4G移动通信系统的主要特点和关键技术

2024-05-21

4G移动通信系统的主要特点和关键技术(精选10篇)

篇1:4G移动通信系统的主要特点和关键技术

4G移动通信系统的主要特点和关键技术

1、引言

随着人们对移动通信系统的各种需求与日俱增,目前投入商用的2G、2.5G系统和部分投入商用的3G系统已经不能满足现代移动通信系统日益增长的高速多媒体数据业务,许多国家已经投入到对4G移动通信系统的研究和开发中。本文将概要介绍4G移动通信系统的主要技术特点,并讨论4G系统中可能采用的有关关键技术。2、4G移动通信系统的主要特点

与3G相比,4G移动通信系统的技术有许多超越之处,其特点主要有:

(1)高速率。对于大范围高速移动用户(250km/h),数据速率为2Mb/s;对于中速移动用户(60km/h),数据速率为20Mb/s;对于低速移动用户(室内或步行者),数据速率为100Mb/s。(2)以数字宽带技术为主。在4G移动通信系统中,信号以毫米波为主要传输波段,蜂窝小区也会相应小很多,很大程度上提高用户容量,但同时也会引起系列技术上的难题。

(3)良好的兼容性。4G移动通信系统实现全球统一的标准,让所有移动通信运营商的用户享受共同的4G服务,真正实现一部手机在全球的任何地点都能进行通信。

(4)较强的灵活性。4G移动通信系统采用智能技术使其能自适应地进行资源分配,能对通信过程中不断变化的业务流大小进行相应处理而满足通信要求,采用智能信号处理技术对信道条件不同的各种复杂环境进行信号的正常发送与接收,有很强的智能性、适应性和灵活性。(5)多类型用户共存。4G移动通信系统能根据动态的网络和变化的信道条件进行自适应处理,使低速与高速的用户以及各种各样的用户设备能够共存与互通,从而满足系统多类型用户的需求。

(6)多种业务的融合。4G移动通信系统支持更丰富的移动业务,包括高清晰度图像业务、会议电视、虚拟现实业务等,使用户在任何地方都可以获得任何所需的信息服务。将个人通信、信息系统、广播和娱乐等行业结合成一个整体,更加安全、方便地向用户提供更广泛的服务与应用。

(7)先进的技术应用。4G移动通信系统以几项突破性技术为基础,如:OFDM多址接入方式、智能天线和空时编码技术、无线链路增强技术、软件无线电技术、高效的调制解调技术、高性能的收发信机和多用户检测技术等。

(8)高度自组织、自适应的网络。4G移动通信系统是一个完全自治、自适应的网络,拥有对结构的自我管理能力,以满足用户在业务和容量方面不断变化的需求。3、4G移动通信系统的关键技术

为了适应移动通信用户日益增长的高速多媒体数据业务需求,具体实现4G系统较3G的优越之处,4G移动通信系统将主要采用以下关键技术:(1)接入方式和多址方案

OFDM(正交频分复用)是一种无线环境下的高速传输技术,其主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,各子载波并行传输。尽管总的信道是非平坦的,即具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM技术的优点是可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率,可实现低成本的单波段接收机。OFDM的主要缺点是功率效率不高。(2)调制与编码技术

4G移动通信系统采用新的调制技术,如多载波正交频分复用调制技术以及单载波自适应均衡技术等调制方式,以保证频谱利用率和延长用户终端电池的寿命。4G移动通信系统采用更高级的信道编码方案(如Turbo码、级连码和LDPC等)、自动重发请求(ARQ)技术和分集接收技术等,从而在低Eb/N0条件下保证系统足够的性能。(3)高性能的接收机

4G移动通信系统对接收机提出了很高的要求。Shannon定理给出了在带宽为BW的信道中实现容量为C的可靠传输所需要的最小SNR。按照Shannon定理,可以计算出,对于3G系统如果信道带宽为5MHz,数据速率为2Mb/s,所需的SNR为l.2dB;而对于4G系统,要在5MHz的带宽上传输20Mb/s的数据,则所需要的SNR为12dB。可见对于4G系统,由于速率很高,对接收机的性能要求也要高得多。(4)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。(5)MIMO技术

MIMO(多输入多输出)技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。例如:当接收天线和发送天线数目都为8根,且平均信噪比为20dB时,链路容量可以高达42bps/Hz,这是单天线系统所能达到容量的40多倍。因此,在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。在无线频谱资源相对匮乏的今天,MIMO系统已经体现出其优越性,也会在4G移动通信系统中继续应用。(6)软件无线电技术

软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。软件无线电的核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能多地用软件来定义无线功能,各种功能和信号处理都尽可能用软件实现。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。软件无线电技术能支持采用不同空中接口的多模式手机和基站,能实现各种应用的可变QoS。(7)基于IP的核心网

4G移动通信系统的核心网是一个基于全IP的网络,同已有的移动网络相比具有根本性的优点,即:可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

(8)多用户检测技术

多用户检测是宽带CDMA通信系统中抗干扰的关键技术。在实际的CDMA通信系统中,各个用户信号之间存在一定的相关性,这就是多址干扰存在的根源。由个别用户产生的多址干扰固然很小,可是随着用户数的增加或信号功率的增大,多址干扰就成为宽带CDMA通信系统的一个主要干扰。传统的检测技术完全按照经典直接序列扩频理论对每个用户的信号分别进行扩频码匹配处理,因而抗多址干扰能力较差;多用户检测技术在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号信息对单个用户的信号进行检测,从而具有优良的抗干扰性能,解决了远近效应问题,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。随着多用户检测技术的不断发展,各种高性能又不是特别复杂的多用户检测器算法不断提出,在4G实际系统中采用多用户检测技术将是切实可行的。

4、总结

4G移动通信系统目前还只是一个基本概念,处于实验室研究开发阶段。不少业内人士认为,尽管4G移动通信技术有着比3G更强的优越性,可要是把4G投入到实际应用,还需要对现有的移动通信基础设施进行更新改造,这将会引发一系列的资金、观念等问题,从而在一定程度上减缓4G正式进入市场的速度。但可以肯定的是,随着互联网高速发展,4G也会继续高速发展,4G将会是多功能集成的宽带移动通信系统,是满足未来市场需求的新一代的移动通信系统。

篇2:4G移动通信系统的主要特点和关键技术

作者:何琳琳杨大成

1、引言

随着人们对移动通信系统的各种需求与日俱增,目前投入商用的2G、2.5G系统和部分投入商用的3G系统已经不能满足现代移动通信系统日益增长的高速多媒体数据业务,许多国家已经投入到对4G移动通信系统的研究和开发中。

本文将概要介绍4G移动通信系统的主要技术特点,并讨论4G系统中可能采用的有关关键技术。

2、4G移动通信系统的主要特点

与3G相比,4G移动通信系统的技术有许多超越之处,其特点主要有:

(1)高速率。对于大范围高速移动用户(250km/h),数据速率为2Mb/s;对于中速移动用户(60km/h),数据速率为20Mb/s;对于低速移动用户(室内或步行者),数据速率为100Mb/s。

(2)以数字宽带技术为主。在4G移动通信系统中,信号以毫米波为主要传输波段,蜂窝小区也会相应小很多,很大程度上提高用户容量,但同时也会引起系列技术上的难题。

(3)良好的兼容性。4G移动通信系统实现全球统一的标准,让所有移动通信运营商的用户享受共同的4G服务,真正实现一部手机在全球的任何地点都能进行通信。

(4)较强的灵活性。4G移动通信系统采用智能技术使其能自适应地进行资源分配,能对通信过程中不断变化的业务流大小进行相应处理而满足通信要求,采用智能信号处理技术对信道条件不同的各种复杂环境进行信号的正常发送与接收,有很强的智能性、适应性和灵活性。

(5)多类型用户共存。4G移动通信系统能根据动态的网络和变化的信道条件进行自适应处理,使低速与高速的用户以及各种各样的用户设备能够共存与互通,从而满足系统多类型用户的需求。

