高强度硅酮结构胶

2024-08-27

高强度硅酮结构胶(精选三篇)

高强度硅酮结构胶 篇1

考虑到幕墙玻璃通过结构胶粘结在金属框架上的特性,单方面加强玻璃面板自身的抗爆性能,结构胶粘结体系在爆炸荷载冲击下可靠性发生问题( 如发生自身撕裂或粘结破坏) ,将发生玻璃成片的脱落( 向室内侧) ,依然无法确保人员的安全性。 因此,同时考虑结构胶自身在短时爆炸冲击荷载作用下的可靠性是非常必要的。 本文介绍了高强度结构胶在抗爆幕墙结构粘结系统中的应用, 利用100 kg TNT当量的炸药在一定距离对抗爆幕墙样品进行实际爆炸测试, 考察采用高强度结构胶提高玻璃幕墙抗爆性能的可行性。 高风压,如台风、飓风等对幕墙玻璃造成的冲击力效果类似于爆炸所产生的高强度应力,可以按照抗爆幕墙的设计思路进行考虑。

1幕墙结构性粘结

20世纪70年代,幕墙的结构性粘结工艺首先在美国兴起。 当时的结构胶材料规范ASTM C 1184《 硅酮结构密封胶标准规范》[5]要求结构胶设计强度不低于0.345 MPa( 50 psi) ,对应的结构胶设计规范ASTM C 1401《 结构性密封门窗玻璃的标准指南》[6]规定结构胶设计强度0.14 MPa( 20 psi) ,该设计强度下结构胶的安全系数为2.5倍( 0.345/0.14) ,符合当时硅酮结构胶的发展水平。 然而,硅酮结构胶材料科学及幕墙设计理念经过40余年发展后, 现行的国际规范 ( 如ISO 8339《 建筑结构密封胶抗拉性能的测定》[7]) 普遍要求结构胶安全系数不低于5倍。 目前,多数硅酮结构胶产品能够达到1.0 MPa的极限拉伸强度,在不考虑后期因自然老化而导致的强度下降的前提下,结构性粘结体系的安全系数已经高达7倍。 上述强度值是基于ISO 8339、ASTM C 1135 《 结构密封胶拉伸粘结强度的测定》 、GB 16776—2005 《 建筑用硅酮结构密封胶》[8]等规范要求,选择粘结面积12 mm×12 mm× 50 mm的H型标准样件进行的测量数据 , 如选用ASTM D 412 《 硫化橡胶和热塑性弹性体拉伸性能的测定》 或GB/T 528《 硫化橡胶和热塑料橡胶拉伸性能的测定》 等规范要求,选用2.0 mm厚的哑铃型样件进行性能测试, 则得到的拉伸强度至少2倍于H型试样的拉伸强度数据, 相应的结构胶安全系数也将更高。 可见,多数硅酮结构胶在出厂时是能够满足ISO和ASTM标准要求的。但是,实际情况是,不少硅酮结构胶在投入使用后不久就出现力学强度的急剧衰骤减。

因此,欧标ETAG 002《 结构密封胶装配体系欧洲技术认证指南》 摒弃了将结构胶强度固定在某个特定值的思路,而是采用规定力学性能保持率的方法来衡量密封胶性能的长期可靠性[9],国内最新制定的行业标准《 建筑幕墙用中空玻璃弹性密封胶》 及《 建筑幕墙用硅酮结构密封胶》 已经等效借鉴欧标测试及评估体系。 ETAG 002对结构胶的最大强度值无具体数值要求,但其要求结构胶产品经高温、低温、盐雾、酸雾、 水-紫外辐照 等处理后 , 强度值保 持率必须 高于0.75。 ETAG 002规定结构胶设计强度值按下式计算:

式中,σdes表示结构胶设计强度值;Ru,5表示23 ℃时结构胶拉伸强度标准值,ETAG 002中取其概率分布的0.05分位值确定;r表示安全系数,ETAG 002中建议取6。 可见,对于性能好的高强度结构密封胶,按照ETAG规范的取值思路,原则上允许结构胶设计强度高于0.14 MPa的常规取值。

需要注意的是,欧标繁多的老化项目种类及苛刻的单项老化强度要求,以及老化后强度保持率不低于0.75的强制规定,实际上已将国内绝大多数硅酮结构胶排除在规范以外。 从1999年第1版ETAG 002正式生效, 到2011年终于有厂家的双组分硅酮结构胶历史性超越了0.14 MPa的设计强度, 达到了0.20 MPa的设计强 度 ( 实测的平 均拉伸强 度高达1.6 MPa、断裂延伸率约90%,图1)[10]。 在此之前,国内只有一款单组分结构胶达到了0.17 MPa的设计强度, 但由于单组分硅酮结构胶最大允许的胶宽只能维持在15~18 mm[11]( 更宽的胶深,单组分硅酮胶将无法实现深层固化) ,因此使用同样受限。

现行的幕墙设计规范,如JGJ 102—2003《 玻璃幕墙工程技术规范》 、ASTM C 1401,基于双向板的受力假设给出结构胶宽度h计算的公式:

