判断函数的奇偶性

2024-05-24

判断函数的奇偶性(精选6篇)

篇1:判断函数的奇偶性

判断函数奇偶性的方法

1.先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性

2.根据分解的.函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)

3.若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇

4.若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶

5.若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇

篇2:判断函数的奇偶性

1、先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性。

2、根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)

3、若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇。

4、若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶。

篇3:判断抽象函数奇偶性的若干方法

一、假设检验法

例1若函.数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上只有f(1)=f(3)=0,试判断f(x)的奇偶性.

分析:(1)若f(x)是奇函数,则

f(0)=f(-0)=-f(0),

故f(0)=0,这与在[0,7]上只有f(1)=f(3)=0矛盾,所以f(x)不是奇函数.

(2)若f(x)是偶函数,则

于是f(7)=f(3)=0,这与f(0)在[0,7]上只有f(1)=f(3)=0矛盾,所以f(x)不是偶函数.

综合(1)、(2)知f(x)不是奇函数,也不是偶函数.

二、利用平移思想

例2 (1)若函数y=f(x)(x∈R)的图象关于点A(1,0)对称,判断函数y=f(x+1)的奇偶性;

(2)若函数y=f(x+2)(x∈R)的图象关于直线x=-2对称,试判断函数y=f(x)的奇偶性.

分析:(1)将y=f(x)的图象和点A(1,0)同时向左平移1个单位长度,即得函数y=f(x+1)的图象和点O(0,0).由于同时向相同的方向平移相同的单位长度不改变函数图象和点的位置关系,所以函数y=f(x+1)的图象关于点0(0,0)对称.

所以函数y=f(x+1)是奇函数.

(2)将函数y=f(x+2)的图象和直线x=-2同时向右平移2个单位长度,即得函数y=f(x)的图象和直线x=0(即y轴).由于同时向相同的方向平移相同的单位长度不改变函数图象和直线的位置关系,所以y=f(x)的图象关于y轴对称.

所以函数y=f(x)是偶函数.

三、巧取特殊值

例3 (1)若对任意的x,y∈R,都有f(x+y)=f(x)+f(y),试判断y=f(x)的奇偶性;

(2)若对任意的x、y∈R,都有f(x+y)+f(x-y)=2f(f(x)·f(y),且f(0)≠0,试判断y=f(x)的奇偶性.

分析:(1)令x=y=0,则f(0)=f(0)+f(0),故f(0)=0.

令y=-x,则f(0)=f(x)+f(-x)=0,

即f(-x)=-f(x),所以函数y=f(x)是R上的奇函数.

(2)令x=y=0,则有2f(0)=2f2(0).

又f(0)≠0,故f(0)=1.

令x=0,则有f(y)+f(-y)=2f(0)·f(y)=2f(y),故f(-y)=f(y).

所以函数y=f(x)为R上的偶函数.

四、巧用线段的中点坐标公式

例4定义在(-∞,+∞)上的函数f(x)对任意x恒有f(x)+f(3-x)=4.试判断y=f(x+)-2的奇偶性.

分析:由知f(x)的图象关于点A(,2)对称.将y=f(x)的图象和点A同时先向左平移个单位长度,再向下平移2个单位长度,即得函数的图象和点(0,0).

所以函数是奇函数.

五、巧用函数的周期性

例5设函数y=f(x)在R上满足f(1-x)=f(1+x),f(5-x)=f(5+x),且在闭区间[0,5]上只有f(3)=0,试判断函数y=f(x)的奇偶性.

所以f(2-x)=f(10-x),故f(x)=f(x+8).

所以f(x)是周期函数,且8为其一个周期.

所以f(-3)=f(5)≠0.

又f(3)=0,所以f(-3)≠±f(3).

所以函数y=f(x)是非奇非偶函数.

六、直接利用奇偶性的定义

所以F(x)是偶函数.

七、巧转换

例7已知定义在R上的函数f(x)对任意的实数x1、x2满足f(x1+x2)=f(x1)+f(x2)+2,试判断函数y=f(x)+2的奇偶性.

分析:令x1=x2=0,则f(0+0)=f(0)+f(0)+2,故f(0)=-2.

对任意的实数x,令x1=x,x2=-x,有

f(x-x)=f(x)+f(-x)+2,

则f(x)+f(-x)=-4.

所以

所以y=f(x)的图象关于点A(0,-2)对称.

所以y=f(x)+2的图象关于点0(0,0)对称.

所以y=f(x)+2是奇函数.

八、巧变换

例8已知f(x)是定义在R上的不恒为零的函数,且对任意的a、b∈R,有f(a·b)=af(b)+bf(a),试判断f(x)的奇偶性,并证明你的结论.