(6)多种业务的融合。4G移动通信系统支持更丰富的移动业务,包括高清晰度图像业务、会议电视、虚拟现实业务等,使用户在任何地方都可以获得任何所需的信息服务。将个人通信、信息系统、广播和娱乐等行业结合成一个整体,更加安全、方便地向用户提供更广泛的服务与应用。

(7)先进的技术应用。4G移动通信系统以几项突破性技术为基础,如:OFDM多址接入方式、智能天线和空时编码技术、无线链路增强技术、软件无线电技术、高效的调制解调技术、高性能的收发信机和多用户检测技术等。

(8)高度自组织、自适应的网络。4G移动通信系统是一个完全自治、自适应的网络,拥有对结构的自我管理能力,以满足用户在业务和容量方面不断变化的需求。

3、4G移动通信系统的关键技术

为了适应移动通信用户日益增长的高速多媒体数据业务需求,具体实现4G系统较3G的优越之处,4G移动通信系统将主要采用以下关键技术:

(1)接入方式和多址方案

OFDM(正交频分复用)是一种无线环境下的高速传输技术,其主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,各子载波并行传输。尽管总的信道是非平坦的,即具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM技术的优点是可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率,可实现低成本的单波段接收机。OFDM的主要缺点是功率效率不高。

(2)调制与编码技术

4G移动通信系统采用新的调制技术,如多载波正交频分复用调制技术以及单载波自适应均衡技术等调制方式,以保证频谱利用率和延长用户终端电池的寿命。4G移动通信系统采用更高级的信道编码方案(如Turbo码、级连码和LDPC等)、自动重发请求(ARQ)技术和分集接收技术等,从而在低Eb/N0条件下保证系统足够的性能,

(3)高性能的接收机

4G移动通信系统对接收机提出了很高的要求。Shannon定理给出了在带宽为BW的信道中实现容量为C的可靠传输所需要的最小SNR。按照Shannon定理,可以计算出,对于3G系统如果信道带宽为5MHz,数据速率为2Mb/s,所需的SNR为l.2dB;而对于4G系统,要在5MHz的带宽上传输20Mb/s的数据,则所需要的SNR为12dB。可见对于4G系统,由于速率很高,对接收机的性能要求也要高得多。

(4)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。

(5)MIMO技术

MIMO(多输入多输出)技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。例如:当接收天线和发送天线数目都为8根,且平均信噪比为20dB时,链路容量可以高达42bps/Hz,这是单天线系统所能达到容量的40多倍。因此,在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。在无线频谱资源相对匮乏的今天,MIMO系统已经体现出其优越性,也会在4G移动通信系统中继续应用。

(6)软件无线电技术

软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。软件无线电的核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能多地用软件来定义无线功能,各种功能和信号处理都尽可能用软件实现。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。软件无线电技术能支持采用不同空中接口的多模式手机和基站,能实现各种应用的可变QoS。

(7)基于IP的核心网

4G移动通信系统的核心网是一个基于全IP的网络,同已有的移动网络相比具有根本性的优点,即:可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

(8)多用户检测技术

多用户检测是宽带CDMA通信系统中抗干扰的关键技术。在实际的CDMA通信系统中,各个用户信号之间存在一定的相关性,这就是多址干扰存在的根源。由个别用户产生的多址干扰固然很小,可是随着用户数的增加或信号功率的增大,多址干扰就成为宽带CDMA通信系统的一个主要干扰。传统的检测技术完全按照经典直接序列扩频理论对每个用户的信号分别进行扩频码匹配处理,因而抗多址干扰能力较差;多用户检测技术在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号信息对单个用户的信号进行检测,从而具有优良的抗干扰性能,解决了远近效应问题,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。随着多用户检测技术的不断发展,各种高性能又不是特别复杂的多用户检测器算法不断提出,在4G实际系统中采用多用户检测技术将是切实可行的。

4、总结

4G移动通信系统目前还只是一个基本概念,处于实验室研究开发阶段。不少业内人士认为,尽管4G移动通信技术有着比3G更强的优越性,可要是把4G投入到实际应用,还需要对现有的移动通信基础设施进行更新改造,这将会引发一系列的资金、观念等问题,从而在一定程度上减缓4G正式进入市场的速度。但可以肯定的是,随着互联网高速发展,4G也会继续高速发展,4G将会是多功能集成的宽带移动通信系统,是满足未来市场需求的新一代的移动通信系统。

篇3:4G移动通信系统的主要特点和关键技术

一、4G和3G的主要技术参数比较

目前公认的第三代移动通信系统标准有CD-MA2000、TD-SCDMA和WCDMA三种,其主要缺陷主要表现在三个方面:无法提供动态范围内的多种速率业务;无法完成多业务环境、多频段的无缝漫游;传输速率仍然较低。4G移动通信技术虽是对3G技术系统的升级,其主要技术参数方面与3G系统技术相比较仍有很多不同[1]。如表1所示。

二、4G移动通信系统的特点

(1)更好地灵活性

4G移动通信系统利用强大的智能技术可以自适应完成信息资源的有效分配,能够根据智能信号处理技术在不同信道条件下和各种复杂环境中进行正常发送和接受信号,具有良好的适应性、智能性和灵活性。

(2)数字宽带技术

4G移动通信系统的传输信号多采用毫米波的传输波段,其产生的较小的蜂窝小区可以大幅度提升用户容量,不过由此也会引发一连串技术难题。

(3)多业务融合

4G移动通信系统能够支持会议电视、高清晰图像处理、虚拟现实业务等更为多样的移动业务,可以保证用户在任何位置都能享受高质量的信息服务;同时其综合广播、信息系统、个人通信、娱乐等领域,可以更方便、安全的提供给用户更为广泛的应用和服务。

(4)更快捷的传输速度

相比于3G通信系统的2Mb/s传输速度,4G移动通信系统可以实现多层次的高速率信息传输:步行或室内的低速移动用户可获得的数据传输速率一般在100Mh/s;中速移动用户可获得的数据传输速率一般在20Mb/s;高速移动用户可获得数据传输速率一般在2Mb/s。

(5)更高的组织性和适应性

4G移动通信系统是一个具有高度组织性和适应能力的网络,其能够实现对结构的自我管理,可以提高用户在容量和业务等方面的满足程度[2]。

三、4G移动通信系统的主要技术

1、以IP为基础的核心网

3G移动通信系统的网络基础不是IP,如WCDMA是以GSM-MAP为基础;CD-MA2000是以ANSI-41为基础。而4G移动通信系统是一个全面以IP为基础的核心网络,能够完成端点之间的IP业务传输,能够同已经存在的PSTN和核心网共存,主要优势有:低成本的集成网络特点;完成不同网络间的无缝连接。其主要解决的难点有:要建立扩展性较高的网络结构,以满足多样接口接入核心网的要求;合理的计费;及时把控制、业务和传输等功能分离。

2、编码和调制

为了确保在较低Eb/NO状态下继续保持优良的性能,4G移动通信系统一般采用级联码、Turbo码和LDPC等较高级的信道编码方案,NTT DoCoMo状态下的4G实现系统通常会采用Turbo码的信号编码方式[3]。4G移动通信系统主要采用多载波调制技术,其分为两种:一种是正交频分复用时分多址(OFDM-TDMA),另一种是多载波码分多址(MC-CDMA)。通常情况下,OFDM-TDMA其调制方式为高电平式,而MC-CDMA其调制方式多为QPSK式。高电平式以M-QAM为主要典型,其设计中经常采用自适应调制,会根据适应需要的参数确定符号速率和电平数,以此不断加强系统性能。

