塑封半导体器件

2024-05-17

塑封半导体器件(精选四篇)

塑封半导体器件 篇1

关键词:塑封半导体器件,可靠性,温度适应性评估,二次筛选,破坏性物理分析

由于塑封半导体器件的体积、重量、价格等方面的优势, 近年来广泛应用于国民生产的各个方面[1]。受这种趋势推动, 生产厂家加大了塑封半导体器件研制生产的投入, 塑封半导体器件逐渐具备了种类全面、高性能、高精度、高集成度等特点, 并且通过使用新型的环氧材料, 进行更为严谨的工艺控制等措施, 塑封半导体器件的可靠性也有所提高。但是由于塑封半导体器件本身是一种非气密性封装形式, 当将其应用在对可靠性要求较高的领域时, 仍要谨慎对待, 必须针对塑封半导体器件的固有失效模式, 确定严格的质量保证方案[2,3,4,5]。

1塑封半导体器件的失效模式及机理分析

引起塑封半导体器件失效的主要诱因包括封装材料固有的吸潮性, 封装材料与芯片热膨胀系数的差异和生产工艺控制不当造成的芯片粘接缺陷、封装缺陷等。主要的失效机理有爆米花效应、腐蚀、热膨胀系数不匹配导致的失效等[6]。

1.1 爆米花效应以及腐蚀

爆米花效应以及腐蚀这两种失效机理主要是由水汽的入侵引起。空气中的水汽可能通过塑封材料本体、塑封材料和引线框架界面侵入芯片。入侵的水汽与封装材料中的氯离子等结合产生酸性液体, 会使芯片的键合区发生腐蚀, 当芯片表面钝化层存在缺陷, 还会腐蚀到芯片的金属化层, 导致器件漏电流增大, 甚至造成诸如短路、开路的失效现象。另一个方面, 当器件所处的环境温度升高, 例如在回流焊过程中, 器件内部的水汽受热, 体积急剧膨胀, 就会在器件内部产生爆米花裂痕, 这样的裂痕通常从芯片焊接面处向下方延伸。由于器件底部几乎不存在引线, 向下方延伸的裂痕很少会造成器件的“即时失效”, 通过电学测试不能剔除, 但是却为器件的使用带来严重的问题:裂痕为水汽的进一步入侵提供大的通路, 并且可能进一步延伸破坏器件的内部结构。

1.2 热膨胀系数不匹配导致的失效

由于塑封半导体器件使用材料的多样性, 引线框架、塑封材料、粘接材料、芯片等的热膨胀系数都存在差异, 因此当温度变化时, 会在不同材料的接触面上产生应力作用, 使得界面处的两种材料产生分离倾向, 导致不同材料间出现分层, 从而造成器件的短路、开路等, 而且分层的出现更利于水汽的侵入。

1.3 生产工艺控制不当引入的缺陷

在塑封半导体器件的生产过程中产生的缺陷, 比如芯片粘接缺陷、钝化层缺陷、封装中引入杂质或多余物等, 可能造成芯片的剥离、器件的漏电流增加、开路或短路。

2塑封半导体器件的温度适应性评估

生产厂家为塑封半导体器件定义温度范围一般有:0~70 ℃ (商业级) 、-40~+85 ℃ (工业级) 、-40~

+125 ℃ (汽车级) , 这些范围小于高可靠性领域通常要求的范围-55~+125 ℃。因此若将其应用于靠可靠性领域, 必须考察其在-55~+125 ℃范围内的温度适应性。

2.1 塑封半导体器件的参数再定义

使用类似于元器件生产厂初始定义元器件参数的方法, 对塑封半导体器件在-55~+125 ℃范围内工作的参数进行定义。基于测试结果, 器件参数可延用手册中的数值, 若测试值有所变化可对其参数做相应调整。如图1所示。

2.2 应力平衡

应力补偿是指作为补偿而降低至少一个工作参数, 例如:功率、速度, 以保证结温相比允许的最高温度存在可接受的冗余。如图2所示。

2.3 参数一致性评估

在-55~+125 ℃范围内的目标温度点测试塑封半导体器件, 测试中采用的测试条件、极限值等参数均沿用厂家手册中额定温度范围内的定义。

3塑封半导体器件的二次筛选

为了尽量剔除存在缺陷及可能早期失效的塑封半导体器件, 需要对其进行100%的二次筛选, 筛选方法目前尚不统一, 比较有代表性的是文献[7]提出的筛选方法, 如图3所示。

