回填土,利用回填土来进行保温,使得混凝土缓慢降温,缓慢干燥,减小混凝土内外温差。

3、温度监测

承台混凝土入模温度为28℃-30℃,经过2d-3d后中心温度达到最高,4d天后开始降温,经过10d-12d降温阶段后,中心温度基本稳定。参见下述浇筑温度走势图(图中温度测点位置均为从混凝土浇筑顶面算起)。

82 施工技术通讯——施工篇

65℃60℃55℃50℃45℃40℃35℃30℃0h主墩左承台第一次浇筑温度走势1.1m处1.7m处0.5m处表面温度10h1d2d3d4d5d砼入模平均温度为28℃,温度测量从砼浇筑完1d后开始6d7d

165℃主墩右承台第一次浇筑温度走势60℃55℃50℃1.7m处1.1m处45℃40℃0.5m处表面温度35℃30℃0h10h1d2d3d4d5d6d入模平均温度为28℃,温度测量从砼浇筑完1d后开始

图2

主塔左承台第二次浇注温度走势温度(℃)7065处60处55处50处45处承台表面403530入模平均温度为30℃,测温从砼浇筑完后1开始

图3 主墩右承台第二次浇筑砼温度走势℃℃℃处处处℃℃处℃℃处承台表面℃℃入模平均温度为30℃,砼浇筑完1后开始测温

图4

83 施工技术通讯——施工篇

主墩系梁第一次浇筑砼温度走势℃℃℃℃℃℃℃℃℃处处承台表面处入模平均温度为28℃,砼浇筑完后1开始测温

图5

主墩系梁第二次浇筑砼温度走势℃℃℃℃℃℃℃℃℃处处处承台表面处处入模平均温度为29℃,砼浇筑完后1开始测温

图6

4、结束语

通过事先造成大体积砼裂缝成因分析、必要的计算及合理的裂缝控制措施,成功地防止了承台混凝土施工裂缝的产生,质量符合设计及规范要求;是一成功的大体积混凝土施工实例。

篇12:浅谈大体积混凝土裂缝的施工防治

苏占彪

(作者简介,苏占彪,男,1972年11月2日出生,山西省朔州市平鲁区人,朔州路桥建设有限责任公司工程师,研究方向:道路、桥梁施工)

摘要:通过对工程施工中大体积混凝土施工裂缝问题产生原因进行分析,提出了降低混凝土温度应力、防止混凝土产生裂缝的施工控制措施,以及在构造设计上对大体积混凝土应采取的防裂措施,供大家参考。

关键词:大体积混凝土 水化热 裂缝 前言

随着施工技术的突飞猛进,大体积混凝土在结构中应用的越来越多。我国普通混凝土配合比设计规范规定:混凝土结构物中实体最小尺寸不小于1 m的部位所用的混凝土即为大体积混凝土;美国则规定为:任何现浇混凝土,只要有可能产生温度影响的混凝土均称为大体积混凝土。目前,国内外对机械荷载引起的开裂问题研究得较为透彻。而对温度荷载引起的有关裂缝的研究尚不充分。我们应对此加以重视,防止危害结构的裂缝产生。

1.大体积混凝土裂缝产生的主要原因

大体积混凝土结构裂缝的发生是由多种因素引起的,各类裂缝产生的主要影响因素如下:

2.1 水泥水化热的影响

水泥水化过程中放出大量的热,且主要集中在浇筑后的7d左右,一般每克水泥可以放出500J左右的热量,如果以水泥用量350kg/m³ ~550kg/m³来计算,每立方米混凝土将释放出17500KJ~27500的热量,从而使混凝土内部温度升高(可达70℃左右,甚至更高)尤其对大体积混凝土来讲,这种现象更加严重 因为混凝土内部和表面的散热条件不同,故混凝土中心温度很高,就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。

2.2 混凝土的收缩

混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形,受到外部约束时(支撑条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩等三种。在硬化初期主要是水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。

2.3 外界气温湿度变化的影响

大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

2.4 其他因素的影响

构筑物基础的不均匀沉降也会产生裂缝,这种裂缝会随着基础沉降而不断的增大,待地基下沉稳定后,将不会变化。超荷载使用或未达到设计过早加荷载导致结构出现裂缝,这种裂缝称之为荷载裂缝。混凝土配合比不良会造成混凝土塑性沉降裂缝,一般是混凝土配合比中,粗骨料级配不连续、数量不够,砂率及水灰比不当所造成的裂缝。

3.大体积混凝土施工质量控制措施 3.1 大体积混凝土配合比设计

3.1.1 原材料选用 由于水泥的用量直接影响着水化热的多少,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。细骨料宜采用2区中砂,因为使用中砂比用细砂可减少水及水泥的用量。在可泵送情况下粗骨料,选用粒径5—20 mm连续级配石子,以减少混凝土收缩变形。使用掺合料,应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。

3.1.2 外加剂的使用。采用减水剂,如缓凝高效减水剂;采用膨胀剂,如广泛使用u型膨胀剂无水硫铝酸钙或硫酸铝。试验表明,在混凝土添加了膨胀剂之后混凝土内部产生的膨胀应力,可以抵消一部分混凝土的收缩应力,这样,相应地提高混凝土抗裂强度。

3.2 温控措施及施工现场控制

3.2.1 温度预测分析。根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场和温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准,进行保温养护优化选择。

3.2.2混凝土浇筑方案。采用延缓温差梯度和降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度、前后浇筑的搭接时间;控制混凝土温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振和过振,确保混凝土均匀密实;做好现场协调 组织管理,要有充足的人力、物力、保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理,一般浇筑后3~4h内初步用木长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂;混凝土浇灌完后,立即采取有效的保温措施并按规定覆盖养护。

3.2.3混凝土温度监测。在混凝土内部外部设置温度测点,设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析。每一测点的温度值、各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

3.2.4为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置检测水平方向应力分量。

3.2.5通水冷却。采用薄壁钢管在一些混凝土浇筑分层中埋冷却水管,冷却水管使用前进行试水,防止管道漏水和阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。

3.3 构造设计上对大体积混凝土采取防裂措施

3.3.1设计合理的结构形式,可以减少工程数量,减低水化热。如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,来减少混凝土结构体积。

3.3.2充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下形成一定的预压力,补偿混凝土内部温度 收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。

3.3.3大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况可合理地确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而降低设计标号,达到减少混凝土水泥用量降低水化热的目的。

3.3.4于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层等时,可在接触面上设滑动层来减少温度应力。在外约

束的接触面上全部设滑动层,则可大大减弱外约束。

3.3.5还应重视合理有益作用,可采取增配构造钢筋。配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间。在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。

4.结束语

在控制大体积混凝土温度裂缝时既要控制混凝土的内外温差又要防止混凝土表面温度的突然变化。重视温度监测,实际施工中应随时监测混凝土内部温度和内外温差的变化趋势,并据此来调整温控措施,确保混凝土不开裂。影响大体积混凝土开裂的因素很多,应从造成裂缝的各种原因着手,采取全面防治措施,并根据工程具体情况确定防裂重点。

参考文献:

上一篇:高二7班班级公约下一篇:消防演练报道