3、软件无线电技术

软件无线电技术为基础的BS或移动终端会采用由ADC/DAC模块、天线模块、DSP模块、LNA模块、多媒体模块和功率放大器模快等构成的模块化集成结构,其基带器件和R F都可以采用适当的方法进行编程。软件无线电技术拥有更高的适应性和灵活性,其能够支持多种接口方式的基站和多模式手机的连接,能够支持多种应用的可变化QoS,并能够顺利融合多种系统和标准,其在4G移动通信系统中的应用范围有:终端移动过程中的自动配置,如移动终端在移动到不同类型标准的移动系统中时,终端可依照该系统标准进行自动配置以完成服务;以软件无线电技术为基础的基站可以实现多个网络间的同时服务。

4、多址方案和无线接入方式

4G移动通信系统在CDMA、FDMA、OFDM、TDMA等多址方式中最有可能选择OFDM的多址类型,其主要优势包括:相邻小区和用户间不会发生干扰;不同信号间无干扰;可以完成较低成本的单波段接收;不受多普勒频移和多径衰落问题影响等。较低的功率效率是OFDM的主要缺陷。近年来日本首次采用了VSF-OFCDM的无线接入方式,其属于多载波CDMA类型,具有对多径干扰不敏感和高频谱利用率等优点。另外VSF-OFCDM采用了可变性扩频因子,可以在一般业务区和高密业务区范围内重复使用。

5、高性能接受机

4G移动通信系统对接受机的要求较高。Shannon定理为我们指出了在带宽固定的信道中要完成容量为C的可靠性传输所需的最小的SNR数值,因此,在3G系统中如果带宽为5MHz,数据传输速度为2Mbps,那么所要求的SNR要达到1.2dB;而在4G移动通信系统中,要在同等带宽上完成20Mbps的数据传输速度,则SNR值至少为12dB,由此可以看出,4G移动通信系统需要更高性能的接收机[4]。

6、MIMO和智能天线技术

4G移动通信系统利用MIMO和智能天线技术进行空间分集,可以有效降低多址的干扰影响。MIMO天线系统同时采用4个天线来完成接收和发射分集,其结构图如图1所示。智能天线中的基站可以在不同用户间构成一个定向波束,这可以提有效减弱基站发射功率标准,同时还可以减少小区内其他用户的多址影响。

四、结束语

4G移动通信系统相比于3G系统具有更为显著的优势,在现代移动通信中的应用将会越来越广泛。因此,移动通信技术开发和研究人员应当充分发挥4G移动通信技术的优势和特色,在系统的关键技术上实现更高的突破,以满足更高的用户需求和体验。

参考文献

[1]谢景贤.4G通信技术的创新与发展[J].信息通信.2012,05(35):57-58

[2]孙威.4G移动通信关键技术浅析[J].科技致富向导.2011,06(10):61-62

[3]郭鑫.第网代移动通信(4G)关键技术[J].中国新技术新产品.2011,13(14):74-75

篇4:4G移动通信系统的主要特点和关键技术

关键词:4G移动通信系统;特点;关键技术

中图分类号:TN929.5 文献标识码:A 文章编号:1674-7712 (2014) 04-0000-01

随着现代信息技术的快速发展,移动通信技术经历了从第一代移动通信系统(1G)到现在仍在使用的第三代移动通信系统(3G)的高度迈进。3G通信系统拥有很多高质量的多媒体业务和数据处理业务,其通讯速度也达到了相当的高度,带给了用户更多的多元化体验。然而其视频传输速度仍不能满足现代通信数据传输的要求,由此引发了对4G移动通信技术的研究。

一、4G和3G的主要技术参数比较

目前公认的第三代移动通信系统标准有CDMA2000、TD-SCDMA和WCDMA三种,其主要缺陷主要表现在三个方面:无法提供动态范围内的多种速率业务;无法完成多业务环境、多频段的无缝漫游;传输速率仍然较低。4G移动通信技术虽是对3G技术系统的升级,其主要技术参数方面与3G系统技术相比较仍有很多不同。

二、4G移动通信系统的特点

4G通信技术所具有的特点和技术目标主要有:更强的安全性、更快捷的传输速度、更稳定的传输效率、更优质的智能服务、更优良的业务质量、更好的灵活性、高充分的频谱利用率等,具体技术特点为:

(一)更好地灵活性。4G移动通信系统利用强大的智能技术可以自适应完成信息资源的有效分配,能够根据智能信号处理技术在不同信道条件下和各种复杂环境中进行正常发送和接受信号,能够处理通信过程中大小逐步变换的业务流以符合通信标准,具有良好的适应性、智能性和灵活性。

(二)数字宽带技术。4G移动通信系统的传输信号多采用毫米波的传输波段,其产生的较小的蜂窝小区可以大幅度提升用户容量,不过由此也会引发一连串技术难题。

(三)多业务融合。4G移动通信系统能够支持会议电视、高清晰图像处理、虚拟现实业务等更为多样的移动业务,可以保证用户在任何位置都能享受高质量的信息服务;同时其综合广播、信息系统、个人通信、娱乐等行业,可以更方便、安全的提供给用户更为广泛的应用和服务。

三、4G移动通信系统的主要技术

(一)以IP为基础的核心网。3G移动通信系统的网络基础不是IP,如WCDMA是以GSM-MAP为基础;CDMA2000是以ANSI-41为基础。而4G移动通信系统是一个全面以IP为基础的核心网络,能够完成端点之间的IP业务传输,能够同已经存在的PSTN和核心网共存,主要优势有:低成本的集成网络特点;完成不同网络间的无缝连接。其主要解决的难点有:要建立扩展性较高的网络结构,以满足多样接口接入核心网的要求;合理的计费和鉴权;及时把控制、业务和传输等功能分离。

(二)编码和调制。为了确保在较低Eb/N0状态下继续保持优良的性能,4G移动通信系统一般采用级联码、Turbo码和LDPC等较高级的信道编码方案,NTT DoCoMo状态下的4G实现系统通常会采用Turbo码的信号编码方式。[3]

(三)软件无线电技术。软件无线电技术为基础的BS或移动终端会采用由ADC/DAC模块、天线模块、DSP模块、LNA模块、多媒体模块和功率放大器模快等构成的模块化集成结构,其基带器件和RF都可以采用适当的方法进行编程。软件无线电技术拥有更高的适应性和灵活性,其能够支持多种接口方式的基站和多模式手机的连接,能够支持多种应用的可变化QoS,并能够顺利融合多种系统和标准,其在4G移动通信系统中的应用范围有:终端移动过程中的自动配置,如移动终端在移动到不同类型标准的移动系统中时终端可依照该系统标准进行自动配置以完成服务;以软件无线电技术为基础的基站可以实现多个网络间的同时服务。

(四)多址方案和无线接入方式。4G移动通信系统在CDMA、FDMA、OFDM、TDMA等多址方式中最有可能选择OFDM的多址类型,其主要优势包括:相邻小区和用户间不会发生干扰;不同信号间无干扰;可以完成较低成本的单波段接收机;不受多普勒频移和多径衰落问题影响等。较低的功率效率是OFDM的主要缺陷。近年来日本首次采用了VSF-OFCDM的无线接入方式,其属于多载波CDMA类型,具有对多径干扰不敏感和高频谱利用率等优点。

(五)高性能接受机。4G移动通信系统对接受机的要求较高。Shannon定理为我们指出了在带宽固定的信道中要完成容量为C的可靠性传输所需的最小的SNR数值,因此,在3G系统中如果带宽为5MHz,数据传输速度为2Mbps,那么所要求的SNR要达到1.2dB;而在4G移动通信系统中,要在同等带宽上完成20Mbps的数据传输速度,则SNR值至少为12dB,由此可以看出,4G移动通信系统需要更高性能的接收机。[4]

(六)无线电增强技术。主要采用的能够加强覆盖和提高容量的无线电增强技术有:利用多天线技术,如可以采用多输入多输出技术完成接收和发射分集,或采用2或4天线完成发射分集等;利用频率分集、极化分集、时间分集和空间分集等分集技术获取较好的分级性能。

(七)MIMO和智能天线技术。4G移动通信系统利用MIMO和智能天线技术进行空间分集,可以有效降低多址的干扰影响。MIMO天线系统同时采用4个天线来完成接收和发射分集,其结构图如图1所示。智能天线中的机站可以在不同用户间构成一个定向波束,这可以提有效减弱基站发射功率标准,同时还可以减少小区内其他用户的多址影响。

四、结束语

4G移动通信系统相比于3G系统具有更为显著的优势,在现代移动通信中的应用将会越来越广泛。因此,移动通信技术开发和研究人员应当充分发挥4G移动通信技术的优势和特色,在系统的关键技术上实现更高的突破,以满足更高的用户需求和体验。

参考文献:

[1]谢景贤.4G通信技术的创新与发展[J].信息通信,2012(35):57-58.