式中,a表示玻璃的短边长度,w表示最大的标准风压,σdes表示结构胶设计强度值。 以欧洲某幕墙项目为例,面积约75 000 m2,局部标准风压高达7.0 k Pa。 选用普通强度结构胶及常规设计参数 ( 0.14 MPa) 下硅酮结构胶的节点尺寸30 mm×10 mm, 结构胶消耗将高达92 t。 选用高强度结构胶及提升后的设计参数 ( 0.20 MPa) , 则硅酮胶的节点尺寸可缩减至21 mm× 6.4 mm, 结构胶消耗仅41 t, 硅酮结构胶用量节省60%。 相应的双面贴的尺寸也可从12 mm×12 mm缩减至8 mm×8 mm,节省55%。 同时,在满足型材自身强度及挠度要求的前提下, 由于幕墙所需打胶面缩小,铝型材的宽度可由此缩小25 mm。

事实上,出于采光及视觉的考量,玻璃幕墙愈来愈趋向于选用超大面积的玻璃。 按照传统设计思路, 高风压和大板面的结合,势必需要很大的结构胶尺寸 ( 胶宽和胶深) 来满足受力要求。 选用高强度结构胶, 通过稳定提高胶体自身的强度,增加结构性粘结系统单位面积的允许受力极限,能够在维持结构性粘结体系安全系数不变的同时,缩减结构胶的设计宽度。 设计强度0.20 MPa的高强度双组分硅酮结构胶的出现,使得高风压和大板面的设计成为可能。

同时,上述材料的节省更是满足了LEED认证对建筑能耗的要求。 铝材铸造过程中约155 MJ/kg的能量消耗,意味着8.24 kg CO2/kg铝型材的碳排放 。 依此计算,整个项目仅铝材宽度缩减一项就减少了490 t CO2的排放。此外,尽管硅酮胶自身的隔热性能要远优于铝型材,最好的隔热材料还是空气层,导热系数仅0.024 W/( K·m) ,小的结构胶宽度更有利于幕墙导热系数的降低。 小接缝设计还有利于提高幕墙可视面比例,增大室内太阳能量的获取途径。

2实验室高速剪切拉伸测试

为模拟实际爆炸状况下结构胶受力后的反应状况,实验室选用4 m/s的拉伸速度进行剪切测试。 该拉伸速度50 000倍于常规的拉伸测试速度 ( 5 mm/ min,ISO 8339) 。 以西卡普通强度双组分硅酮结构胶为例,低速测试( 5 mm/min) 条件下强度为0.9 MPa左右,高速测试( 4 m/s) 条件下强度高达2.8 MPa;西卡高强度双组分硅酮结构胶在低速测试条件下强度在1.6 MPa左右, 高速测试条件下强度将高达4.2 MPa ( 图2) 。 较高的测试速度将导致较高的强度数据 ,这是因为高速测试条件下结构胶所承受的短时应变导致了结构胶分子结构变形的不同表现。 上述结论为玻璃幕墙的抗爆安全设计提供了基本依据。

可以推断, 在测试速度进一步提升的情况下,结构胶的剪切强度数据还会有进一步的提高。 但是,考虑到高于4 m/s的冲击速度将导致玻璃自身的直接内聚破坏( 不同类型的玻璃可能稍有差别) ,实验室模拟将测试速度设定在该临界值。

3抗爆玻璃幕墙实际爆炸测试

基于结构胶在实验室高速拉伸测试结论,西卡公司于2012年10月在英国GL Noble Denton测试中心组织了玻璃幕墙的实际爆炸测试。 按照ISO 16933规范要求,玻璃为两片4 mm的浮法玻璃,通过1.52 mm杜邦PVB进行夹层复合, 通过特定的结构胶类型及尺寸粘结固定于镀锌钢材质的U型槽内( 图3) 。 ISO 16933按照爆炸测试后玻璃的碎裂程度和散落位置对抗爆幕墙玻璃进行的分级,见图4。

a.普通结构胶 : 胶宽 2 5 mm( 参照样 ) ;b.高强结构胶 : 胶宽 1 7 mm ( 节省 3 2%胶宽 ) ;c.高强结构胶 : 胶宽 1 2 mm( 节省 52%胶宽 )

图3中a、b、c分别为选用普通强度结构胶、高强结构胶及设计优化后的高强结构胶3种情况下的幕墙玻璃粘结结构。 实验采用100 kg TNT当量的高爆炸药在距离幕墙玻璃25 m和19 m的位置进行爆炸测试[12]。 爆炸产生的冲击所造成的短时应力将导致玻璃面板发生较大的挠度变形并对结构胶粘结部位形成快速的剪切应力。选用常规结构胶的情况下( a) ,即使胶宽高达25 mm,高爆产生的短时大变形将导致结构胶内部破坏并导致四周粘结部位的玻璃飞溅出框架外。而选用高强结构胶的情况下( b、c) ,即使胶宽尺寸缩减幅度较大( 32%~52%) ,爆炸产生的短时应力也未造成结构胶的内部破坏,玻璃四周粘结部位被安全稳定地固定在框架内,无大块玻璃向外飞溅。 按照ISO 16933进行的实验参数及结论,见表1。

进一步分析表1中的结果可以发现,爆-1测试, 爆炸物安放距离25 m, 玻璃成片地脱落并向室内侧无序飞散( 图5) ,无法满足安全性要求,因此判定为F-高危害。 爆-2和爆-3两个测试中( 图6) ,爆炸物安放距离25 m,玻璃四周被安全稳定的固定在框架内, 室内侧并无可视的碎片产生, 达到标准要求的B-无害级,确保了室内侧人员的安全性。 爆-4测试,爆炸物安放距离19 m, 尽管测试后夹胶玻璃依然被固定在框架内, 但是玻璃四边50%的粘结部位已经出现内聚破坏,室内侧1 m范围内出现了玻璃碎片,达到标准要求的D-低危害级。