4破坏性物理分析

塑封半导体器件存在的设计、材料、工艺方面缺陷, 可能在温度适应性考察和二次筛选中暴露不出来, 但是在实际应用中会引起产品参数的变化甚至性能失效。破坏性物理分析 (DPA) 技术的发展为甄别这些缺陷提供了有力支撑。可以分别在温度适应性考察和二次筛选前后进行两次DPA。第一次DPA目的在于探查产品存在设计、材料、工艺方面的缺陷, 第二次DPA目的在于通过比较筛选前后DPA 的结果, 进行可靠性分析, 进一步减少使用塑封半导体器件的风险[8,9]。

5结语

由于塑封半导体器件本身在材料、结构等方面的特点, 将塑封半导体器件使用在高可靠性领域件具有一定风险, 需要进行包括温度适应性评估、二次筛选、破坏性物理分析等在内的先期工作。通过这一系列必要的可靠性保证措施达到降低风险, 提高其使用可靠性的目的。

参考文献

[1]谢广超.浅析全球环氧塑封料的发展状况[EB/OL].http://www.2ic.cn/ht ml/57/t-316057.ht ml, 2006-11-28.

[2]杨丹, 恩云飞, 黄云.电子元器件的贮存可靠性及评价技术[C]//中国电子学会论文集.北京:中国电子学会可靠性分会, 2004:287-292.

[3]张鹏, 陈亿裕.塑封器件失效机理及其快速评估技术研究[J].半导体技术, 2006, 31 (9) :676-679.

[4]丁继善.塑封半导体器件的可靠性增长分析[J].电子产品可靠性与环境试验, 2000 (6) :40-44.

[5]丁继善.国内半导体器件的可靠性筛选技术[J].半导体技术, 1999, 24 (3) :55-57.

[6][美]LALL P, PECHT M G, HAKI M E B.温度对微电子和系统可靠性的影响[M].贾颖, 译.北京:国防工业出版社, 2006.

[7]NASA/TP-2003-212244, PEM-INST-001:Instructions for plastic encapsulated microcircuit (PEM) selection, screening and qualification[S].NASA, 2003.

[8]丁芳芳, 贾颖.塑封半导体器件加速寿命试验方法及加速因子模型[C]//中国电子学会可靠性分会第十二届学术年会论文集.北京:中国电子学会, 2004:229-237.

[9]刘萍, 邹勉.破坏性物理分析技术初探[J].光电子技术, 2007, 27 (2) :139:142.

常用半导体器件教案 篇2

常用半导体器件

1.1 半导体基础知识

1.1.1 本征半导体

一、半导体

1. 概念:导电能力介于导体和绝缘体之间。2. 本征半导体:纯净的具有晶体结构的半导体。

二、本征半导体的晶体结构(图1.1.1)

1. 晶格:晶体中的原子在空间形成排列整齐的点阵。2. 共价键

三、本征半导体中的两种载流子(图1.1.2)

1. 本征激发:在热激发下产生自由电子和空穴对的现象。2. 空穴:讲解其导电方式; 3. 自由电子

4. 复合:自由电子与空穴相遇,相互消失。5. 载流子:运载电荷的粒子。

四、本征半导体中载流子的浓度

1. 动态平衡:载流子浓度在一定温度下,保持一定。2. 载流子浓度公式:

nipiK1T3/2eEGO/(2kT)

自由电子、空穴浓度(cm5-

3),T为热力学温度,k为波耳兹曼常数(8.6310eV/K),EGO为热力学零度时破坏共价键所需的能量(eV),又称禁带宽度,K1是与半导体材料载流子有效质量、有效能级密度有关的常量。

1.1.2 杂质半导体

一、概念:通过扩散工艺,掺入了少量合适的杂质元素的半导体。

二、N型半导体(图1.1.3)

1. 形成:掺入少量的磷。2. 多数载流子:自由电子 3. 少数载流子:空穴

4. 施主原子:提供电子的杂质原子。

三、P型半导体(图1.1.4)

1. 形成:掺入少量的硼。2. 多数载流子:空穴 3. 少数载流子:自由电子

4. 受主原子:杂质原子中的空穴吸收电子。

5. 浓度:多子浓度近似等于所掺杂原子的浓度,而少子的浓度低,由本征激发形成,对温度敏感,影响半导体的性能。

1.1.3 PN结

一、PN结的形成(图1.1.5)

1. 扩散运动:多子从浓度高的地方向浓度低的地方运动。2. 空间电荷区、耗尽层(忽视其中载流子的存在)3. 漂移运动:少子在电场力的作用下的运动。在一定条件下,其与扩散运动动态平衡。4. 对称结、不对称结:外部特性相同。