[2]孙威.4G移动通信关键技术浅析[J].科技致富向导,2011(10):61-62.

篇5:4G移动通信关键技术探析论文

摘要:随着通信技术的发展,4G通信技术开始得到广泛推广与应用,已经成为移动通信的主导技术,完全满足了用户的需求,具有安全性高、技术性强等特点。本文主要对4G移动通信关键技术进行分析。

关键词:4G;通信;关键技术;核心分析

4G通信技术是在3G基础上进行的突破性发展,汇集了3G通信的各种优势,同时提高了信息传输速度,给用户提供了较广的工作平台,而且还具有较强的安全性和保密性,已经逐渐在通信行业得到推广应用,具有较广的应用意义。

一、概述

4G是第四代移动通信的简称,该技术将3G和WLAN结合在一起,其特点体现在传输的速度更快,传输质量也较3G技术有较大提升。理论上4G系统下载峰值可以达到100Mbps,上传速度保持在20Mbps,从4G通信传播特点分析,首先可以在任何地点和任何时间以无障碍方式接入到通信网络;其次4G移动通信具有业务、网络和选择自由;再次,4G移动通信是电子商务的综合性业务;最后4G移动通信技术可满足其他体系、系统与网络需求,满足了物联网业务。

二、4G通信关键技术

(一)正交频分复用(OFDM)技术4G技术的核心是OFDM技术,也可以视为OFDM载波调制的一种,目前该技术已经得到发展,主要是具有以下优势:第一,能够实现较高的频谱利用率,与串行系统相比,其利用效率能够高出一倍

。OFDM信号相邻子载波互相重叠,频谱可接近Nyquist极限。第二,可满足高速传输要求。OFDM自适应调制机制在调制方式上依据信道与噪声的使用情况开展相应的操作。信道较好的情况下,可使用效率高的方式调制;信道条件差时可使用抗干扰力较强的方式操作。捅通常OFDM的加载算法可以将较多数据放在条件较好的高速率上传送,满足高速数据传输需求。第三,抗衰落能力较强。OFDM用户主要利用多载波传输,传输子载波的时间长,进而提高了OFDM对信道快衰落与脉冲噪声的抵抗力。第四,抗码间干扰(ISI)力强。码间干扰是数字通信系统中抗击的主要感染,属于乘性干扰,实际分析发现,码间干扰产生的原因较多,受传输频带影响,就会产生码间干扰。OFDM借助循环前缀等提高了码间干扰能力。

(二)Ipv6技术

根据3G网络出现的编制不合理、空间资源浪费等情况,4G个中引入了Ipv6编址技术,主要具有以下几种优点:第一,编制空间较大。技术人员利用Ipv6编址技术给4G通信提供了较大空间,减少了资源浪费。第二,安全可靠。在Ipv6报头中设置了字段长度为20位,进行IP传输时可以将地址流交给各节点完成,保证了4G协议的安全可靠。第三,自动控制技术。自动控制技术是Ipv6的主要特性,利用此种技术可以进行无状态和有状态地址配置,通常情况下,前者可根据地质节点发挥邻居机制,进而得到唯一的地址。第四,在安全性与移动性方面表面突出。可移动性作为4G技术主要的特点,并且在移动过程中既要保证IP地址安全,同时也要确保信号灵活性。为确保每位用户都有固定Ip地址,Ipv6在实现方式上主要是一对一,然后利用转换地址了解通信节点,进而提高了设备安全。

(三)智能天线

首先,了解天线作业原理。作为4G通信的一个主要特点,结合到信号传输方向将SDMA技术应于其中,实现同一时间、频率及统一码道信号的区分,改变了信号覆盖区域,而且可结合用户情况监测周围环境,限制了其他信号,保证了用户上下链路信号的质量,可以让用户安全的使用,提高了用户工作和生活质量。其次,了解其工作方式。目前智能天线工作方式主要有两种,全自适应与干预多波束切换。前一种方式的特点体现在计算量与数据量大、能够快速收敛,信道在传输时,信道时速在变化的同时能够与之相应变化。在所有的`特点中其不足的一方面是会受到多方面因素干扰,不能实现移动信号的跟踪与检测,但从智能天线上分析,此种方式是理想的工作方式。后者基于多波束切换方式在实际工作中可管理好各空间波束,而且各个波束对应的方向也不同,在信号接受时,可以将其中的任意一个主瓣作为工作模式,实用性较强,并且在4G智能天线发展方面已经成为了主要方向。

(四)MIMO技术

MIMO技术使用的是分立式多天线从而实现多发射与多接受。作为一种空间分结技术,通信链路可以被分为很多并行子信道,从而达到提升容量的目的。信息论表明,当接受与发射天线不相同且不相关时,MIMO技术可以实现系统噪声与抗衰落性能的有效提升,从而实现较大容量的目的。而且该技术具有数据传输速率块、系统容量大及传输质量高等特点,在4G通信中具有发展前景。

(五)多用户检测

该项技术是基于4G终端与基站而产生的,其目的在于提升系统容量,利用该技术可以召集信道内所有用户,之后然后借助于信号处理方式处理用户接受的信道,进而将用户信号维持在最佳状态。同时用户检测技术的抗远近与抗干扰能力较强,系统容量能够得到保障,频谱资源的利用效率也能够提升。通过对实际应用工作的分析,目前该项技术应用的范围与对象主要是功率控制或者是二维信号检测处理。

(六)SDR技术

SDR技术引入到4G技术中的时间较短,其目的在于构建硬件通信平台,并实现标准化,开放化,模块化,其本身是一种软件无线电技术,利用该平台可以实现通信协议达成、加密与数据处理等,最终实现为4G系统创建理想通讯模式的目标。通信专家所构想的SDR其组成部包括了信道纠错编码,信源编码、调制解调算法。其特点体现在硅芯容量能够有效减少,可满足不同产品要求,保障多方运行正常。

随着技术的快速发展,并且在速相关技术的推动下,4G技术发展的速度非常快,并且在生活中应用的范围也十广。能够有效的满足不同用户的需求。作为新一代通信技术,其市场前景十分的广阔。

参考文献:

[1]刘婷婷;方华丽.浅谈4G移动通信系统的关键技术与发展[J].科技信息,,(09)

[2]姚志刚.4G移动通信关键技术的应用及发展前景[J].中国新通信,,(08)

[3]胡伟健;钟细福.4G移动通信关键技术与面临的问题[J].中国新通信,,(02).