4结语

高强度硅酮结构胶 篇2

JGJ82-91条文说明

中华人民共和国行业标准

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ 82-91 条 文 说 明

前 言

根据原国家建工总局(82)建工科字第14号文的要求,由湖北省建筑工程总公司主编,包头钢铁设计研究院、铁道部科学院、冶金部建筑研究总院,北京钢铁设计研究总院等单位参加共同编制的《钢结构高强度螺栓连接的设计、施工及验收规程》(JGJ82-91),经建设部一九九二年四月十六日以建标[1992]231号文批准,业已发布。

为便于广大设计、施工、科研、学校等单位的有关人员在使用本规程时能正确理解和执行条文规定,本规程编制组按章、节、条顺序编制了本规程的条文说明,供国内使用者参考。在使用中如发现本条文说明有欠妥之处,请将意见函寄湖北省建筑工程总公司。

本《条文说明》由建设部标准定额研究所组织出版发行,仅供国内使用,不得外传和翻印。

长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

第一章 总 则

第1.0.1条 本条说明编制规程的宗旨和目的。

第1.0.2条 本条明确指出了本规程仅适用于工业与民用房屋以及一般构筑物的钢结构的连接设计与施工。

第1.0.3条 本规程为现行钢结构设计规范在连接方面的延伸与补充,故本条提出了设计、施工时必须同时遵循的国家钢结构设计与施工的规范。应用本规程时,应注意用于普通钢结构构件的高强度螺栓连接与用于冷弯薄壁型钢的高强度螺栓连接在条文内容上的差异。

第1.0.4条 连接副为一套高强度螺栓紧固件(包括栓杆、螺母、垫圈)的总称。本条说明了本规程所适用的扭剪型及大六角型高强度螺栓应符合的国家标准。

第1.0.5条 提出了在图纸中应注明的具体要求。使制作、安装单位更好地按设计意图施工。

第二章 连 接 设 计 第一节 一 般 规 定

第2.1.1条 当前我国结构设计规范中采用了较为合理的、以概率理论为基础的极限状态设计方法。结构的极限状态可理解为结构发挥其最大承载力时(承载极限状态)或达到使用功能上允许的某极限值时(使用极限状态)的状态。

本条阐明了高强度螺栓连接接头(包括摩擦型与承压型)设计极限状态的定义。对摩擦型只考虑使用极限状态(在荷载设计值下连接件之间产生相对滑移),对承压型因使用经验还很少,故分别考虑承载极限状态(荷载设计值下达到最大承载力)及使用极限状态(荷载标准值下连接件之间产生相对滑移)。

第2.1.2条 一般情况下,按实际内力设计连接接头已可满足使用要求。但某些情况下,如构件拼接接头不能设在内力较小部位时,或因使用要求连接接头承载力要有一定裕度时,则宜按与构件等强度设计高强度螺栓接头。

第2.1.3条 本规程适用的高强度螺栓承压型连接为正常孔隙型,其制孔、摩擦面处理及施拧等要求均与高强度螺栓摩擦型连接相同。但因其为剪压传力,所连接组合的构件在承载时会比高强度螺栓摩擦型连接组合的构件有较大的变形,同时由于栓孔采用正常孔隙而不是紧密孔隙(国外有采用,装配时将栓杆打入孔内,其孔隙为0.3mm),故其承压、抗剪的工作条件较差,类似普通螺栓。由于这些因素加之国内尚无使用经验,故对高强度螺栓承压型连接的使用范围先限制在只承受静载或间接动载(并无反向受力)的构件的连接中。

薄壁型钢因壁很薄,承压抗力低,承压时易产生撕裂破坏,故不宜采用承压型连接。

长江委信息研究中心馆藏

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ82-91条文说明

第2.1.4条 冷弯薄壁型钢壁很薄时,喷砂等除去牢固附着于表面的氧化皮可能引起板厚减薄,故摩擦面处理宜采用除去油垢或钢丝刷除浮锈的处理方法。

第2.1.5条 对薄壁型钢连接,从强度协调考虑,不宜采用大直径螺栓。当壁厚小于4mm时,一般选用M12螺栓即可。

第2.1.6条 试验表明,摩擦型连接处在较高温度环境中时,由于预拉力产生应力松弛而降低的影响,会引起连接滑移荷载及抗滑移系数的降低。试验研究资料表明,当温度在100~150℃范围内时,此降低幅度约为10%。本条即按此提出,作为工程应用中的参考。当所处环境温度高于150℃时,按照现行钢结构规范要求,钢结构构件(包括相应的连接)应采取隔热防护措施。

第二节 摩擦型连接的计算

第2.2.1条 本条完全引自现行钢结构设计规范(GBJI7—88)与冷弯薄壁型钢结构技术规范(GBJ18—87)。以钢结构设计规范为例,公式(2.2.l)与原规范(TJ17-74)中高强度螺栓在摩擦型连接中抗剪承载力公式(54)实质上完全相同,但(54)式为容许应力表达

长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

长江委信息研究中心馆藏

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ82-91条文说明

加预拉力的压紧影响,使承压孔壁形成了三维应力状态,从而使承压强度有相当程度的提高。本条表2.3.2中承压设计强度即考虑了这一因素。当剪切面在螺纹处时,抗剪及承压强度均将降低,故在实际工程中不可避免这种情况时,应以螺纹有效直径d, 来计算承载力。