二、PN结的单向导电性

1. PN结外加正向电压:导通状态(图1.1.6)正向接法、正向偏置,电阻R的作用。(解释为什么Uho与PN结导通时所表现的外部电压相反:PN结的外部电压为U即平时的0.7V,而内电场的电压并不对PN结的外部电压产生影响。)

2. PN结外加反向电压:截止状态(图1.1.7)反向电压、反向偏置、反向接法。形成漂移电流。

三、PN结的电流方程

1. 方程(表明PN结所加端电压u与流过它的电流i的关系):

iIS(euUT1)

UTkT

q为电子的电量。q2.平衡状态下载流子浓度与内电场场强的关系: 3. PN结电流方程分析中的条件:

4. 外加电压时PN结电流与电压的关系:

四、PN结的伏安特性(图1.1.10)

1. 正向特性、反向特性

2. 反向击穿:齐纳击穿(高掺杂、耗尽层薄、形成很强电场、直接破坏共价键)、雪崩击穿(低掺杂、耗尽层较宽、少子加速漂移、碰撞)。

五、PN结的电容效应

1. 势垒电容:(图1.1.11)耗尽层宽窄变化所等效的电容,Cb(电荷量随外加电压而增多或减少,这种现象与电容器的充放电过程相同)。与结面积、耗尽层宽度、半导体介电常数及外加电压有关。2. 扩散电容:(图1.1.12)

(1)平衡少子:PN结处于平衡状态时的少子。

(2)非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子。

(3)浓度梯度形成扩散电流,外加正向电压增大,浓度梯度增大,正向电流增大。

(4)扩散电容:扩散区内,电荷的积累和释放过程与电容器充放电过程相同。i越大、τ越大、UT越小,Cd就越大。

(5)结电容CjCbCd

pF级,对于低频忽略不计。

1.2 半导体二极管

(几种外形)(图1.2.1)

1.2.1 半导体二极管的几种常见结构(图1.2.2)

一、点接触型:电流小、结电容小、工作频率高。

二、面接触型:合金工艺,结电容大、电流大、工作频率低,整流管。

三、平面型:扩散工艺,结面积可大可小。

四、符号

1.2.2 二极管的伏安特性 一、二极管的伏安特性

1. 二极管和PN结伏安特性的区别:存在体电阻及引线电阻,相同端电压下,电流小;存在表面漏电流,反向电流大。

2. 伏安特性:开启电压(使二极管开始导通的临界电压)(图1.2.3)

二、温度对二极管方案特性的影响

1. 温度升高时,正向特性曲线向左移,反向特性曲线向下移。

2. 室温时,每升高1度,正向压降减小2~2.5mV;每升高10度,反向电流增大一倍。

1.2.3 二极管的主要参数

一、最大整流电流IF:长期运行时,允许通过的最大正向平均电流。

二、最高反向工作电压UR:工作时,所允许外加的最大反向电压,通常为击穿电压的一半。

三、反向电流IR:未击穿时的反向电流。越小,单向导电性越好;此值对温度敏感。

四、最高工作频率fM:上限频率,超过此值,结电容不能忽略。

1.2.4 二极管的等效电路 一、二极管的等效电路:在一定条件下,能够模拟二极管特性的由线性元件所构成的电路。一种建立在器件物理原理的基础上(复杂、适用范围宽),另一种根据器件外特性而构造(简单、用于近似分析)。

二、由伏安特性折线化得到的等效电路:(图1.2.4)

1. 理想二极管:注意符号 2. 正向导通时端电压为常量

3. 正向导通时端电压与电流成线性关系 4. 例1(图1.2.5)三种不同等效分析:(1)V远远大于UD,(2)UD变化范围很小,(3)接近实际情况。5. 例2(图1.2.6)三、二极管的微变等效电路(图1.2.7)(图1.2.8)(图1.2.9)

动态电阻的公式推倒:

1.2.5 稳压二极管

一、概念:一种由硅材料制成的面接触型晶体二极管,其可以工作在反向击穿状态,在一定电流范围内,端电压几乎不变。

二、稳压管的伏安特性:(图1.2.10)

三、稳压管的主要参数

1. 稳定电压UZ:反向击穿电压,具有分散性。2. 稳定电流IZ:稳压工作的最小电流。

3. 额定功耗PZM:稳定电压与最大稳定电流的乘积。4. 动态电阻rZ:稳压区的动态等效电阻。

5. 温度系数α:温度每变化1度,稳压值的变化量。小于4V为齐纳击穿,负温度系数;大于7V为雪崩击穿,正温度系数。

四、例(图1.2.11)