篇6:4G移动通信系统的主要特点和关键技术

民用第三代移动通信系统是新一代移动通信系统,其具有很好的网络兼容性 ,能够实现全球范围内多个不同系统间的漫游,不仅要为民用移动用户提供话音及低速率数据业务,而且要提供广泛的多媒体业务。随着民用3G技术的深人发展 ,能够广泛运用于军事领域的4G通信技术也逐步成熟起来。可以预测 ,在军事领域4G通信技术将得到全面的运用与发展。1 军用 4G概念通信技术应当具备的主要特点分析

随着信息技术产、网络技术和通信技术的深人发展 ,战场信息传输与通信的容量、质量要求日益提高,为了确保在信息通信的有效与稳定,世界各国专业人士对能够广泛运用于军事领域的4G概念移动通信系统应当具备的主要功能提出①在不同战区的战场上 ,用户可以在任何地点、任何时间以任何方式不受限地接人战场通信网络中 ②战场上不同的移动用户终端可以是所有军种、兵种中任何类型用户 ③在战场上 ,不同任务、不同需求和不同身份的用户可以自由地选择业务、应用和网络 ④通过网络可以实现战场评估、战场预测和作战模拟等相关信息的传输 ⑤新开发的通信技术可以可以较为容易地被嵌人到建成的通信系统和相关系统和业务中。军用4G概念通信系统应当具备的主要技术标准

根据对军用4G通信技术基础战场任务的描述,未来的军用4G通信系统应具备以下的基本条件。

覆盖面广。军用4G通信网络具有良好的覆盖性能,其通信系统具有良好的覆盖并能提供高速可变速率传输,对于不同作战区域的战场、防护工程、指挥控制中心等室内环境,其也可以较好地实施信号搜盖。

智能化强。军用4G通信网络是高度智能化的网络 ,其通过采用智能技术可以将其构建为一个的高度自治、自适应的网络军用 通信系统。同时,采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收,有很强的智能性、适应性和灵活性。

无缝链接。军用4G通信网络要能够实现真正的战场无缝信息链接。4G移动通信系统在民用领域要实现全球统一的标准,能使各类媒体、通信主机及网络之间进行“无缝连接” ,真正实现一部手机在全球的任何地点都能进行通信 在军用领域其无缝链接的要求则更加突出。

传输率高。具有较很高的数据传输速率,在战争中对于作战飞机、高速舰艇、巡航导弹等运用速度达到250km/h劝了 以上的大范围高速移动用户 ,数据速率为 2Mbit/s;对于主战坦克、装甲车辆、自行火炮、防空导弹、大中型舰艇等运动速度为60km/h的中速移动用 ,数据速率为 20Mbit/s;对于战场机器人、作战人员等低速移动用户,数据速率为 100Mbit/s。3 军用4G 概念通信技术开展的几项主要关键技术 3.1无线链路增强技术

军用4G 通信网络中无线链路增强技术可以提高容量和覆盖的无线链路增强主要技术包括分集技术 , 如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能 多天线技术,如采用 2或 4天线来实现发射分集,或采用多输人多输出(MIMO)技术来实现发射和接收分集。MIMO技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将战场通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

3.2智能天线技术

军用4G 通信网络中智能天线采用了空时多址 的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,将主波束对准关键的战场用户,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每个用户提供优质的上行链路和下行链路信号从而达到抑制干扰、准确提取有效信号的目的。这种技术具有在战场上较好的抑制信号干扰、自动跟踪及数字波束等功能,被认为是未来军事移动通信的关键技术。现阶段 ,智能天线的工作方式主要有全自适应方式和基于预多波束的波束切换方式。全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大、信道模型简单、收敛速度较慢,在战场上某些特定情况下,其甚至会暴露出错误收敛等缺点。实际信道条件下 ,当干扰较多、多径严重 ,特别是信道快速时变时,很难对某一指定的战场用户进行实际跟踪。在基于预多波束的切换波束工作方式下,全空域被一些预先计算好的波束分割覆盖 , 各组权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠 ,接收时的主要任务是挑选一个作为工作模式,与自适应方式相比它显然更容易实现 ,是未来智能天线技术发展的方向。

3.3正交频分复用(OFDM)技术

军用 4G通信技术是在民用第四代移动通信系统的基础上开发研制出来的,其主要是以 OFDM为核心技术。OFDM技术实际上是多载波调制的一种。其主要设计思想是 将战场通信信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输,通信网络中的正交信号可以通过在接收端采用相关技术来分开 ,这样可以减少子信道之间的相互干扰 每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除符号间干扰 而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在军用 4G通信网络开发的过程中,OFDM技术之所以越来越受关注,是因为 具有频谱利用率高、抗衰落能力强、适合高速数据传输、抗码间干扰(ISI)能力强等诸多独特的优点。

(1)频谱利用率高。军用 4G通信网络中的 OFDM技术频谱利用率高,其频谱效率比串行系统高近一倍,同时,信号的相邻子载波相互重叠 ,其频谱利用率可以接近Nyquist的极限,频谱利用率高是 通信技术的军事通信领域能够得到广泛运用的基础。

(2)抗衰落能力强。军用 4G通信网络中的 技术具有较强的抗衰落能力,其能够把不同的战场用户信息通过多个子载波传输,这样在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,从而使 ODFM对脉冲噪声和信道快衰落的抵抗力更强。

(3)适合高速数据传输。军用 4G通信网络中的 ODFM技术更加适合高速数据传输,其自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候,应采用效率高的调制方式 而当信道条件差的时候 ,则应采用抗干扰能力强的调制方式。另外,ODFM技术加载算法的采用,使得军用4G 通信网络系统可以把更多的数据集中放在条件好的信道上以高速率进行传送 ,因此 ,ODFM技术非常适合战场上进行高速数据传输。(4)抗码间干扰 能力强。军用4G 通信网络中的 ODFM技术具有较强的抗码间干扰 能力。所谓码间干扰是数字通信系统中除噪声干扰之外最主要的干扰 ,它与加性的噪声干扰不同,是一种乘性干扰。在战场上造成码间干扰的原因有很多,实际上 ,只要传输信道的频带是有限的,就会造成一定的码间干扰,而 ODFM技术由于采用了循环前缀,故对抗码间干扰的能力很强。

3.4软件无线电(SDR)技术

在军用4G 通信网络中系统中,若要实现“任何战场用户在任何战区以任何形式接人网络”的理想通信方式,则至少需要保证移动终端能够适合各种类型的空中接口 ,能够在各类网络环境间无缝漫游,并可以在不同类型的业务之间进行转换。这就意味着在军用4G 通信网络中系统中,软件将会变得非常复杂。为此 ,引人软件无线电技术是一项较为有效的选择。其核心就是构造一个具有开放性、标准化、模块化的通用硬件平台,将工作频段、调制解调类型、数据格式、加密模式、通信协议等各种功能用软件来完成,并使宽带刀A/D和D/A 转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。在军用 通信网络众多关键技术中,软件无线电技术是通向未来军用 4G通信网络桥梁。由于各种技术的交迭有利于减少开发风险,所以未来 技术需要适应不同种类的产品要求,而软件无线电技术则是适应产品多样性的基础,它不仅能减少开发风险,还更易于开发系列型产品。3.5 IPv6 技术

军用 4G通信网络中通信系统选择了采用基于 IP的全分组方式传送数据流,因此 技术将成为下一代网络的核心协议。IPv6协议具有巨大的地址空间,在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址 IPv6协议可以实现 自动控制,还有另一个基本特性就是它支持无状态和有状态两种地址 自动配置方式,无状态地址 自动配置方式是获得地址的关键 IPv6协议移动性好,移动IPv6在新功能和新服务方面可提供更大的灵活性,每个移动设备设有一个固定的地址 ,这个地址与设备当前接人网络的位置无关,移动设备每次改变位置都要将它的转交地址告诉给家乡地址和它所对应的通信节点。3.6多用户检测技术

篇7:4G移动通信关键技术特点探讨

当3G技术刚刚走入人们的视线尚未完全完全普及之时, 对下一代通信技术的展望早已悄悄地拉开了帷幕。尽管3G技术与2G相比有着巨大的优势, 但并未在技术层有重大的改变, 只是在视频应用上迈出了重要的一步。3G系统以上的局限性使其发展受到限制, 很多公司已经开始着手4G概念通信系统的研究。本文主要介绍4G概念通信的技术特点以及可能采用的关键技术。

2 4G概念通信技术特点

目前, 业界专业人士对4G概念移动通信系统的共识主要有以下几点:

(a) 用户可以在任何地点、任何时间以任何方式不受限地接入网络中来;

(b) 移动终端可以是任何类型的;

(c) 用户可以自由地选择业务、应用和网络;

(d) 可以实现非常先进的移动电子商务;