第2.3.4条 与现行普钢结构设计规范相同。对受拉、剪联合作用的连接验算,根据国内外试验研究情况,采用了拉剪椭圆相关公式,即式(2.3.4-l)来计算。国外一些有关规范、规程也都采用此同类相关式并已有较成熟的使用经验。此外,对承压强度还要求满足式(2.3.4-2)的要求。从机理上说,承压强度与抗拉强度亦有相关关系,因预拉力对承压强度有提高影响,而外拉力又对预拉力有减小影响。但根据试验研b究,即使外拉力Nc达最大,预拉力P接近于零时,承压强度的降低幅度也是不大的(不至20%)。故为应用上的方便,即不再考虑相关关系的变b化,而对承压强度Nc采用偏安全的定值折减系数1.2,这样只需用单项式(2.3.4-2)核算即可。

第2.3.5条 本条与现行钢结构规范有关条文相同,高强度螺栓承压型连接除按前几条要求计算承载力外,还应考虑在标准荷载下不产生滑动的使用极限状态要求。本条即按此控制要求提出的。因摩擦型连接是以荷载设计值下不产生滑移为极限状态,而承压型连接是以荷载标准值下不产生滑移为极限状态,故可以摩擦型连接的承载力为基准限值,长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

再考虑荷载设计值与荷载标准值之差别,即平均荷载分项系数1.3来确定此种状态下承压型连接的承载力。因而本条提出了承压型连接抗剪承载力不得超过同类摩擦型连接抗剪承载力的30%,作为使用极限状态的控制条件。

第四节 接 头 设 计

第2.4.1条 在同一接头同一受力部位上混用不同连接时,其各自分担的力将主要按变形协调关系来分配,若将刚度相差过大的连接并用在同一接头中,因其不能同时承载共同工作,接头总承载力仍只相当于刚度较大连接的单一承载力,这在力学性能上是不合理的。故不允许将摩擦型连接与承压型连接混用,或与普通螺栓混用。

关于高强度螺栓摩擦型连接与焊接或铆接并用,国外已进行了较多的试验研究,其主要结论性意见是:

1.高强度螺栓摩擦型连接与侧角焊缝混用的性能优于与端角焊缝混用的性能。前者混用接头的最大强度可按(焊接接头的最大强度+O.62高强度螺栓连接的最大强度)或0.9 X(高强度螺栓的滑动强度+角焊缝最大强度)来考虑。

2.高强度螺栓摩擦型连接与铆接混用时能够较好地协调工作,其接头总承载力一般可按栓、铆连接各自的承载力相叠加考虑。

国外一些规范、规程(如美国、日本、挪威、澳大利亚、欧洲钢协等)中都列入了可以考虑栓焊并用共同承载的条文,但实际应用在工程设计中的情况也不多。

考虑到并用连接的计算方法尚不十分成熟,在我国使用经验还很少,实际应用的必要性并不大等原因,故在新建工程中不推荐使用混用连接。而只限于必要时在改、扩建工程中用于结构连接的补强。这种情况下,可考虑原有的高强度螺栓或铆钉只承受原有结构的恒载,其它荷载则由新补强的连接承受。

此外,关于新接头中检焊并用的施工顺序,美国、日本郑重考虑焊接对板件变形不易夹紧的影响,因而推荐光拧后焊,而挪威、欧洲等则郑重考虑焊接加热对高强度螺栓应力松弛的影响,而推荐先焊后拧,故何种工序合理,宜根据板件厚度、反变形措施等条件具体分析考虑。

在同一接头中不同受力部位分别采用不同性质连接所组成的接头并用连接,可形成共同的承载能力,在使用上也有成熟的经验。

第2.4.2条、第2.4.3条、第2.4.4条 各条均参照铆接连接的经验沿用其相应规定,并与现行钢结构设计规范条文相同。

第2.4.5条 国内外许多试验研究均表明,T形(或法兰等)受拉高强度螺栓连接在承载时,由于T形翼缘板翘曲变形影响,在此翼缘面上会同时作用有附加杠杆力。当翼缘板刚度不大(即板厚不厚)时,此杠杆力可使受拉高强度螺栓的附加拉力达30%甚至更高,故不可忽视,长江委信息研究中心馆藏

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ82-91条文说明

但杠杆力的大小与翼缘板厚、螺栓排列及直径、接头形状等多种因素有关,准确计算十分困难,虽经多年研究,至今仍未得出公认的较准确且方便的计算公式,而大多是半经验半理论的。应用于工程时均带有相当的近似性。对美国道蒂、美国规范及手册、荷兰施塔克、同济大学、欧洲钢协及日本《高强度螺栓设计指南》等提出的各算式试算比较,对同一算例算得的杠杆力附加系数各为0.44、0.128、0.196、0.22、0.005等值,对见其差异很大。不便推荐出合理通用的统一算式。故本规程中只提出了当板件刚度不大时宜考虑杠杆力的不利影响,而未给出算式。当在工程中有必要考虑此影响而又无试验依据与可靠资料时,可以参照日本《高强度螺栓设计指南》(80版)或美国AISC手册中提的算式近似考虑杠杆力的影响。