分析:由f(1)=f(1×1)=1×f(1)+1×f(1)=2f(1),得f(1)=0.

又f(1)=f[(-1)×(-1)]=-f(-1)-f(-1)=-2f(-1)=0,所以f(-1)=0.

所以f(-x)=f(-1·x)=-f(x)+x·f(-1)=-f(x).

所以f(x)是奇函数.

九、巧用周期性和对称性

例9若定义在R上的函数f(x)的图象关于直线x=1对称,且周期为2,试判断f(x)的奇偶性.

分析:任取x∈R,由对称性知f(x)=f(2-x).

由周期为2得f(2-x)=f(-x).

所以f(—x)=f(x).所以f(x)是R上的偶函数.

十、巧用解析式

例10若f(x)是定义在(-∞,0)∪(0,+∞)上的函数,且有试判断f(x)的奇偶性.

篇4:函数奇偶性判断的常见误区

误区一 忽略定义域

例1 判断函数f(x)=2x2+2xx+1的奇偶性.

错解 因为f(x)=2x(x+1)x+1=2x,所以f(-x)=-2x=-f(x).

所以函数f(x)是奇函数.

剖析 在刚学完函数奇偶性的概念时,对于这道题,大约会有30%的同学出现上述解答错误而不自知.事实上,根据奇(偶)函数的定义中“x的任意性”我们可以知道,“对于定义域内任意的x,都有f(-x)=-f(x)(或f(-x)=f(x))成立”这句话首先就意味着“f(-x)有意义”,也就是说,奇(偶)函数的定义域必定关于原点对称!再换一种说法,那就是:如果一个函数的定义域不关于原点对称,那么它一定是非奇非偶函数.因此,我们在判断函数的奇偶性时强调要有定义域“优先意识”.

正解 因为f(x)的定义域{x|x≠-1}不关于原点对称,故f(x)既不是奇函数也不是偶函数.

例2 证明函数f(x)=x2-2x+3,

x>0,0,

x=0,

-x2-2x-3,x<0是奇函数.

剖析 证明本题时,很多同学往往会给出诸如“当x>0时,有f(-x)=-f(x),所以此时函数f(x)是奇函数;同理,当x<0及x=0时,函数f(x)也都是奇函数,所以函数f(x)在(-∞,+∞)是奇函数”的论证过程.乍看起来,这一过程好像没有什么问题,但是函数的奇偶性是定义在整个定义域上的,在定义域内的某个区间上谈函数的奇偶性是没有道理的,将定义域随意分割来证明函数奇偶性是不正确的!因此,判断(或证明)分段函数的奇偶性时一定要在“分段函数,分段处理”的基础上,强化定义域“整体意识”.

证明 当x>0时,-x<0,则f(x)=x2-2x+3,f(-x)

=-(-x)2-2(-x)-3=-x2+2x-3

=-(x2-2x+3)=-f(x);

当x=0时,f(x)=0=-f(-x);

当x<0时,-x>0,则f(x)=-x2-2x-3,f(-x)=(-x)2-2(-x)+3=x2+2x+3=-(x2+2x+3)=-f(x).

无论x>0,x<0还是x=0,总有f(-x)=-f(x),所以函数f(x)在(-∞,+∞)是奇函数.

误区二 转化意识不够

例3 函数f(x)=lg(x2+1-x)是函数.

A. 奇

B. 偶

C. 既奇又偶

D. 非奇非偶

剖析 本题容易错选D.出错的原因主要有两个:一是不会求定义域;二是缺乏利用函数奇偶性的定义结合对数的运算法则进行合理转化的意识和能力.

事实上,本题可以这样判断:

因为x2+1>x2=|x|≥x恒成立,所以f(x)的定义域为R;又f(x)+f(-x)=lg(x2+1-x)+lg(x2+1+x)=lg1=0,所以f(x)=-f(-x),故f(x)是奇函数.

正确答案为A.

误区三 定义式理解不清

例4 已知f(x)是一个定义在R上的函数,求证:

(1) g(x)=f(x)+f(-x)是偶函数;

(2) h(x)=f(x)-f(-x)是奇函数.

剖析 这道题是课本中的一道复习题,意在通过一个简单的抽象函数奇偶性的判断,来考查同学们对函数奇偶性概念的理解,尤其是对定义式的整体把握情况.尽管本题十分简单,但肯定还是会有同学对这种抽象函数的处理很不适应,即使硬套定义式证出了结果,头脑里也还模模糊糊,有种似是而非的感觉.