(e) 新的技术可以非常容易地被引入到系统和业务中来。

根据以上描述, 未来的4G系统应具备以下的基本条件。

(1) 具有很高的数据传输速率。对于大范围高速移动用户 (250km/h) , 数据速率为2 Mbit/s;对于中速移动用户 (60km/h) , 数据速率为20 Mbbit/s;对于低速移动用户 (室内或步行者) , 数据速率为100 Mbit/s。

(2) 实现真正的无缝漫游。4G移动通信系统实现全球统一的标准, 能使各类媒体、通信主机及网络之间进行“无缝连接”, 真正实现一部手机在全球的任何地点都能进行通信。

(3) 高度智能化的网络。采用智能技术的4G通信系统将是一个高度自治、自适应的网络。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收, 有很强的智能性、适应性和灵活性。

(4) 良好的覆盖性能。4G通信系统应具有良好的覆盖并能提供高速可变速率传输。对于室内环境, 由于要提供高速传输, 小区的半径会更小。

3 4G概念通信关键技术探讨

(1) 正交频分复用 (OFDM) 技术

第四代移动通信系统主要是以OFDM为核心技术。OFDM技术实际上是多载波调制的一种。

OFDM技术之所以越来越受关注, 是因为OFDM有很多独特的优点:

(a) 频谱利用率高, 频谱效率比串行系统高近一倍。OFDM信号的相邻子载波相互重叠, 其频谱利用率可以接近Nyquist极限。

(b) 抗衰落能力强。OFDM把用户信息通过多个子载波传输, 这样在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍, 从而使OFDM对脉冲噪声和信道快衰落的抵抗力更强。

(c) 适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候, 应采用效率高的调制方式;而当信道条件差的时候, 则应采用抗干扰能力强的调制方式。再有, OFDM加载算法的采用, 使得系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此, OFDM技术非常适合高速数据传输。

(2) 智能天线技术

智能天线采用了空时多址 (SDMA) 的技术, 利用信号在传输方向上的差别, 将同频率或同时隙、同码道的信号进行区分, 动态改变信号的覆盖区域, 将主波束对准用户方向, 旁瓣或零陷对准干扰信号方向, 并能够自动跟踪用户和监测环境变化, 为每个用户提供优质的上行链路和下行链路信号从而达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。被认为是未来移动通信的关键技术。

(3) MIMO技术

MIMO技术是指利用多发射、多接收天线进行空间分集的技术, 它采用的是分立式多天线, 能够有效的将通信链路分解成为许多并行的子信道, 从而大大提高容量。信息论已经证明, 当不同的接收天线和不同的发射天线之间互不相关时, MIMO系统能够很好地提高系统的抗衰落和噪声性能, 从而获得巨大的容量。在功率带宽受限的无线信道中, MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

(4) 软件无线电 (SDR) 技术

在4G系统中, 若要实现“任何人在任何地点以任何形式接入网络”的理想通信方式, 则至少需要保证移动终端能够适合各种类型的空中接口, 能够在各类网络环境间无缝漫游, 并可以在不同类型的业务之间进行转换。这就意味着在4G系统中, 软件将会变得非常复杂。为此, 专家们提议引入软件无线电技术, 软件无线电是近几年随着微电子技术的进步而迅速发展起来的新技术, 它以现代通信理论为基础, 以数字信号处理为核心, 以微电子技术为支持。软件无线电概念一经提出, 就受到各方的极大关注, 这不仅是因为软件无线电概念新技术先进、发展潜力大, 更为重要的是它潜在的市场价值也是极具吸引力的。

(5) 多用户检测技术

4G系统的终端和基站将用到多用户检测技术以提高系统的容量。多用户检测技术的基本思想是:把同时占用某个信道的所有用户或部分用户的信号都当作有用信号, 而不是作为噪声处理, 利用多个用户的码元、时间、信号幅度以及相位等信息联合检测单个用户的信号, 即综合利用各种信息及信号处理手段, 对接收信号进行处理, 从而达到对多用户信号的最佳联合检测。它在传统的检测技术的基础上, 充分利用造成多址干扰的所有用户的信号进行检测, 从而具有良好的抗干扰和抗远近效应性能, 降低了系统对功率控制精度的要求, 因此可以更加有效地利用链路频谱资源, 显著提高系统容量。

4 结束语

篇8:4G移动通信系统的主要特点和关键技术

【关键词】移动通信系统;4G系统;空中接口

1.概述

第四代(4G)移动通信系统与技术是目前移动通信领域的研究热点。第三代(3G)移动通信系统从2001年起先后在日本和韩国投入商用,我国也在2009年相继商用3G-WACMA,TD-SCDMA,CDMA-1X。目前用户对移动通信系统的速率要求越来越高,而3G系统实际所能提供的最高速率14.4Mbps已经不能满足用户的实际需求,因此全世界的目光都聚焦在4G领域。目前全球范围内有多个组织正在进行4G系统的研究和标准化工作,如IPv6论坛、SDR论坛、3GPP、无线世界研究论坛(the Wireless World Research Forum)、IETF(The Internet Engineering Task Force)和MWIF(the Mobile Wireless Internet Forum )等。

2.4G系统的技术目标和特点

4G系统总的技术目标和特点可以概括为:同3G等数字移动通信系统相比,4G系统应具有更高的数据率、更好的业务质量(QoS)、更高的频谱利用率、更高的安全性、更高的智能性、更高的传输质量、更高的灵活性,而且能与现代IP网络完全融合。

2.1 4G系统的容量

4G系统的容量至少为3G系统的10倍。4G系统下行信道的最高速率将达100Mbps。

2.2 4G系统是一个无缝网

无线通信领域的一个发展趋势是移动网络和无线接入网络的融合,4G系统应当是一个移动网络和无线接入网的融合体,它应能实现与无线LAN 的无缝连接。

2.3 4G系统应当是一个基于IP的网络

4G应当是一个基于IP的移动网络,采用IP技术后的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。4G系统将会采用Ipv6。Ipv6将能在IP网络上实现话音和多媒体业务。

2.4 4G系统将能实现不同QoS的业务

4G系统通过动态带宽分配和调节发射功率来提供不同质量的业务。

3.4G系统的关键技术

4G系统的有关关键技术有:宽带接受机、智能天线、空时编码、高性能的功率放大器、先进的调制解调技术、高性能的RF收发信机和多用户检测等。

3.1 无线接入方式与多址方案

在FDMA、TDMA、CDMA和OFDM等多址方式中,OFDM是4G系统最为合适的多址方案,OFDM的主要优点有:各个信号间不会相互干扰;对多径衰落和多普勒频移不敏感;用户间和相邻小区间无干扰;可实现低成本的单波段接收机等。OFDM的主要缺点是功率效率不高。

3.2 调制与编码

4G系统将会采用多载波调制(MCM)技术。4G系统可能会采用两种形式的MCM:多载波码分多址(MC-CDMA)和正交频分复用时分多址(OFDM-TDMA),一般MC-CDMA采用QPSK调制,而OFDM-TDMA采用高电平调制,如M-QAM(M从4 到256)。对于M-QAM,为了提高系统的性能,一般认为需要采用自适应调制,按照实际测量的参数来确定QAM 的电平数和符号速率。NTT DoCoMo的4G移动通信系统的基本调制方案为QPSK,相应的数据传输速率为103.68Mbps。当采用64-QAM调制时,数据速率高达331.776Mbps(相應的扩频因子为1)。4G移动通信系统将采用更高级的信道编码方案,如Turbo码、级连码和LDPC等,从而在极低的Eb/N0下保证足够的性能。NTT DoCoMo的4G实验系统信道编码采用TURBO码。

3.3 无线链路增强技术

可以提高容量和覆盖的无线链路增强技术有:分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能;多天线技术,如采用2或4天线来实现发射分集,或者采用多输入多输出(MIMO)技术来实现发射和接受分集。