为了减少杠杆力的不利影响,本规程条文中提出了在T型连接中宜采用较大刚度(厚度)的板件。至于板件达多厚时,可忽略不计杠杆力的影响,在法国钢结构规范、日本《设计指南》及费希尔的著作等资料中给出了算式,经试算此厚度限值约在2.2~2.5d(d为受拉连接高强度螺栓的直径),此值若用于实际工程,似亦偏大。

第2.4.6条 承受弯矩或弯剪联合作用的外伸式端板接头的工作状态较复杂,按现有资料其计算方法可有栓群法、拟梁法及将受拉区按T形件计算等三类方法。经试算比较及分析后,本条文中仍推荐了国际上较多采用的栓群法。在算式中只求解最外排螺栓所受的最大拉力,而不包括端板厚度的验算,故设计者应自己考虑核算。同时,本算式未考虑杠杆力的影响,在应用时需加以注意。

试验表明,这种接头处虽因有弯矩作用使部分螺栓受有外拉力而降低了抗剪承载力,但因端板受压压紧作用又增加了压紧,进而使摩擦抗剪力有所补偿,其接头总抗剪力一般并不降低。但在本规程中所提出的计算式偏安全的不考虑这种压紧补偿作用,只考虑受拉区及受压区螺栓抗剪承载力的总和。

第2.4.7条、第2.4.8条 均沿用已有且较成熟的拼接计算 方法。

第2.4.9条 试验表明,当构件连接或拼接接头较长,所排螺栓数量较多时,由于力作用在两端,使接头瑞部的螺栓与中部螺栓承受的力呈马鞍形不均匀分布,前者受力大而较早达到最大承载力,因而使总的承载力有所降低。故参照有关试验,对这种长接头的承载力乘以折减系数门(1.1-l1/150d0)。

第五节 连接构造要求

第2.5.1条、第2.5.2条 均参照现行钢结构设计规范相应 条文而提出。

长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

第2.5.3条 是沿用铆接结构有关规定,并根据首钢设计院及冶金部建筑研究总院的试验研究结果确定的,表2.5.3的取值原则说明如下:

一、紧固件最小中心距和边距; 1.在垂直于力作用方向;

(l)应使钢材净截面的抗拉强度大于或等于钢材的承压强度;

(2)毛截面屈服先于净截面破坏;

(3)受力时避免在孔壁周围产生过度应力集中;(4)施工时影响。以往为了方便拧紧螺母,最小栓距习用3.5d0,在编制《钢结构设计规范》(TJ17-74)时经征求意见,认为3d0即可,高强度螺栓用套筒搬手,采用3d0也是可以的,故统一采用3d0作为最小检距;

2.顺内力方向,按母材抗挤压和抗剪切等强的原则而定。

(l)端距2d0是考虑钢板在端部不致被紧固件冲切破坏而定;

(2)紧固件的中心距,理论值约为2d0.考虑前述其他因素取为3d0;

二、紧固件的最大中心距和边距;

1.在垂直内力方向:取决于钢板间的紧密贴合条件;

2.在顺内方向:取决于钢板的紧密贴合以及紧固件间钢板的变形约束条件;

第2.5.4条 翼缘角钢面积最小限值是为了保证整个翼缘与腹板之间能有可靠的传力连接“翼缘板理论切断点处外伸长度内的连接件数量是考虑翼缘板在刚进入理论切断点以内即能参加梁的工作而定。

第2.5.5条 因型钢的抗弯刚度较大,采用高强度螺栓不易使摩擦面贴紧。

第2.5.6条 提出了注意保护摩擦面的要求。但一般不宜采用外贴保护膜的作法,因除膜时费工费时。

第三章 施工及验收

第一节 高强度螺栓连接副的储运和保管

第3.1.1条 本条规定了大六角头高强度螺栓连接副的组成和组合、扭剪型高强度螺栓连接副的组成。由于高强度螺栓连接副制造厂是按批保证扭矩系数或紧固轴力,所以在使用时应在同批内配套使用。

第3.1.2条 高强度螺栓连接副的质量, 必须达到技术条件的要求,不符合技术条件的产品,不得使用。因此,每一制造批必须由制造厂出具质量保证书。

第3.1.3条 螺纹损伤后将会改变高强度螺栓连接副的扭矩系数或紧固轴力, 因此在运输、保管过程中应轻装、轻卸, 防止损伤螺纹。

第3.1.4条 本条规定了高强度螺栓连接副在保管过程中应注意事项, 其目的是为了确保高强度螺栓连接副使用时同批;长江委信息研究中心馆藏

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ82-91条文说明

尽可能保持出厂状态,以保证扭矩系数或紧固轴力不发生变化。第3.1.5条 本条是高强度螺栓连接副在现场安装过程应注意的事项,其目的也是为了防止扭矩系数或紧固轴力发生变化。

第二节 高强度螺栓连接构件的制作

第3.2.1条 本条内容与《钢结构工程施工及验收规范》(GBJ205-83)中第3.5.2条相同。

第3.2.2条 本条内容与《钢结构工程施工及验收规范》(GBJ 205-83)中第3.5.3条相同。

第3.2.3条 冲孔工艺会使孔边产生微裂纹,降低钢结构疲劳强度,还会使钢板表面局部不平整,所以必须采用钻孔工艺。因高强度螺栓连接是靠板面摩擦传力,为使板层密贴,有良好的面接触,所以孔边应无飞边、毛刺。