1.2.6 其他类型二极管

一、发光二极管(图1.2.12)可见光、不可见光、激光;红、绿、黄、橙等;开启电压大。

二、光电二极管(图1.2.13)远红外接受管,伏安特性(图1.2.14)光电流(光电二极管在反压下,受到光照而产生的电流)与光照度成线性关系。

三、例(图1.2.15)

1.3 双极型晶体管

双极型晶体管(BJT: Bipolar Junction Transistor)几种晶体管的常见外形(图1.3.1)

1.3.1 晶体管的结构及类型(图1.3.2)

一、构成方式:同一个硅片上制造出三个掺杂区域,并形成两个PN结。

二、结构:

1. 三个区域:基区(薄且掺杂浓度很低)、发射区(掺杂浓度很高)、集电区(结面积大);

2. 三个电极:基极、发射极、集电极; 3. 两个PN结:集电结、发射结。

三、分类及符号:PNP、NPN 1.3.2 晶体管的电流放大作用

一、放大:把微弱信号进行能量的放大,晶体管是放大电路的核心元件,控制能量的转换,将输入的微小变化不失真地放大输出,放大的对象是变化量。

二、基本共射放大电路(图1.3.3)

1. 输入回路:输入信号所接入的基极-发射极回路;

2. 输出回路:放大后的输出信号所在的集电极-发射极回路; 3. 共射放大电路:发射极是两个回路的公共端; 4. 放大条件:发射结正偏且集电结反偏;

5. 放大作用:小的基极电流控制大的集电极电流。

三、晶体管内部载流子的运动(图1.3.4)分析条件uI0

1. 发射结加正向电压,扩散运动形成发射极电流IE,空穴电流IEP由于基区掺杂浓度很低,可以忽略不计;IEIENIEP

2. 扩散到基区的自由电子与空穴的复合运动形成电流IBN;

3. 集电结加反向电压,漂移运动形成集电极电流IC,其中非平衡少子的漂移形成ICN,平衡少子形成ICBO。

ICBO4. 晶体管的电流分配关系:ICICNICBO,IBIBNIEPICBOIB,IEIBIC

四、晶体管的共射电流放大系数

1. 共射直流电流放大系数:ICNICICBO IBIBICBO2. 穿透电流ICEO:ICIB(1)ICBOIBICEO

基极开路时,集电极与发射极之间的电流;

3. 集电结反向饱和电流ICBO:发射极开路时的IB电流; 4.近似公式:ICIB,IE(1)IB

5. 共射交流电流放大系数:当有输入动态信号时,ic iB6. 交直流放大系数之间的近似:若在动态信号作用时,交流放大系数基本不变,则有iCICiCIBICEOiB(IBiB)ICEO因为直流放大系数在线性区几乎不变,可以把动态部分看成是直流大小的变化,忽略穿透电流,有:,放大系数一般取几十至一百多倍的管子,太小放大能力不强,太大性能不稳定;

7. 共基直流电流放大系数:ICN,,

1IE1iC, iE8. 共基交流电流放大系数:

1.3.3 晶体管的共射特性曲线

一、输入特性曲线(图1.3.5)iBf(uBE)u的能力有关。

二、输出特性曲线(图1.3.6)iCf(uCE)IB常数CE常数,解释曲线右移原因,与集电区收集电子

(解释放大区曲线几乎平行于横轴的原因)

1. 截止区:发射结电压小于开启电压,集电结反偏,穿透电流硅1uA,锗几十uA;

2. 放大区:发射结正偏,集电结反偏,iB和iC成比例;

3. 饱和区:双结正偏,iB和iC不成比例,临界饱和或临界放大状态(uCB0)。

1.3.4 晶体管的主要参数

一、直流参数

1. 共射直流电流系数 2. 共基直流电流放大系数 3. 极间反向电流ICBO

二、交流参数 1. 共射交流电流放大系数 2. 共基交流电流放大系数

3. 特征频率fT:使下降到1的信号频率。

三、极限参数(图1.3.7)

1. 最大集电极耗散功率PCM;

2. 最大集电极电流ICM:使明显减小的集电极电流值;

3. 极间反向击穿电压:晶体管的某一电极开路时,另外两个电极间所允许加的最高反向电压,UCBO几十伏到上千伏、UCEO、UEBO几伏以下。

UCBOUCEXUCESUCERUCEO

1.3.5 温度对晶体管特性及参数的影响

一、温度对ICBO影响:每升高10度,电流增加一倍,硅管的ICBO要小一些。

二、温度对输入特性的影响:(图1.3.8)与二极管伏安特性相似。温度升高时,正向特性曲线向左移,反向特性曲线向下移,室温时,每升高1度,发射结正向压降减小2~2.5mV。