事实上,欲证g(x)是偶函数,依定义,只需证g(-x)=g(x)即可;而g(-x)=f(-x)+f(x)=f(x)+f(-x)=g(x)显然成立,命题得证.同理,h(x)=f(x)-f(-x)=-[f(-x)-f(x)]=-h(-x),是奇函数.

有兴趣的同学请思考:

“任何一个定义在R上的函数f(x)都可以表示为一个奇函数与一个偶函数的和”这句话正确吗?为什么?

由f(x)=[f(x)+f(-x)]+[f(x)-f(-x)]2及例4的结论,可知该命题正确.

例5 定义在R上的函数f(x),对任意的x,y∈R均有:f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:f(x)是偶函数.

剖析 本题选自我校2006年高一第一学期期中数学试卷,和例4一样,同属抽象函数奇偶性的判断问题,但对函数奇偶性定义式的理解比例4考查得更加深入、灵活,对高一同学来说有一定的难度.有好多同学是这样证明的:

在f(x+y)+f(x-y)=2f(x)f(y)中令y=x,得f(2x)+f(0)=2f2(x),①

再令y=-x,得f(0)+f(2x)=2f(x)f(-x)②

比较①、②两式,可得2f2(x)=2f(x)f(-x),即f(-x)=f(x),故f(x)是偶函数.

上述证法基本能扣住偶函数的定义式f(-x)=f(x),证明过程似乎也没有什么问题,但是整个过程没有用到题设条件f(0)≠0!此条件是否多余?再细细推敲,你就会发现,上述证明的最后一步犯了逻辑上不能推出的错误——当f(0)=0时,得不到f(-x)=f(x)!而根据题设又不能排除“f(x)=0”的可能性.

正确的证明过程如下:

在f(x+y)+f(x-y)=2f(x)f(y)中令x=y=0,得2f(0)=2f2(0),又f(0)≠0,故f(0)=1.

再令x=0,则有f(y)+f(-y)=2f(0)f(y)=2f(y),所以f(-y)=f(y),即f(-x)=f(x),故f(x)是偶函数.

很多同学认为,要证f(x)是偶函数,就是要证f(-x)=f(x),他们压根儿就没有想过还可以令x=0,得出f(-y)=f(y),即为f(-x)=f(x),这样对定义式的理解是死板的、机械的,没有抓住本质.

对于前面同学的证法,可以在最后补上分类证明“当f(x)≠0时,有f(-x)=f(x)成立;当f(x)=0时,必有f(-x)=0,此时也满足f(-x)=f(x),故f(x)是偶函数”.不过这样一来,问题就又凸现出来了:没有“f(0)≠0”这一条件照样能证明f(x)是偶函数?!那么,若“f(0)=0”,究竟会产生什么样的情况呢?有兴趣的同学不妨作一番探究.

巩 固 练 习

1. 函数f(x)=x2+2|x|-1,x∈[0,+∞)是函数.

A. 奇

B. 偶

C. 既奇又偶

D. 不奇不偶

2. 已知函数f(x)是一个定义在R上的奇函数,且x>0时,f(x)=1.试求函数f(x)的表达式.

3. 判断函数f(x)=lg(1-x)-lg(1+x)的奇偶性.

4. 已知定义在R上的函数f(x)满足条件:对任意的x,y∈R,总有f(x+y)=f(x)+f(y).求证:f(x)是奇函数.

篇5:函数的奇偶性教案

伊滨一高

杨志刚

2012年11月15日

函数的奇偶性

教学目标

1、从形和数两个方面进行引导,使学生理解函数奇偶性的概念;

2、会利用定义判断简单函数的奇偶性.教学重点: 函数奇偶性概念的形成与函数奇偶性的判断.教学难点: 对函数奇偶性的概念的理解.教学过程

一、导入新课

先举现实生活中对称的例子,然后启发学生发现数学中存在对称的图形,试让学生举例.(学生可能会举出yx2和yx,y1等例子)其中哪些函数的图象关

x于y轴对称?