第3.2.4条 本条内容与《钢结构工程施工及验收规范》(GBJ 205-83)中第3.5.4条相同。

第3.2.5条 本条内容与《钢结构工程施工及验收规范》(GBJ 205-83)中第3.5.5条相同。

第3.2.6条 钢板表面不平整,有焊接飞溅、毛刺等将会使板面不密贴,影响高强度螺栓连接的受力性能,另外,板面上的油污将会大幅度降低摩擦面的抗滑移系数,因此表面不得有油污。表面处理方法的不同,直接影响摩擦面的抗滑移系数的取值,设计图中要求的处理方法决定了抗滑移系数值的大小,放加工中、必须与设计要求一致。

第3.2.7条 高强度螺栓连接处钢板表面上,如粘有赃物和油污,将会大幅度降低板面的抗滑移系数,影响高强度螺栓连接的承载能力,所以摩擦面上严禁作任何标记,还应加以保护。

第3.2.8条 影响高强度螺栓连接承载能力的最重要因素是摩擦面的抗滑移系数和高强度螺栓拧紧预拉力,为确保连接的可靠性,所以摩擦面的抗滑移系数必须符合设计要求。

第三节 高强度螺栓连接副和摩擦面的抗滑移系数检验

第3.3.1条 高强度螺栓连接副运到工地后必须进行有关的机械性能检验,合格后方准使用,这是使用前把好质量关的工作。大六角头高强度螺栓连接副的扭矩系数平均值和标准偏差,扭剪型高强度螺栓连接副的紧固轴力平均值和变异系数是保证高强度螺栓施工时拧紧预拉力准确性的重要指标项目,所以必须进行检测。

第3.3.2条

一、本条规定抗滑移系数应分别由制造厂和安装单位检验,即制造厂必须保证所制作之钢结构构件的抗滑移系数符合设计规定,安装单位长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

应检验运到现场的钢结构构件摩擦面的抗滑移系数是否符合设计要求。考虑到每项钢结构工程的数量和制造周期差别较大,因此明确规定了检验批量的划分原则及每一批应检验的组数。

二、抗滑移系数检验不能在钢结构构件上进行,只能通过试件进行模拟测定。为使试件能真实地反映构件的实际情况,规定了试件与构件应为六个相同条件,否则,试件代表性不强。

三、为了避免偏心引起测试误差,本条规定了试件的连接型式采用双面对接拼接。考虑到三栓试件在拼装时可避免偏心影响,推荐采用三栓试件。由于抗滑移系数的大小与测试试件的截面积大小有关,为使试件能真实反映实际构件,因此试件的连接计算应符合有关规定。

四、用拉力试验测得的抗滑移系数值比用压力试验测得的小,为偏于安全,本条规定了抗滑移系数检验采用拉力试验。为避免偏心对试验值的影响,试验时要求试件的轴线与试验机夹具中心线严格对中。

五、在计算抗滑移系数值时,对于大六角头高强度螺栓Pt为拉力试验前拧在试件上的高强度螺栓实测预拉力值。因为高强度螺栓预拉力值的大小对测定抗滑移系数有一定的影响,所以本条规定了每个高强度螺栓拧紧预拉力的范围;对于扭剪型高强度螺栓,用与试件上高强度螺栓同批的其它五套高强度螺栓的紧固轴力的平均值作为试件上的高强度螺栓的拧紧预拉力Pt与大六角头高强度螺栓相比,因Pt值不是直接从试件上实测的,所以存在一定的风险性。

六、为确保高强度螺栓连接的可靠性,本条规定了抗滑移系数检验的最小值必须等于或大于设计值, 否则就认为构件的摩擦面没有处理好,不符合设计要求,钢结构不能出厂或者工地不能进行拼装,必须对摩擦面作重新处理,重新检验,直到合格为止。

第四节 高强度螺栓连接副的安装

第3.4.1条 使用过长的螺栓将浪费钢材,增加不必要的费用,并给高强度螺栓施拧时带来困难。螺栓太短的会使螺母受力不均匀,为此本条提出了螺栓长度的计算公式。

第3.4.2条 钢板表面上有浮锈会降低抗滑移系数,安装前必须清除。

第3.4.3条 本条内容与《钢结构工程施工及验收规范》(GBJ 205-83)中第3.6.3条相同。

第3.4.4条 本条内容与《钢结构工程施工及验收规范》(GBJ 205-83)中第4.5.2条相同。

第3.4.5条 用高强度螺栓兼做临时螺栓,由于该螺栓从开始使用到终拧完成相隔时间较长,在这段时间内因环境等各种因素的影响(例如下雨),其扭矩系数将会发生变化,会严重影响高强度螺栓终拧预拉力的准确性,因此,本条规定高强度螺栓不能兼做临时螺栓。

长江委信息研究中心馆藏

钢结构高强度螺栓连接的设计、施工及验收规程

JGJ82-91条文说明

第3.4.6条 对于大六角头高强度螺栓连接副,垫圈设置内倒角是为了与螺栓头下的过渡圆弧相配合,因此在安装时垫圈带倒角的一侧必须朝向螺栓头,否则螺栓头就不能很好与垫圈密贴,影响螺栓的受力性能。对于螺母一侧的垫圈,因倒角侧的表面较为平整、光滑,拧紧时扭矩系数较小,且离散率也较小,所以垫圈有倒角一侧应朝向螺母。