三、温度对输出特性的影响:(图1.3.9)温度升高变大。

四、两个例题

1.3.6 光电三极管

一、构造:(图1.3.10)

二、光电三极管的输出特性曲线与普通三极管类似(图1.3.11)

三、暗电流:ICEO无光照时的集电极电流,比光电二极管的大,且每上升25度,电流上升10倍;

四、光电流:有光照时的集电极电流。

1.4 场效应管

1.4.1 结型场效应管 1.4.2 绝缘栅型场效应管

一、N沟道增强型MOS管(图1.4.7)

1. 结构:衬底低掺杂P,扩散高掺杂N区,金属铝作为栅极; 2. 工作原理:

(1)栅源不加电压,不会有电流;

(2)(图1.4.8)uDS0且uGS0时,栅极电流为零,形成耗尽层;加大电压,形成反型层(导电沟道);开启电压UGS(th);

(3)(图1.4.9)uGSUGS(th)为一定值时,加大uDS,iD线性增大;但uDS的压降均匀地降落在沟道上,使得沟道沿源-漏方向逐渐变窄;当uGD=UGS(th)时,为预夹断;之后,uDS增大的部分几乎全部用于克服夹断区对漏极电流的阻力,此时,对应不同的uGS就有不同的iD,从而可以将iD看为电压uGSiD出现恒流。控制的电流源。

3. 特性曲线与电流方程:(1)特性曲线:(图1.4.10)转移特性、输出特性;

u(2)电流方程:iDIDOGS1

UGS(th)

二、N沟道耗尽型MOS管(图1.4.10)

1. 结构:绝缘层加入大量的正离子,直接形成反型层; 2. 符号

三、P沟道MOS管:漏源之间加负压

四、VMOS管

21.4.3 场效应管的主要参数

一、直流参数

1. 开启电压UGS(th):是UDS一定时,使iD大于零所需的最小UGS值;

2. 夹断电压UGS(off):是UDS一定时,使iD为规定的微小电流时的uGS;

3. 饱和漏极电流IDSS:对于耗尽型管,在UGS=0情况下,产生预夹断时的漏极电流; 4. 直流输入电阻RGS(DC):栅源电压与栅极电流之比,MOS管大于10。

二、交流参数

1. 低频跨导:gm9iDuGS

UDS常数2. 极间电容:栅源电容Cgs、栅漏电容Cgd、1~3pF,漏源电容Cds0.1~1pF

三、极限参数

1. 最大漏极电流IDM:管子正常工作时,漏极电流的上限值; 2. 击穿电压:漏源击穿电压U(BR)DS,栅源击穿电压U(BR)GS。3. 最大耗散功率PDM:

4. 安全注意:栅源电容很小,容易产生高压,避免栅极空悬、保证栅源之间的直流通路。

四、例

1.4.4 场效应管与晶体管的比较

一、场效应管为电压控制、输入电阻高、基本不需要输入电流,晶体管电流控制、需要信号源提供一定的电流;

二、场效应管只有多子参与导电、稳定性好,晶体管因为有少子参与导电,受温度、辐射等因素影响大;

三、场效应管噪声系数很小;

四、场效应管漏极、源极可以互换,而晶体管很少这样;

五、场效应管比晶体管种类多,灵活性高;

六、场效应管应用更多。

塑封半导体器件 篇3

对于用户更换电池(例如纽扣电池)供电的可穿戴系统来说,电池寿命达到6-12个月的可穿戴产品已经很常见。而由充电电池供电的可穿戴产品也必须具有非常高的能效,以便尽量减少充电次数。消费者将会感觉到,每间隔一两天就不得不摘下智能手表或追踪器进行充电是极其不方便的;他们更青睐“无后顾之忧”型的可穿戴产品,他们可以在手腕上戴着这些产品或者带在衣服上长达数周甚至数月,并且无需担心电池更换或充电。

Silicon Labs美洲区市场营销总监Raman Sharma先生表示,对于选择MCU供应商的可穿戴产品首要考虑因素是可提供长电池寿命的超低功耗解决方案。来自可穿戴产品客户(例如Misfit和Magellan)的反馈表明可穿戴产品必须具有特别超长的电池寿命才能够被消费者所接受,并在市场中取得成功。

因为超长电池寿命对于大多数可穿戴产品来说是一个关键设计因素,基于ARM Cortex-M处理器的MCU是可穿戴产品设计的更佳解决方案。从系统设计的角度来看,从ARM的M0到M4架构的MCU(微控制器)都能符合智能手表的设计需求,可以依据实际的应用层面来选用不同等级的MCU。