以函数yx2为例,画出图象,让学生说出判断其图象关于y轴对称的方法.在数学上将图象关于y轴对称的函数叫做偶函数.今天将从数值角度研究图象关于y轴对称函数的自变量与函数值之间的规律.二、讲解新课

引导学生先将规律具体化,再用数学符号表示.从而发现对定义域内任意一个x,都有 f(x)= f(x)成立.最后让学生用完整的语言给出偶函数定义,不准确的地方予以提示或调整.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)就叫做偶函数.注:强调“任意”两字.给出定义后可让学生举例检验他们对概念的初步认识

提出新问题:图象关于原点对称的函数的自变量与函数值之间具有怎样的数值规律呢?(同时打出y1的图象让学生观察研

x究)引导学生用类比的方法,得出结论,让学生给出奇函数的定义.一般地,如果对于函数

f(x)的定义域内任意一个

x,都有,f(x)f(x)那么函数f(x)就叫做奇函数.三、例题讲解

例1 判断下列函数的奇偶性(1)f(x)x1;(2)f(x)x1x2;(3)f(x)2x;(4)f(x)|x|2;(5)f(x)(7)f(x)(9)1x2;(6)f(x)x2,x[3,1];4x2(x2)0;(8)f(x)2x1;1x22x22xf(x);(10)f(x).x22x1前三个题做完,进行一次小结,判断奇偶性,只需验证 f(x)与

f(x)之间的关系.此时提出问题如何判断一个函数不具有奇偶性呢?以第(1)为例,说明怎样解决它不是偶函数的问题呢?引导学生得出只需举一个反例就可说明.通过第(6)题引导学生得出定义域关于原点对称是函数具有奇偶性的先决条件的结论.由学生小结判断奇偶性的步骤之后,提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.经学生思考,可找到函数 f(x)0.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?

例2 已知函数 f(x)既是奇函数也是偶函数,求证: f(x)0.(由学生来完成)

证明: f(x)既是奇函数也是偶函数,f(x)= f(x),且 f(x)f(x),  f(x)= f(x). 2f(x)0,即 f(x)0.进一步提问:这样的函数应有多少个呢?(学生开始可能认为只有一个,经提示可发现, f(x)0只是解析式的特征,若改变函数的定义域,如 f(x)0, x[1,1], f(x)0,x{2,1,0,1,2},它们显然是不同的函数,但它们都是既是奇函数也是偶函数.)课后反思:

1、函数奇偶性的定义;

2、函数奇偶性的判定;

3、利用函数的奇偶性可将函数分为四类:奇函数、偶函数、非奇非偶函数、既奇又偶函数.作业

P361、2题;P39A组6题;P39B组3题。[板书设计]

函数的奇偶性

1、定义:

2、函数奇偶性的判断;(画图)

3、例题示范;

4、例题讲解;

篇6:《函数的奇偶性》教案

一、教材分析

1.教材所处的地位和作用

“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

2.学情分析

从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.

3.教学目标

基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】

1.能判断一些简单函数的奇偶性。

2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。【过程与方法】

经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。【情感、态度与价值观】

通过自主探索,体会数形结合的思想,感受数学的对称美。从课堂反应看,基本上达到了预期效果。

4、教学重点和难点

重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验f(x)f(x)或f(x)f(x)成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把“函数的奇偶性概念”设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

难点:奇偶性概念的数学化提炼过程。

由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。

二、教法与学法分析

1、教法

根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

2、学法

让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

三、教学过程

具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

(一)设疑导入、观图激趣

由于本节内容相对独立,专题性较强,所以我采用了“开门见山”导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

(二)指导观察、形成概念

在这一环节中共设计了2个探究活动。

2探究1、2 数学中对称的形式也很多,这节课我们就以函数f(x)x和f(x)=︱x︱

1以及f(x)x和f(x)为例展开探究。这个探究主要是通过学生的自主探究来实现的,x由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 式 , 再令 ,得到

比较

得出等)让学生发现两个函数的对称性反应到函数值上具有的特性,f(x)f(x)(f(x)f(x))然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。最后给出偶函数(奇函数)定义(板书)。

在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

(三)学生探索、领会定义

探究3 下列函数图象具有奇偶性吗? yx3,yx[4,3]yyx2,x[3,2]4O3x3O2x

设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是——定义域关于原点对称。(突破了本节课的难点)

(四)知识应用,巩固提高

在这一环节我设计了4道题 例1判断下列函数的奇偶性

选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。例1设计意图是归纳出判断奇偶性的步骤:(1)先求定义域,看是否关于原点对称;(2)再判断f(-x)=-f(x)还是 f(-x)=f(x)。例2 判断下列函数的奇偶性: f(x)x2x

例3 判断下列函数的奇偶性:

f(x)0

例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型? 例4(1)判断函数f(x)x3x的奇偶性。

(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

例4设计意图加强函数奇偶性的几何意义的应用。

在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

(五)总结反馈

在以上课堂实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。(1)f(x)x4(2)f(x)x5 11(3)f(x)x(4)f(x)2 xx

(六)分层作业,学以致用

必做题:课本第36页练习第1-2题。选做题:课本第39页习题1.3A组第6题。思考题:课本第39页习题1.3B组第3题。

上一篇:教师招聘重难点下一篇:经济与资源环境发展