第3.4.7条 强行穿入螺栓时,必然使螺纹受损伤,严重影响拧紧预拉力。

第3.4.8条 潮湿板面会引起钢板、螺栓的锈蚀,这将影响高强度螺栓连接长期使用的安全。

第3.4.9条 大六角头高强度螺栓连接副的扭矩系数与标准偏差是保证拧紧预拉力准确性的关键参数,为此对大六角头高强度螺栓在施工前必须进行连接副扭矩系数复验。

第3.4.10条 和其它材料一样,高强度螺栓连接副在拧紧后也会产生预拉力的损失,为保证连接副在使用阶段达到设计预拉力,因此在施拧时应考虑预拉力损失值,即施工预拉力比设计预拉力增加10%。

第3.4.11条 在用扭矩法拧紧高强度螺栓时,影响预拉力精度的因素除扭矩系数外,就是拧紧扭矩,所以规定了施拧用的扭矩板手和校正扳手的扭矩误差。

第3.4.12条 由于连接处钢板不平整,致使先拧与后拧的高强度螺栓预拉力有很大的差别,为克服这一现象,提高拧紧预拉力的精度,使各螺栓受力均匀,因此高强度螺栓的拧紧应分为初拧和终拧。

第3.4.13条 制造厂在测定高强度螺栓连接副扭矩系数时,是在拧紧螺母时测得的,因此安装施拧时也只准在螺母上施加扭矩。

第3.4.14条 扭剪型高强度螺栓连接副其拧紧预拉力的精度是靠连接副紧固轴力保证的,为此在施工前必须进行紧固轴力检验,合格后方准使用。

第3.4.15条 与第3.4.12条相同。

第3.4.16条 螺栓群由中央顺序向外拧紧,为使高强度螺栓连接处板层能更好密贴。

第3.4.17条 高强度螺栓连接副安装在构件上如不及时拧紧,其扭矩系数会有较大的改变,所以本条规定了拧紧工作应在同一天内完成。

第五节 高强度螺栓连接副施工质合检查和验收

第3.5.1条 考虑到在进行施工质量检查时,高强度螺栓的预拉力损失大部分已经完成,故在检查扭矩计算公式中,高强度螺栓的预拉力采用设计值。

第3.5.2条、第3.5.4条 高强度螺栓施工质量的原始检查验收记录是工程竣工验收的重要技术资料,应做为评定工程质量的依据并长江委信息研究中心馆藏

水利水电工程施工监理适用规范全文数据库

应纳入工程技术档案。

第3.5.3条 不能用专用扳手拧紧的扭剪型高强度螺栓,施拧是按大六角头高强度螺栓拧紧工艺,因此检查方法也应按大六角头高强度螺栓检查方法办理。

第六节 油 漆

第3.6.1条 为了避免腐蚀气体的侵蚀,防止高强度螺栓的延迟断裂,所以板缝应用腻子进行封闭。腻子配方由安装单位选配。

第3.6.2条 高强度螺栓连接副在工厂制造时,虽经表面防锈处理,有一定的防锈能力,但远不能满足长期使用的防锈要求,故在高强度螺栓连接处,不仅对钢板进行涂漆防锈,对高强度螺栓连接副也应进行涂漆防锈。

高强度硅酮结构胶 篇3

【关键词】钢结构连接;焊接处理;高强度螺栓

当前,人们在钢结构连接施工时,为了提高钢结构的稳定性和可靠性,一般都会采用高强度螺栓连接施工和焊接施工的方法,来对其进行处理。其中由于高强度螺栓连接方法在实际应用的过程中,有着较高的稳定性,可以使得钢结构的承载能力的进一步的提升,因此在对钢结构进行连接处理的过程中,人们一般都是采用的高强度螺栓连接施工方法来对其进行处理,从而保障工程的施工质量。下面我们为了让人们对钢结构连接和高强度螺栓施工的相关内容有着比较详细的了解,我国就对其施工工艺进行简要的介绍。

一、钢结构连接与高强度螺栓连接

1.钢结构连接的相关介绍

在工程施工项目中,钢结构由于较强的稳定性和刚度,因此得到了人们的广泛应用。而所谓的钢结构连接其实就是指钢结构构件在和其他构件进行相互连接的一种方法。在通常情况下,钢结构构件和其他元件进行连接施工的过程中,所采用的连接方法有很多,其中主要包括了焊接、螺栓连接等。其中有益于螺栓连接方法施工工艺比较简单,其稳定性较强因此得到了人们的广泛应用,而且我国也可以根据螺栓强度的不同,将螺栓连接方法分成普通螺栓连接和高强度螺栓连接这两种。

2.什么是高强度螺栓

而高强度螺栓连接作为螺栓连接方法中一种常用的连接方法,它主要是采用高强度钢材料制作而成的,因此在对其进行施工的过程,所采用的施工方法和工具都要比普通的螺栓施工有着更高的要求。而且和普通的螺栓相比,高强度螺栓在使用的过程中,其自身的承受能力将有着有效的提高。而且其受力特点和普通的螺栓结构也不一样,这就使其耐久性得到了明显的增强。我们在我国社会经济发展和城市规划建设的过程中,人们一般都是将高强度螺栓广泛的应用在桥梁工程、高层建设等工程设施当中,使其结构的稳定性和可靠性都得到明显的增强。