一些MCU供应商最近推出了基于Cortex-A处理器的参考设计。虽然这些概念设计极具宣传噱头,但是Raman Sharma认为这些基于Cortex-A的产品设计不切实际,难以满足当今大多数可穿戴设备对于超低功耗的需求。虽然ARM Cortex-A系列的处理器和MCU在基于Android的便携式设备上可能是最佳选择,但是这些设备是基于可频繁充电的情况而设计的。在可穿戴产品中实现Cortex-A的高性能是以很大的能耗为代价的,这使得一次充电仅仅能工作一两天。高功耗(导致短电池寿命)对于典型的智能手表或可穿戴健身追踪器来说是不可能被接受的。基于ARM Cortex-M的低能耗MCU更适合这些类型的可穿戴产品。基于这些原因,Silicon Labs将会持续投资并扩展基于Cortex-M0+、M3和允许浮点运算的M4核心的EFM32 Gecko MCU产品线。

无线技术:用最少的功耗来来完成尽可能多的通讯任务

可穿戴技术正在受得越来越多的关注,而将其连接到智能手机的无线连接技术将成为释放可穿戴市场巨大潜力的关键。小巧以及便于携带是可穿戴设备的重要特性,考虑到尺寸的原因,对于这些资源有限、基于电池工作的产品来说,来自功耗的挑战尤其令人关注。

一方面实现无线通讯的模块要通过提高集成度来降低本身要的工作能耗。博通公司嵌入式无线暨无线连线事业部业务开发总监Jef Baer表示,基于博通在无线连接领域悠久的领导地位以及我们高集成度的产品组合,在抓住可穿戴设备的市场机会上拥有得天独厚的优势。更高集成度、简单易用以及低成本,博通的芯片专为这一目标而设计,从而令可穿戴设备拥有极高的功效。

另一方面,无线技术可以把可穿戴设备的信息传至其他设备,从而大大降低自身的工作任务。

Jef Baer表示,可穿戴市场要实现起飞,需要低功耗、具有位置感知能力以及无论何时何地都可以互联的设备。将这些产品与智能设备连接起来的能力就非常关键,因为它不仅提供了这些设备收集数据的窗口,还同时起着将这些数据发送到云端的中心枢纽作用。

可穿戴设备与智能手机以及平板电脑采用无线技术来收发这些数据,能够大大降低可穿戴设备数据处理需求以及功耗是的需求。而反过来,又为制造商以及消费者降低了相应的成本和花费。

此外,无线充电技术对于可穿戴设备来说,也代表着一个巨大的机会。无论是将设备放置在一个充电托盘,还是收集射频能量,能够快速地从周边环境中为设备充电,将会为这些设备的发展带来重大的正面效应。

模拟与电源管理:结构简单和更高效率

可穿戴设备的低耗电量取决于两个方面,一是各电子部件本身要具备工作能耗低的特点,二是要有高效的电源管理系统。

ADI公司亚太区医疗行业市场经理王胜认为,对电子元器件提出了新的要求,例如高集成度实现小体积,低功耗实现电池长时间工作。对已可穿戴设备,尤其是可穿戴医疗保健功及健康管理类产品,目前市场参与者都在极力解决一下几方面的技术问题。一是如何方便用户使用,二是如何提高精度,再者如何在保证以上二者的情况下如何控制成本及上市时间;就用户的使用体验而言,其重点是小型化设计,低功耗实现,以降低电池体积和寿命,产品使用形态的创新尤为重要。例如在MEMS加速度传感器方面,ADI能够提供业内最小功耗更低的产品,甚至相配套的软件代码,可以很好的解决以上对可穿戴设备的设计要求。在电源方面,同样要电路简单,高效率,以及低成本,以更好的应对这类以电池供电为主的设计。

同时,技术和方案的服务同样重要,更大的变化是单个电子元器件的需求量相对于传统电子领域中的需求量大很多,而且要求的交付周期要快很多,对于供应商来说,改变原有的供应及服务模式就显得尤为重要。

触控IC:融合低价的指纹识别方案支持更多维度触控

可穿戴设备对人机交互功能同样提出了新的要求,由于可穿戴式设备的造型奇特各异,这对于触控屏的要求也与传统的手机、平板触控有了很大的不同,比如针对曲面的屏幕,其算法与过去平面触控方式截然不同。

据北京集创北方科技有限公司副总裁陈馗介绍,该公司面向可穿戴设备推出了可支持弧面屏的IC产品。该款名为ICN85的系列触控芯片支持弧面Touch Panel,支持180°的弧面触摸能够让可穿戴式设计更加随意,高信噪比(SNR)和专为弧面设计的算法保证了手指在弧面上触摸时接触面积不停变化的情况下依然能计算出精准的坐标(中心坐标偏差≤1mm)。