3.4 高效的频谱使用方案

提高频谱效率的方法有:使用3GHz以上的频段,由于可以使用的带宽更宽,因此将具有更高的传输容量。3G系统的频谱效率只有2bps/Hz,而4G系统的频谱效率应达到5bps/Hz。

3.5 基于IP的核心网

3G系统不是基于IP的,如CDMA2000基于ANSI-41,而WCDMA基于GSM-MAP。4G系统应当是一个全IP的网络。采用全IP 的优点有:可以实现不同网络间的无缝互连;全IP也是一种低成本的集成目前网络的方法。4G系统的核心网是一个基于全IP的网络,因此核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN共存。要实现全IP的核心网有许多问题需要解决,如鉴权、计费等;核心网应具有开放的结构,从而能允许各种空中接口接入核心网;同时核心网应把业务、控制和传输等分开。

3.6 软件无线电(SDR)技术

软件无线电技术将会在4G系统得到应用。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。软件无线电技术能支持采用不同空中接口的多模式手机和基站,能实现各种应用的可变QoS。软件无线电技术有助于不同标准和系统的融合。软件无线电在4G中的可能应用为:采用软件无线电实现的基站可同时为多个网络服务;当终端移动时,可重新配置,如当移动终端移动到一个采用不同标准的移动系统中时,终端可按照该系统的标准重新自动配置该终端,从而该终端可获得服务。采用软件无线电技术实现的移动终端或BS将采用模块化的结构,主要由天线模块、LNA模块、功率放大器模块、ADC\DAC模块、DSP模块和多媒体模块等组成。软件无线电中RF和基带器件都应当是可编程的。

3.7 高性能的接收机

4G系统对接收机提出了特别高的要求。我们知道Shannon定理指出了在带宽为BW的信道中实现容量为C的可靠传输所需要的最小SNR。按照Shannon定理,我们可以计算出,对于3G系统如果信道带宽为5MHz,而数据速率为2Mbps,则所需的SNR为1.2dB;而对于4G系统,要在5MHz的带宽上传输20Mbps的数据,则所需要的SNR为12dB。可见对于4G系统,由于速率很高,因此对接收机的性能要求也要高得多。

3.8 智能天线与MIMO技术

智能天线和MIMO技术可以降低多址干扰,实现空间分集,因此将会在4G系统中得到应用。图一左端为一个智能天线示意图,基站对各个用户可形成一个定向波束,因此既可降低来自小区内其它用户的多址干扰,也可降低对基站发射功率的要求。

3.9 多用户检测技术

随着多用户检测技术的不断发展,多用户检测器将会在4G系统的基站和终端中得到应用。多用户检测器可以提高系统的容量,因此将是4G系统必然采用的技术。随着多用户检测器研究的不断深入,各种高性能但算法不是特别复杂的多用户检测器算法不断提出来,因此在实际系统中采用多用户检测技术将是切实可行的。

4.结束语

由于4G与3G相比具有通信速度更快,网络频谱更宽,通信更加灵活,智能性能更高,兼容性能更平滑等优点,4G日益成为人们关注的焦点。相信不久的将来,4G将一统移动通信系统的天下。

篇9:4G移动通信系统及其关键技术

在全球3G及增强型3G网络商用化进程稳步推进的同时, 为满足移动宽带数据业务对传输速率的要求, 研究开发速率更高、性能更先进的新一代移动通信技术正成为世界各国和相关机构关注的重点。目前, 国内外移动通信领域的专家已经在进行4G系统的研究和开发工作。4G是多功能集成的宽带移动通信系统, 具有许多关键优势, 已成为移动通信领域的研究热点。

(二) 4G概念通信技术特点

目前, 业界专业人士对4G概念移动通信系统的共识主要有以下几点:a) 用户可以在任何地点、任何时间以任何方式不受限地接入网络中来;b) 移动终端可以是任何类型的;c) 用户可以自由地选择业务、应用和网络;d) 可以实现非常先进的移动商务;e) 新的技术可以非常容易地被引入到系统和业务中来。

根据以上描述, 未来的4G系统应具备以下的基本条件。

1. 具有很高的数据传输速率。

对于大范围高速移动用户 (250km/h) , 数据速率为2 Mbit/s;对于中速移动用户 (60km/h) , 数据速率为20 Mbbit/s;对于低速移动用户 (室内或步行者) , 数据速率为100 Mbit/s。

2. 实现真正的无缝漫游。

4G移动通信系统实现全球统一的标准, 能使各类媒体、通信主机及网络之间进行“无缝连接”, 真正实现一部手机在全球的任何地点都能进行通信。

3. 高度智能化的网络。

采用智能技术的4G通信系统将是一个高度自治、自适应的网络。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收, 有很强的智能性、适应性和灵活性。

4. 良好的覆盖性能。

4G通信系统应具有良好的覆盖并能提供高速可变速率传输。对于室内环境, 由于要提供高速传输, 小区的半径会更小。

5. 基于IP的网络。

4G通信系统将会采用IPv6, IPv6将能在IP网络上实现话音和多媒体业务。

6. 实现不同QoS的业务。

4G通信系统通过动态带宽分配和调节发射功率来提供不同质量的业务。

(三) 4G的关键技术

1. OFDM (正交频分复用)

OFDM技术实际上是MCM (Multi-Carrier Modulation, 多载波调制) 的一种。其主要思想是:将信道分成若干正交子信道, 将高速数据信号转换成并行的低速子数据流, 调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开, 这样可以减少子信道之间的相互干扰 (ICI) 。每个子信道上的信号带宽小于信道的相关带宽, 因此每个子信道上的可以看成平坦性衰落, 从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分, 信道均衡变得相对容易。OFDM技术之所以越来越受关注, 是因为OFDM有很多独特的优点:

(1) 频谱利用率很高, 频谱效率比串行系统高近一倍。这一点在频谱资源有限的无线环境中很重要。OFDM信号的相邻子载波相互重叠, 从理论上讲其频谱利用率可以接近Nyquist极限。

(2) 抗衰落能力强。OFDM把用户信息通过多个子载波传输, 在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍, 使OFDM对脉冲噪声 (Impulse Noise) 和信道快衰落的抵抗力更强。同时, 通过子载波的联合编码, 达到了子信道间的频率分集的作用, 也增强了对脉冲噪声和信道快衰落的抵抗力。因此, 如果衰落不是特别严重, 就没有必要再添加时域均衡器。

(3) 适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候, 采用效率高的调制方式。当信道条件差的时候, 采用抗干扰能力强的调制方式。再有, OFDM加载算法的采用, 使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此, OFDM技术非常适合高速数据传输。

(4) 抗码间干扰 (ISI) 能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰, 它与加性的噪声干扰不同, 是一种乘性的干扰。造成码间干扰的原因有很多, 实际上, 只要传输信道的频带是有限的, 就会造成一定的码间干扰。OFDM由于采用了循环前缀, 对抗码间干扰的能力很强。

OFDM也有其缺点, 例如:对频偏和相位噪声比较敏感。功率峰值与均值比 (PAPR) 大, 导致射频放大器的功率效率较低。负载算法和自适应调制技术会增加系统复杂度。

2. 软件无线电

所谓软件无线电 (Software Defined Radio, 简称SDR) , 就是采用数字信号处理技术, 在可编程控制的通用硬件平台上, 利用软件定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议部分全部由软件编程来完成。其核心思想是在尽可能靠近天线的地方使用宽带的“数字/模拟”转换器, 尽早地完成信号的数字化, 从而使得无线电台的功能尽可能地用软件来定义和实现。总之, 软件无线电是一种基于数字信号处理 (DSP) 芯片, 以软件为核心的崭新的无线通信体系结构。软件无线电有以下一些特点:

灵活性:工作模式可由软件编程改变, 包括可编程的射频频段宽带信号接入方式和可编程调制方式等。所以可任意更换信道接入方式, 改变调制方式或接收不同系统的信号;可通过软件工具来扩展业务、分析无线通信环境、定义所需增强的业务和实时环境测试, 升级便捷。