二、钢结构焊接方法选择

目前,我在对钢结构进行安装施工的过程中,焊接施工是其中主要的施工方式之一,其中人们主要是采用电弧焊施工的方法来赌气进行处理,这样不仅有着很好的焊接效果,还会对整个钢结构材料有着很好的保护作用,从而满足工程施工的相关要求。但是在特殊场合下,人们有时也会采用电渣焊接的方法来对其进行处理,从而使得钢结构的稳定性和可靠性得到进一步的提高。

1、手工焊:钢结构手工焊接方法具有操作方便,设备简单的优点。一般来说,手工焊接法的科学技术含量以及焊接设备的成本都不算高,并且它适用于任意两个或多个钢结构部件之间的焊接。但除了以上优点之外,手工焊接也存在着劳动强度大,工作效率低等缺点。我们目前常用到的手工焊接机械主要有两种,一种为交流焊机,一种为直流焊机。前者交流焊机比较适用于普通鋼结构的连接,而后者则适用于一些对焊接要求比较高的钢结构。

2、埋弧自动焊:埋弧自动焊,又称“电弧焊”,是一些小型设备焊接中常会采用到的一种焊接方式,其焊接原理是电弧在焊剂层下燃烧,达到将两个钢结构构件连接起来的目的。电弧焊的焊接效率比较高,焊接质量也有所保证,最重要的是电弧焊的操作技术简单灵活、易学。因此,电弧焊常常被应用于一些大型构件的制作加工中。

三、焊接工艺要点

焊接连接是现代钢结构最主要的连接方法,焊接连接构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;连接的密闭性好,结构刚度大。焊接时要注意以下几点:

1、焊接工艺设计:确定焊接方式、焊接参数及焊条、焊丝、焊剂的规格型号等。

2、焊条烘烤:焊条和粉芯焊丝使用前必须按质量要求进行烘焙,低氢型焊条经过烘焙后,应放在保温箱内随用随取。

3、定位点焊:焊接结构在拼接、组装时要确定零件的准确位置,要先进行定位点焊。

4、焊前预热:预热可降低热影响区冷却速度,防止焊接延迟裂纹的产生。

5、焊接顺序确定:一般从焊件的中心开始向四周扩展;先焊收缩量大的焊缝,后焊收缩量小的焊缝;尽量对称施焊;焊缝相交时,先悍纵向焊缝,待冷却至常温后,再焊横向焊缝;钢板较厚时分层施焊。

四、高强度螺栓连接施工

栓连接分为普通螺栓连接和高强度螺栓连接,两者区别在于高强度螺栓是由强度较高的钢经过热处理制成,高强度螺栓施连接是目前与焊接并举的钢结构主要连接方法之一,高强度螺栓施工时,用特殊扳手拧紧螺栓,对其施加规定的预拉力。

1、一般要求。刚强度螺栓工艺对材料要求很高,材料的合格与否关系到钢连接后的牢固程度,如果螺栓不合格或者受到污染,钢结构连接后容易出现松动、掉落等问题,影响建筑质量,因此在使用前,要对其性能做好检验,运输中轻装轻卸;工地储存要将其放置于干燥、通风、防雨、防潮的仓库,安装要按需领取,没有用完的要及时装回容器;安装中,接头摩擦面要清洁干燥。

2、安装工艺。一个接头上螺栓连接,应从螺栓群中部开始,向四周扩展,逐个拧紧。扭矩型高强度螺栓的初拧、复拧、终拧,每完成一次应涂上相应的颜色或标记,以防漏拧。高强度螺栓应自由穿入螺栓孔内。一个接头多个高强度螺栓穿入方向应一致。垫圈有倒角的一侧应朝向螺栓头和螺母,螺母有圆台的一面应朝向垫圈。强度螺栓连接副在终拧以后,螺栓丝扣外露应为2-3扣,其中允许有10%的螺栓丝扣外露1扣或4扣。

3、紧固方法。高强度螺栓的紧固有两种方法,即大六角头高强度螺栓连接副紧固和扭剪型高强度螺栓紧固。大六角头高强度螺栓连接副一般采用扭矩法和转角法紧固:扭矩法分初拧和终拧两步,初拧使各层钢板充分密贴,终拧将螺栓拧紧;转角法也是两次拖拧,初拧使用短扳手,将螺母拧至构件,做下标记,终拧改用长扳手,从标记位置拧至终拧位置。

五、结束语

由此可见,在现代化工程项目施工的过程中,钢结构材料已经得到了人们的广泛应用,这不仅使得工程结构的稳定性和可靠性得到了进一步的提高,还保障了工程施工的质量。不过由于现代化工程项目的形式多种多样,还是采用普通的钢结构连接方法,是无法满足工程施工的相关要求,因此我们就要将高强度螺栓施工工艺应用到其中,从而保障整个工程项目的施工质量,使其施工效率得到提升。

参考文献

[1]刘智慧.多层钢结构住宅建设中的相关问题探讨[J].中国商界(下半月),2009(04)

[2]喆甡.建设工程施工合同管理中的几个问题及对策[J].山西建筑,2001(02)

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【高强度硅酮结构胶】相关文章:

中性硅酮密封胶07-04

高强度板05-13

高强度刚05-23

高强度材料07-01

高强度支架08-22

硅酮石材耐候密封胶07-28

高强度纤维桩05-19

高强度厚钢板06-22

高强度螺栓分类范文06-10

高强度螺栓应用范文06-10

上一篇:小学美术教学评析下一篇:观察意识