塑封半导体器件 篇4

目前主流功率器件封装形式有:TO,SOP,DIP,PDFN,QFN[3],为了确保这些器件的稳定性和可靠性,封装过程中的控温和定位显得尤为重要。通过塑封系统自动控温定位结构的设计,实现不同封装形式功率器件可靠性和稳定性的提升[4]。本文成果已应用于江阴苏阳电子股份有限公司多类产品实际封装。

1 系统组成

本系统采用的PLC控制系统由CP1H-XA40DT-D PLC和TPC1062KS触摸屏组成,配合塑封压机集成接口设计、PLC控温设计、PLC定位设计、光电传感系统嵌入,在触摸屏上实时显示塑封压机温度并实现温差预警反馈和定位不准预警反馈[5,6]。原理框图如图1所示。

2 半导体塑料封装压机自动温度切换系统

2.1 塑封压机集成接口系统设计

作为功率器件封装关键的塑封工序,塑封系统的稳定性和精度直接影响了功率器件的性能。半导体塑料封装压机需要安装精密塑封模具以进行手动塑料封装,一副模具一般需要16~20个加热棒,压机有32个加热通道,可以方便更换。传统塑封压机中模具加热棒与压机加热棒接口一一对接,压机加热棒通道与热电偶通道一一对应,该对接方式直接造成压机内部连线过多,引起安全隐患。

为了解决上述问题,设计了一种包括上模、下模、压机加热棒集成接口以及压机热电偶集成接口的塑封压机系统。上模及下模的单独加热棒接口集合成一个整体加热棒接口,上模及下模的单独热电偶接口集合成一个整体热电偶接口,整体加热棒接口与加热棒接口通过加热棒连接线连接,整体热电偶接口与热电偶接口通过热电偶连接线连接。由于系统将传统的多条单线连接改成整体接口连接,使得半导体塑料封装压系统连线简单、不容易造成连线接头脱落,更换塑封模具便捷。

2.2 PLC温度控制设计

设计的塑封压机系统除了将压机的多个单通道结合在一起,还在PLC智能反馈系统中增加自动变换通道程序,若某个通道低于设定温度一定时间,PLC自动切换下一个闲置通道。通过触摸屏输入、PLC反馈、模块集成的方法实现温度的切换控制。

PLC温度控制系统通过触摸屏设定加热温度、加热脉冲、高低温度报警值和计时时间等相关参数,实现对压机的温度控制。在实际应用中,塑封压机加热开启2 h后切换通道系统开启,若某个通道出现异常(≠175℃,温差>3℃),PLC立即开始200 s计时,在计时期内该通道温度如仍未达设定值,该通道将被关闭,同时开启下一个闲置通道,重新加温。最终塑封压机温度维持在报警值3℃以内,从而保证塑封过程中的恒定高温。该系统可应用于不同封装形式,图2为本系统PLC温度控制原理图,图3为实际塑封压机触摸屏温度及PID显示界面图。

3 半导体塑料封装压机智能定位系统

本系统设有光电传感器、接近传感器以及螺旋测试头,可利用螺旋测试头高精度的测量尺寸来调节接近传感器与工作台的配合。上、下工作平台之间连接有4根导柱,将电子光缆感应尺设置于导柱的外侧,接近传感器设置在导柱内侧,螺旋测试头位于接近传感器的底部。当下工作台上升时,4个导柱上的接近传感器可感应下工作台是否到达设定位置,电子光缆感应尺读取下模到导柱的距离,如未达设定值,光电传感器将输出电平信号,经电路转换后,一路信号直接触发PLC安全控制点,有效阻止模具的开合;另一路信号输出至LED指示灯,提示此时工作台未能到达设定位置,图4为塑封模具定位原理图。该系统具有智能定位的功能,触摸屏可实时显示4个导柱是否在设定位置,如有报警,可迅速反映定位异常的传感器方位,便于及时处理,可以有效避免模具损坏或者报废。图5为本系统触摸屏定位显示界面。

4 软PLC系统研究

为了实现塑封系统控温定位的智能反馈,需要设计一种实时监控的现场控制系统,可编程逻辑控制器(Programmable Logical Controller,PLC)以微处理器为基础,采用可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程[7,8];所以在功率器件塑封系统设计中,采用PLC与触摸屏组成的控制系统实现自动控温和定位功能。