集中性:多个信道享有共同的射频前端与宽带A/D/A变换器以获取每一信道的相对廉价的信号处理性能。

模块化:模块的物理和电气接口技术指标符合开放标准, 在硬件技术发展时, 允许更换单个模块, 从而使软件无线电保持较长的使用寿命。

3. 智能天线

智能天线定义为波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束, 而在自适应阵列中, 多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比, 天线阵列的优点是除了提供高的天线增益外, 还能提供相应倍数的分集增益。但是它们要求每个天线有一个接收机, 还能提供相应倍数的分集增益。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能, 其基本工作原理是根据信号来波的方向自适应地调整方向图, 跟踪强信号, 减少或抵消干扰信号。

智能天线可以提高信噪比, 提升系统通信质量, 缓解无线通信日益发展与频谱资源不足的矛盾, 降低系统整体造价, 因此其势必会成为4G系统的关键技术。智能天线的核心是智能的算法, 而算法决定电路实现的复杂程度和瞬时响应速率, 因此需要选择较好算法实现波束的智能控制。

4.IPv6

4G通信系统选择了采用基于IP的全分组的方式传送数据流, 因此IPv6技术将成为下一代网络的核心协议。选择IPv6协议主要基于以下几点的考虑:

(1) 巨大的地址空间。在一段可预见的时期内, 它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

(2) 自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置的方式。无状态地址自动配置方式是获得地址的关键。在这种方式下, 需要配置地址的节点使用一种邻居发现机制获得一个局部连接地址。一旦得到这个地址之后, 它使用另一种即插即用的机制, 在没有任何人工干预的情况下, 获得一个全球惟一的路由地址。有状态配置机制, 如DHCP (动态主机配置协议) , 需要一个额外的服务器, 因此也需要很多额外的操作和维护。

(3) 服务质量。服务质量 (QoS) 包含几个方面的内容。从协议的角度看, IPv6与目前的IPv4提供相同的QoS, 但是IPv6的优点体现在能提供不同的服务。这些优点来自于IPv6报头中新增加的字段“流标志”。有了这个20位长的字段, 在传输过程中, 中国的各节点就可以识别和分开处理任何IP地址流。尽管对这个流标志的准确应用还没有制定出有关标准, 但将来它用于基于服务级别的新计费系统。

(4) 移动性。移动IPv6 (MIPv6) 在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址 (home address) , 这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时, 通过一个转交地址 (care-of address) 来提供移动节点当前的位置信息。移动设备每次改变位置, 都要将它的转交地址告诉给家乡地址和它所对应的通信节点。在家乡以外的地方, 移动设备传送数据包时, 通常在IPv6报头中将转交地址作为源地址。

(四) 结束语

由于4G与3G相比具有通信速度更快, 网络频谱更宽, 通信更加灵活, 智能性能更高, 兼容性能更平滑等优点, 4G日益成为人们关注的焦点。相信不久的将来, 4G将成为满足未来市场需求的新一代的移动通信系统, 它将帮助我们实现充满个性化的通信梦想。

参考文献

[1]Glisic S, Makela J P.Advanced wireless networks:4G technologies.In:Spread Spectrum Techniques and Applications, 2006IEEE Ninth International Symposium, Aug2006.

[2]刘艳萍, 章秀银, 胡斌杰.4G核心技术原理及其与3G系统的对比分析[J].移动通信, 2004, 7 (10) :40-42.

篇10:4G移动通信系统的主要特点和关键技术

【关键词】第四代移动通信 技术发展 关键措施

我国的移动通信技术依据相关标准可分为三个大板块,也是我国移动通信技术发展的三个时间段,即第一、第二和第三代移动通信技术时期。第一代移动通信时期,也称1G时期,该时期的通信系统是对信号进行模拟传输,能够将用户从电话线的束缚中解脱出来,但是其缺陷是很明显的,例如通信质量较差、信息交换不足等等;第二代移动通信时期,也称2G时期,该时期充分应用了天线智能化技术、双频段等技术,那么通信质量就得到了根本性的改善,但是其缺陷为传输容量依旧不足;第三代移动通信时期也称3G时期,该时期的通信技术能够实现图像、语音等元素的快速传输,但是其速率依旧有待提高。针对上述问题,4G网络的出现就极大弥补了原有通信网络的不足和缺陷,本文就从4G网络的优势和关键技术入手,研究其技术特性和发展前景。

一、第四代移动通信技术的内涵和特征

第四代通信技术的主要技术为移动数据的传播,该项技术能够将互联网通信与移动通信有机结合。4G技术对网络传输速度的要求为最低需达到100Mbit/s,发射功率较低是其优势所在,并且能够避免相关因素对通信信号的干扰,保证了通信和数据传输质量。同时,能够兼容4G技术的移动手机功能更加多样化,进一步推动了将手机开发成为多功能、用途广泛的移动电话。4G技术还能满足用户更多的网络和通信需求,例如观看高清视频、图像,移动电视会议等业务。

二、第四代移动通信的核心技术

(一)OFDM是4G技术的核心

Orthogonal Frequency Division Multiplexing的简称为OFDM,这是一种先进的扩频通信技术,OFDM能够以多载波为基础进行数据和信息的交换。OFDM技术的优势在于,它可以将网络调制技术以及反复使用技术有机结合,以正交复用技术为主要方法对频率的利用率进行提升,且相关数据在无线环境下也能高速传播。OFDM的抗干扰效果极佳,还能抵抗噪声,同时其频谱利用率也足够高,因此我国OFDM技术的发展作为目前通信行业发展建设中的重中之重,已经逐渐成为了通信部门科研和发展的主力军。

(二)SDR的特殊性

SDR全称为:Software Defined Radio,国内一般称为软件无线电技术,该技术主要是采用网络标准化功能、运营模块化的功能對软件进行加载和运行,通过软件的多元化运行和数据交换对移动通信进行模式上和层次上的改动。

(三)SA技术的的关键性

SA的全称为:Smart Antenna,学者称其为自适应阵列天线,一般叫作智能天线。SA技术是SDR技术的基础,该技术是对第四代移动通信天线设计的一种全新理念。SA技术是由软件无线电以及数字多波束共同组成的。智能天线对于噪声而言有着极佳的抑制作用,还能准确对信号进行追踪并将其进行智能化的处理,因此SA的技术被相关专家归为移动通信未来发展的中心和关键。智能天线运营的基本特征为:以无线通信基站为基础,采用无线收发设备和天线阵将射频信号进行完整的收发,并通过基带数字处理器把所有信号进行综合计算,最终实现波束赋形。在4G技术研发和推广的同时,智能天线有两种主要的运作形式:其一,全自适应,其二,对多波束进行干预同时进行切换。从理论上看,SA技术在实际操作中能够实现最佳效果,但是所涉及到的数据统计、综合计算等步骤,其所需要的数据库容量就会显得膨胀,且计算量会成倍增长,在复杂的统计和计算过程中,也无法避免会出现大大小小的误差。

三、结束语

综上所述,第四代移动通信技术是通信行业中最具有发展潜力和广泛推广的新技术,是通信技术进步和发展的必由之路。而4G技术弥补了前三代通信技术的不足和缺陷,能够将信息的高速传播和信息的综合有机结合,从而实现用户之间及时、有效、高质量、安全性强的相互交流。在我国,4G技术尚处在研发阶段,目前正在大力推广试用,只有不断学习关键技术和先进经验,才能保证我国的通信技术更进一步发展,也为社会主义通信业的建设构建良好的平台。

参考文献:

[1]孙丽丽,王欣.以LTE为代表的第四代移动通信技术两大标准中的专利分析[J].科技与法律,2012(05)

[2]卢世蓁.LTE拉开4G时代投资序幕——第四代移动通信技术的发展前景分析[J].中国城市金融,2013(01)

[3]杨章华.第四代移动通信基站数字上变频和峰均比控制技术[J].建材发展导向,2012(07)

上一篇:无情的近义词下一篇:华夏,建行龙卡信用卡还款日