4.1 控制现场结构

本文采用CP1H-XA40DT-D PLC和TPC1062KS触摸屏组成系统控制现场的电动阀、电磁阀、电动机、温度控制器和定位控制器等执行机构。以温度控制为例,CP1H-XA40DT-D通过模拟量输入模块和温度传感器采集现场的温度信号,信号通过PLC上的A/D转换、数值变换传送到触摸屏上,触摸屏显示实时的温度值和PID值;且PID参数可以通过触摸屏进行设置,触摸屏给PLC发送指令,以控制现场的执行机构[9]。控制现场温控结构如图6所示。

4.2 控制系统电路设计

为了实现PLC对塑封压机温度和模具定位的控制,必须设计相应的控制电路。PLC控制系统的控制电路主要由输入电路、PLC、输出电路3个部分组成。输入电路主要有按钮、开关、模拟量、人机界面等;输出电路主要有电磁阀、指示灯、接触器等。PLC控制系统根据输入电路得到的信号,执行PLC程序,从而控制输出电路的电器元件驱动设备的机械结构,最终满足控制塑封压机温度和模具定位的要求,完成系统控制。以温度控制为例,通过触摸屏设定标准塑封压机温度(175℃),通过PLC程序判断压机温度是否在容差范围内(3℃),若超出容差,则发出信号反馈至触摸屏,同时调整加热通道,令塑封压机温差小于设定容差。图7为功率器件塑封系统PLC温度控制电路图。

4.3 控制系统软件设计

常见的PLC控制系统软件设计方法有图解法编程(包括梯形图法、逻辑流程图法、时序流程图法和步进顺控法)、经验法编程、计算机辅助设计编程等[10]。设计的自动控温定位塑封系统选用的是梯形图法,这种最方便的编程方法是一种用梯形图语言,模仿继电器控制系统的编程方式。其图形及元件名称均与继电器控制电路十分相近。这种方法的优点在于可以把原继电器控制电路转化成PLC梯形图语言。

为了提高系统可靠性,在软件设计上采用了数字滤波和软件容错。在采样周期内,用采样值计算加权平均值作为滤波值,滤波现场的模拟量信号经A/D转换后变为数字量信号,存入PLC中,根据滤波值滤去噪声信号获得所需的有用信号,进行系统控制。在程序执行过程中,一旦发现现场故障或错误,系统即通过程序判断造成错误的原因是主要故障还是次要故障,并分别做出停机和相应子程序处理。系统还可对重要的开关量输入信号或易形成抖动的检测或控制回路采用软件延时,对同一信号多次读取,结果一致,才确认有效,消除偶发干扰的影响。

5 结语

目前市场中功率器件应用极为广泛,为了适应现代便携式电子产品等应用领域不断小型化的发展趋势,现代功率器件封装技术不断改进,新型封装形式不断涌现。为了提高各种封装形式的可靠性和稳定性,设计了一种可应用于各种封装形式的功率器件自动控温定位塑封系统,该系统可实现关键塑封工艺设备温度的均匀和稳定,提高塑封模具压合精度,从而提高良品率,降低设备损耗,具有极其重要的应用价值。基于PLC控制系统的自动控温定位塑封系统的研究和实现对提升功率器件封装的效率有着重要意义。

参考文献

[1]龙乐.电子封装技术发展现状及趋势[J].电子与封装,2012(1):39-43.

[2]张兴,黄如.微电子学概论[M].北京:北京大学出版社,2000.

[3]张巍,徐武明.国内集成电路产业特点、问题、趋势及建议[J].承德民族师专学报,2011(2):9-11.

[4]CHYLAK Bob,BABINETZ Stephen,LEE Levine.Ultra-low loop wire bonds[EB/OL].[2014-07-08].http://www.docin.com...827.html.

[5]袁立强,赵争鸣,宋高升,等.电力半导体器件原理与应用[M].北京:机械工业出版社,2011.

[6]刘文生.PLC与触摸屏的综合应用[J].辽宁师专学报:自然科学版,2009,11(1):87-88.

[7]叶晓光.PLC在组合机床的控制应用探讨[J].制造业自动化,2011,33(10):146-148.

[8]陈立定.电气控制与可编程序控制器的原理及应用[M].北京:机械工业出版社,2004.

[9]郭世钢.PLC的人机接口与编程[J].微计算机信息,2006(19):40-44.

[10]陈晓琴.可编程控制器及应用[M].哈尔滨:哈尔滨工程大学出版社,2009.

[11]顾江海,刘勇,梁利华.封装集成工艺中带状功率器件的翘曲研究[J].浙江工业大学学报,2012(5):578-582.

上一篇:贵州经济下一篇:舞弊性报告